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Abstract: Background: The issues of environmental pollution and its effects on health have become
increasingly serious in China. Energy intensive sectors are not only the main energy consumers,
but also the main sources of air pollution. Analyzing the health effects of energy intensive sectors
and the potential health co-benefits of a low carbon industrial transition is of great importance
for promoting China’s air pollution control. Methods: This study used the exposure-response (ER)
relationship model and inhalation factor methods to quantitatively analyze the health effects of
air pollution and forecast the potential health co-benefits in the power and steel sectors. Results:
The results showed that in 2016 SO2 and PM2.5 emissions caused about 850,000 premature deaths,
and 10 million cases of respiratory diseases and chest discomfort, resulting in health-related economic
losses of 1.2 trillion Yuan, accounting for 1.6% of the GDP. Meanwhile, demand control in consumption
could significantly reduce SO2 emissions in the power and steel sectors, thus offering significant
health co-benefits. However, there was still some uncertainty regarding the reduction of PM2.5

emissions in the steel sector. Conclusions: There is a need to take advantage of the health co-benefits
of emission reduction in energy intensive sectors and to adopt flexible means to stimulate their
green transformation.

Keywords: health effect; health economic loss; co-benefit; exposure-response relationship; energy
intensive sectors

1. Introduction

In parallel with the rapid development of the economy and the acceleration of urbanisation
and industrialisation, the issue of environmental pollution has become increasingly serious in China.
Severe environmental pollution endangers public health, causes medical burdens and even jeopardises
energy security and social stability. It has become a huge challenge for the development of China. As
shown by the Chinese Ecological Environment Status Bulletin 2017, among the 338 prefecture-level
cities in China, 239 failed to meet air quality standards and the proportion of polluted cities reached
22%, of which 2.6% were heavily polluted (The degree of air pollution is reflected by Air Quality Index
(AQI). “Polluted city” means the AQI is greater than 100; "heavily polluted" means the AQI is greater
than 300.) [1]. The air pollution situation in China is very serious. Although air quality has improved
slightly in recent years, there is still a long way to go to achieve healthy air quality standards.

People live in an environmental system and are inevitably exposed to environmental pollution
caused by exhaust gases and solid emissions [2]. Since the 1980s, the health effects of environmental
pollution have gradually been confirmed. Many studies have used the exposure-response (ER)
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relationship model [3–5] to explore the effect of air pollution on mortality [6–8], life expectancy,
cardiopulmonary [9], cardiovascular and respiratory diseases [10,11], mental health, hospitalisation
rates, and so on. Numerous quantitative studies have shown that China’s main air pollutants have
caused damage to human health, as evidenced by increased mortality, respiratory diseases and
hospitalisation rates. Air pollution not only directly affects human health, but also indirectly influences
human production activities. Therefore, in addition to affecting the health of residents, the economic
losses caused by air pollution are considerable.

To alleviate air pollution and its health effects in China, it is extremely important to find the sources
of pollution and evaluate their effects on health. Since the policy of reforming and opening up in 1978,
China’s economic development has produced remarkable results, with its rapid growth depending on
the mass input of resource elements. Industrial GDP, which accounts for about 40% of the total GDP,
consumes nearly 70% of energy. A International Energy Agency report [12] showed that the main
contributors to air pollution globally are transportation, industry and power generation. According to
China Energy Report 2018, “energy-intensive sectors” are those that consume and use large amounts of
energy in the production process. In China, energy-intensive sectors mainly include steel, nonferrous
metals, building materials, chemicals, electricity, and transportation sectors. Regarding the emissions
of industrial pollutants in China, as shown by the Annual Report on Environmental Statistics in
China 2015, among the 41 industrial sectors, the top three sectors for SO2 and NOx emissions are
the power, thermal production and supply industry, the non-metallic mineral products industry, and
the ferrous metal smelting and rolling processing industry, all of which are also energy intensive
sectors. SO2 emissions from these three sectors accounted for more than 60% of the total emissions
of industrial enterprises, NOx emissions for more than 75% and soot (dust) emissions for more than
70% [13]. In other words, energy intensive sectors are not only the main energy consumers, but also
the main sources of air pollutants. Therefore, focusing on energy intensive sectors to examine the
health effects of pollution is of great importance for promoting the reduction of national greenhouse
gas emissions, controlling air pollution and improving public health. In addition, China has made
great efforts to conserve energy and reduce emissions, especially in energy intensive sectors, inevitably
bringing additional costs and burdens to industries and enterprises. Nevertheless, emission reduction
may have certain health co-benefits. Assessing these co-benefits can help provide a reference for
the design of energy conservation and emission reduction policies, such as subsidy policies and
cost-sharing mechanisms.

Based on the discussion above, this study focuses on the effects of pollutant emissions from
energy intensive sectors in China, using the ER relationship model and inhalation factor methods to
quantitatively analyse the health effects of air pollution. With scenario analysis, we then simulate the
potential health co-benefits of energy conservation and emission mitigation in energy intensive sectors,
taking the power generation and steel and iron sectors as examples.

The rest of this paper is organised as follows. Section 2 reviews the literature on the health effects
of environmental pollution. Section 3 introduces the methods and data used in this study. Section 4
presents the results regarding the health effects of pollution in energy intensive sectors and the health
co-benefits of energy conservation and emission reduction. Finally, Section 5 concludes the study.

2. Literature Review

People around the world are paying more and more attention to the reduction of environmental
pollution, and air pollution and its related effects on public health have become an important issue
in academia in recent years. Following Grossman [14], scholars have started to explore the effects of
environmental pollution on public health. Early studies understood health as an economic capital,
suggesting that the health effects of environmental pollution to a large extent depend on the likelihood of
exposure to pollution [15]. As other conditions are set, the higher the level of exposure to environmental
pollution, the greater the health risks and health hazards. In terms of research methodologies, early
studies on the assessment of the health effects of environmental pollution mainly used the market
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value method, the opportunity cost method, the engineering cost method, the cost of illness approach,
the traditional human resource method and the amended human resource method [16,17]. In recent
years, scholars have mainly used the ER relationship method to evaluate environmental health effects.
Most studies have used the ER relationship method with econometric models, such as Ordinary Least
Square (OLS) and Generalized Additive Models (GAM), to assess these environmental health effects
by estimating the effects of atmospheric pollutants on mortality rates [6–8], life expectancy [18,19],
respiratory and cardiopulmonary diseases [10,11] and hospitalisation rates.

The health effects of environmental pollution have been further quantified by estimating the
economic losses caused by the health effects of pollution [20–22]. Previous studies have made
significant progress in the endogenous treatment of pollution-related health effects, pollution-related
health damage and labour supply or productivity and pollution-related health damage and economic
growth [23]. In particular, many studies have focused on pollution and health issues in China [24–28].
Numerous quantitative research results have shown that several major air pollutants in China cause
damage to human health. In a study conducted in Beijing [29], the positive correlation between
the atmospheric concentration of CO, SO2 and NOX and the mortality rate of various diseases was
significant, as the total suspended particulates increased to 10 µg/m3, the mortality rate from respiratory
diseases increased by 3.19% and the mortality rate from diseases of the circulatory system increased by
0.62%. The studies by Chen et al. and Ebenstain et al. [18,26] were concerned with the health effects of
China’s heating policies, showing that the average life expectancy of residents on the north side of the
Huai River has decreased due to these heating policies. As Zhang et al. [30] showed, mental health is
also influenced by pollution, with the deterioration of air quality affecting people’s psychological state,
resulting in a decrease in the subjective well-being of individuals. Moreover, studies have shown that
air pollution directly affects the health of residents and indirectly affects labour productivity, as air
pollution leads to diseases that bring new economic burdens. Taking as an example the air pollutant
PM10 in 2006, the analysis results from 113 cities in China showed that air pollutants caused huge
health and economic losses to the residents of these Chinese cities, causing about 297,700 premature
deaths and economic losses reaching 341.403 billion Yuan [31].

Concerns about the health effects of pollution are not always negative. In the process of tackling
climate change, the mitigation goal has failed to mobilise sufficient mitigation efforts, which has led to
more and more research on the co-benefits of greenhouse gas emission reduction. The co-benefits of
greenhouse gas emission reduction with respect to their effects on ecosystems, economic activities,
health, air pollution and resource efficiency have been the focus of current research [32]. Among
them, health as a co-benefit of mitigation reveals the positive effects of climate policies in the short
term and may compensate to some extent the costs of mitigation actions [33,34]. Most scholars have
quantified the health co-benefits of the effects of climate change mitigation on air quality, transportation
and diet. Scenario analysis has been widely used, with scenario settings including specific policy
recommendations and hypothetical scenarios [35]. In measuring the health co-benefits of emission
reduction in energy intensive sectors, many studies have measured these co-benefits in terms of
mortality, morbidity, disease and health costs. This estimation method has been widely used in
epidemiological research. It links public health effects, such as the reduction of mortality and healthcare
costs, with the degree of human exposure to air pollutants. Some studies have shown that even a small
increase in air pollutants would lead to increased health costs. For example, the study of Balbus et
al. [36] on the transportation, construction and power sector in the US revealed that reducing PM2.5

emissions by 2020 would reduce healthcare costs from US $6 billion to US $3 billion. Other studies had
similar results. For instance, Crawford-Brown et al. [37] showed that by 2020, Mexico’s mitigation
policy would result in a reduction of 3000 deaths and 417,000 non-fatal diseases per year. Bailis et
al. [38] focused on the health co-benefits of the household energy conversion process in Africa and
estimated that converting household energy consumption from wood to charcoal and oil by 2030
would result in 1 to 1.3 million fewer deaths. Other studies have focused on the health co-benefits of
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non-CO2 greenhouse gas emission reduction. For example, Anenberg et al. [39] used the ER model to
assess the health co-benefits of global CH4 and BC reduction policies.

In summary, most studies on the health co-benefits of emission reduction in energy intensive
sectors have shown that short-term health co-benefits promote the implementation of mitigation policies
and reduce net costs. However, these results have mainly described the interaction between climate
policies and health and their potential effects, lacking an accurate estimation of health co-benefits.
Many domestic and foreign studies have proved that environmental pollution, especially air pollution,
can cause damage to health and lead to economic losses. They have built a pollutant-health response
relationship, laying the foundation for understanding the health effects of pollution. However, most
current research has assessed the health effects of pollutants at the gross level, while the health losses
caused by different industries differ significantly. In addition, the assessment of the health effects of the
main sources of pollution remains relatively rare. Energy intensive sectors are also important sources
of air pollutants. Therefore, this study focused on the evaluation of the health effects and economic
effects of energy intensive sectors to predict the potential health co-benefits of emission reduction
and provide an important basis and decision-making reference for the corresponding cost and benefit
analysis of various policies.

3. Data and Methodology

This study mainly used the ER relationship model to assess the health effects and economic
losses of pollution in energy intensive sectors. Specifically, the following steps were required. First,
it was necessary to estimate pollutant emissions from these energy intensive sectors and, using the
inhalation factor method, to establish the relationship between pollutant emissions and public exposure
to pollution. Then, using the ER relationship, health outcomes were linked with public exposure to
pollution. By combining these two steps, the health effects and economic losses caused by each energy
intensive sector were obtained. Subsequently, this study evaluated the health co-benefits of carbon
mitigation in the power sector and steel sector through scenario analysis.

3.1. Methods for Assessing the Health Effects of Pollution and Their Economic Losses

This study assessed the environmental health effects and economic losses of air pollution.
According to the results of the literature review, previous studies have mainly used the ER relationship
method to evaluate environmental health effects. Therefore, this study used the revised ER relationship
of Ho and Jorgenson [25] presented in Equation (1):

HExrh = ERxh ×Crx × POPr, (1)

where HExrh is the environmental health effects of h type of pollutant x in r area, ERxh is the ER
relationship coefficient of h type of pollutant x, Crx is the concentration of pollutant x in r area and
POPr is the population in r area.

The economic losses of environmental health effects were obtained by summing the measures of
each health economic loss. The methods used are given by Equations (2) and (3):

HEVrxh = Vxh ×HExrh (2)

THEV =
∑

r

∑
x

∑
h

HEVrxh (3)

where HEVrxh is the economic losses of h type of pollutant x in r area, Vxh is the unit loss value of
health effects by h type of pollutant x and THEV is the total economic losses caused by air pollution.

Regarding the measurement of ER relationship coefficients, Hammitt and Zhou [24], Ho and
Jorgenson [25] and Gao et al. [40] used field research data to estimate the economic losses of various
environmental health effects in China using the willingness to pay method. As the field research data
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were obtained in 2002, this study revised the coefficients with the 2016 price index based on Ho and
Jorgenson’s [25] research data. The revised coefficients are shown in Table 1.

Table 1. Measures of exposure response and health effects of SO2 and PM2.5 emissions.

Health Effect
Exposure Response

Cases per Million per
ug/m3

Economic Losses
(Yuan, 2016)

Due to SO2 Ho and Jorgenson Revised

Premature mortality
(deaths) 1.95 370,000 394,790

Chest discomfort (cases) 10,000 6.2 6.6154
Respiratory
symptoms/child (cases) 5 6.2 6.6154

Due to PM2.5

Exposure Response
Cases per Million per

ug/m3

Economic Losses
Low (Billion Yuan)

Economic Losses
High (Billion Yuan)

Total mortality
(not accidental) 20.73 6.67 × 10−3 1.33 × 10−2

Mortality
(respiratory diseases) 2.46 6.68 × 10−3 1.33 × 10−2

Mortality
(circulatory diseases) 6.2 6.67 × 10−3 1.33 × 10−2

Notes: The dose response coefficient of Ho and Jorgenson was based on Word Bank 1997, the revised coefficient in
this paper is based on price index 2016.

3.2. Calculation of Industrial Emissions and Public Exposure to Pollution

Following Wei et al. [41], the calculation of sectoral pollutant emissions in this study included fuel
combustion emissions and industrial process emissions, as shown in Equations (4) to (6):

EM jx = EMFC
jx + EMP

jx (4)

EMP
jx = δ jxOP j (5)

EMFC
jx =

∑
f

(
ψ jxF j

)
(6)

where EM jx is the emissions of pollutant x in sector j and EMP
jx is the industrial process emissions,

obtained using the emission rate δ jx in the combustion process and output of sector j OP j. EMFC
jx is

the emissions from fuel combustion, estimated by emission factors ψ jx and fuel consumption F j. The
energy consumption data came from the China Energy Statistical Yearbook 2017 [42], the input-output
data came from the Input-output Tables of China 2012 and the data on pollutant emissions and emission
factors came from the GAINS model of the International Institute for Applied Systems Analysis (IIASA).
After computing pollutant emissions from energy intensive sectors, it was necessary to establish the
relationship between pollutant emissions and public exposure to pollution. The inhalation factor
(iF, also known as exposure efficiency or exposure factor) can describe the quantitative relationship
between pollutant emissions and the amount of pollutants inhaled by an exposed population. For a
particular source of pollution, the corresponding inhalation factor can be expressed by Equation (7) [25]:

iF =

 n∑
r=1

POPr ×Cr × BR

/EM (7)
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where POPr is the population in area r, Cr is the exposure concentration in area r, BR is the average
respiratory rate of the exposed population, usually expressed as 20 m3/day and EM is the total emissions
from specific sources of pollution.

Compared with other methods of assessing environmental health effects, the inhalation factor is a
relatively new assessment tool, but has been widely used in assessing the environmental effects of
power plants [43–45], industrial pollution [44], indoor pollution [46,47], traffic emissions [48] and some
regional assessments [49]. Early studies [42,50,51] on the measurement of inhalation factors in urban
China have mainly used the 1999 population data. Since 2000, urbanisation in China has accelerated
and the urban population has increased rapidly. In 2016, China’s urbanisation rate reached 57.4%,
while in 1999 it was only 34.8%, representing an increase of about 20%. A higher urbanisation rate
means that more people are exposed to urban air pollution. Therefore, this study used the change in
urbanisation rate to correct the original inhalation factor data, as shown in Table 2.

Table 2. Revised inhalation factors for primary and secondary pollutants.

Sector
Global Inhalation Factor Secondary Particulate Matter

TSP SO2 SO2/SO4 PM2.5

Agriculture 2.23696 × 10−6 4.82239 × 10−7 6.39613 × 10−6 1.13666 × 10−5

Coal mining and
processing 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Crude petroleum
mining 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Natural gas mining 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Metal ore mining 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Non-ferrous
mineral mining 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Building materials 1.50629 × 10−5 1.74236 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Food products 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Textile goods 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Apparel, leather 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Sawmills and
furniture 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Paper products 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Petroleum refining 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Coking 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Chemical 1.42761 × 10−5 2.8777 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Metal products 1.64119 × 10−5 2.63039 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Machinery and
equipment 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Other
manufacturing 1.64119 × 10−5 2.63039 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Electrical products 6.27248 × 10−6 6.91322 × 10−6 6.39613 × 10−6 1.13666 × 10−5

Gas production
and supply 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Aquaculture 1.52878 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Construction 8.40827 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Transport &
warehousing 5.46313 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

Social services 5.60926 × 10−5 2.40557 × 10−5 6.39613 × 10−6 1.13666 × 10−5

The environmental health effects of sectoral emissions were obtained using the ER relationship
method. Sectoral pollutant emissions were then linked with pollutant intake using inhalation factors,
as shown in Equation (8):

INTAKExj = iFN
xj × EM jx = BR

∑
r

CxrjPOPr (8)
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where INTAKExj is the total public intake of pollutant x in sector j, iFN
xj is the inhalation factor of

pollutant x in sector j and Cxrj is the concentration of pollutant x in sector j in area r. Furthermore, the
environmental health effects of pollutant x can be obtained by Equation (9):

HExhj= ERhx ×Cx × POP (9)

where HEh is the environmental health effects of h type of air pollutant x, ERxh is the ER relationship
coefficient of h type of air pollutant x, Cx is the average concentration of pollutant x in China and POPr

is the exposed population. The environmental health effects of h type of air pollutant x in sector j is
expressed by Equation (10):

HExhj =
∑

x

(
ERhx ×

INTAKExj

BR

)
=

∑
x

ERhx ×
iFN

xj × EMxj

BR

 (10)

3.3. Scenario Construction to Simulate Health Co-Benefits
To measure the health co-benefits of energy intensive sectors, this study used the power sector

and the steel sector as examples to construct transition scenarios and predict their pollutant emissions
under different scenarios. Health effects (and major economic losses) were estimated using the methods
presented in the two subsections above.

The demand and emissions scenarios of the power and steel sectors were calculated by the Center
for Energy and Environmental Policy Research of the Beijing Institute of Technology. For the power
sector, following Tang et al. [52], this study designed five possible development strategies for power
firms by investigating the effect of promoting advanced technologies and developing renewable energy
technologies, including the business as usual (BAU) scenario, medium power demand (MPD) policy
scenario, medium power demand (MPD) integrated scenario, power demand control (PDC) policy
scenario and power demand control (PDC) integrated scenario. The definitions of the five scenarios
are given in Table 3.

Table 3. Scenario descriptions in the power sector.

Scenarios Description

BAU Follow the existing green policies a

The share of renewable electricity generation maintains the same changing trends b

MPD-Policy When the power demand maintains a medium-speed growth, each region should first meet the
policy plan between 2015 and 2020

MPD-Integrated

Follow the existing green policies
The share of renewable electricity generation maintains the same changing trends
Improve the energy efficiency for coal-fired power generation technologies c

Promote the technologies of SC, USC, CFB, IGCC and nuclear power plants

PDC-Policy

Power demand will be controlled from the consumption side in the future
When the socialist modernization is basically realized by 2035, China’s per capita electricity
consumption will be 6336 kWh/person. By 2050, China’s per capita electricity consumption
will reach 8323 kWh/ person and each region will first meet policy planning between 2015 and 2020
Follow the existing green policies
Increase the share of renewable electricity generation

PDC-Integrated

Based on the policy scenario, the fuel consumption rate of coal-fired power generation technologies
in each region will remain 2% lower every five years from 2015
Follow the existing green policies
Improve the energy efficiency for coal-fired electricity generation technologies
Promote the technologies of SC, USC, CFB, IGCC and nuclear power plants
Increase the share of renewable electricity generation

Note: a Policies we considered are ‘The 13th Five Year Plan of Power Development’ [53] and ‘The Emissions
Reduction Action Plan of the Transformation and Upgrading of Coal-fired Power’ (2014–2020) [54]. b According to
‘China Electric Power Yearbook 2011–2016′, we assumed that the shares of renewable electricity generation after
2015 maintain the same changing trends of every five years between 2010 and 2015. c According to Guo et al.’s work
(2016) [55], we assumed that the energy consumption rates for all coal-fired power generation technologies decline
by 2% every 5 years. BAU = business as usual. MPD = medium power demand. PDC = power demand control.
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For the steel sector, following An et al. [56], this study considered six scenarios for SO2 and PM2.5

emissions, including medium, low and high demand for steel in the baseline and enhanced scenarios,
using medium demand as the baseline scenario. The definitions of the six scenarios are given in Table 4.

Table 4. Scenario descriptions in the steel sector.

Scenarios Description

BAU
(Medium Demand + Baseline Scenario)

The baseline scenario refers to a scenario based on the development
of existing
policies and technologies a

Eliminating backward production capacities and small-scale
equipment such as
blast furnaces, converters, and EAFs, and increasing the proportion
of large-scale
and internationally advanced traditional equipment
The new and rebuilt equipment will meet the planning requirements

Low Demand + Baseline Scenario
Low demand is based on the GDP growth rate and population
of SSP4
Follow the existing policies and technologies

High Demand + Baseline Scenario
High demand is based on the high-speed population scenario of
United Nations and the predicted GDP data
Follow the existing policies and technologies

Medium Demand + Enhanced
Scenario

The enhanced scenario refers to the increased use of electric arc
furnaces and the acceleration of the development of energy-saving
technologies
On the basis of baseline scenario, more low-carbon devices will be
added, such as dry-quenching, dry-cleaning, and waste
heat recovery.
At the same time, non-blast furnace ironmaking will be
developed properly

Low Demand + Enhanced Scenario

Low demand is based on the GDP growth rate and population
of SSP4
Follow the existing green policies
On the basis of baseline scenario, more low-carbon devices will
be added

High Demand + Enhanced Scenario

High demand is based on the high-speed population scenario of
United Nations and
the predicted GDP data
On the basis of baseline scenario, more low-carbon devices will
be added

Note: a Policies we considered are ‘The directory of national key energy-saving and low-carbon technologies
promotion’ [57] and ‘China’s 13th of five-year national energy technology innovation planning’ [58].

4. Results

4.1. Health Effects of Pollutant Emissions in Energy Intensive Sectors

As shown in Table 5, in 2016, SO2 emissions in China’s main energy intensive sectors caused
about 46,000 premature deaths each year, 23.42 million cases of chest discomfort and 5.85 million
cases of lower respiratory tract infection and childhood asthma. In addition, PM2.5 emissions in these
sectors caused approximately 800,000 non-accidental deaths, 90,000 deaths from respiratory diseases
and 30,000 deaths from circulatory diseases. With only two contaminants considered, the number
of premature deaths caused by energy intensive sectors was close to 1 million. As major sources of
energy consumption and pollutant emissions, emissions from these sectors have huge negative effects
on public health.
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Table 5. Health effects of SO2 and PM2.5 emissions in energy intensive sectors (2016).

Health Effects Cases/Person

Due to SO2

Premature mortality 46,863
Chest discomfort 23,431,695
Respiratory symptoms/child 5,857,924

Due to PM2.5

Total mortality (not accidental) 800,120
Mortality (respiratory diseases) 98,415
Mortality (circulatory diseases) 30,509

Based on the evaluation of health effects, this study also measured economic losses, as shown
in Table 6. In China’s energy intensive sectors, the total economic losses caused by the health effects
of SO2 emissions were about 273.94 billion Yuan, accounting for 0.37% of the national GDP that year.
The total economic losses of PM2.5 emissions were about 929.1 billion Yuan, accounting for 1.25% of
national GDP. When compared, PM2.5 emissions had greater health effects and health economic losses.

Table 6. Economic losses of SO2 and PM2.5 emissions in energy intensive sectors (2016).

Economic Losses 100 Million Yuan

Due to SO2

Premature mortality 1338.04
Chest discomfort 1121.06

Respiratory symptoms/child 280.26

Total 2739.36
Proportion of GDP 0.37%

Due to PM2.5

Total mortality (not accidental) 8000.8
Mortality (respiratory diseases) 985.13
Mortality (circulatory diseases) 305.07

Total 9291
Proportion of GDP 1.25%

In contrast to current research results, many studies have confirmed that air pollution has already
led to serious health problems and huge social costs for residents. For instance, Lelieveld et al. [59]
calculated that PM2.5 emissions were responsible for 3.3 million premature deaths per year worldwide,
predominantly in Asia. Similarly, Burnett et al. [60] concluded that PM2.5 emissions resulted in
8.9 million deaths worldwide in 2015, according to their latest calculations. In terms of health economic
losses, the calculation of Barwick et al. [61] showed that if the PM2.5 concentration decreased by
10 µg/m3, it would save 9.2 billion Yuan in health expenditure, accounting for 1.5% of national
health expenditure in China. These calculations focused on the total number of deaths and overall
social welfare. However, this study only focused on energy intensive sectors, which caused about
800,000 premature deaths and led to health-related economic losses representing 1.6% of GDP.

With regard to the contribution of different sectors, as shown in Figure 1, SO2 emissions from the
production and supply of the electric power and supply power sector caused the largest economic
losses, reaching 47% of the total economic losses (contribution of energy intensive sectors), followed by
the metal processing sector, accounting for 23% of the total economic losses. The economic losses of
the petroleum refining and chemical sectors were about 10%. Therefore, the health economic losses
of these four sectors accounted for more than 90% of all energy intensive sectors. The situation of
PM2.5 emissions was basically the same as before. The production and supply of the electric power and
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supply power sector caused the largest economic losses (53%), followed by the metal processing sector
(28%), the petroleum refining sector (7%) and the chemical sector (5%). In general, the production and
supply of the electric power and supply power sector and the metal processing sector contributed to
significant economic losses. Compared with SO2 emissions, the economic losses of PM2.5 emissions in
these two sectors were larger.
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4.2. Health Co-Benefits of Carbon Mitigation in Energy Intensive Sectors

In recent years, along with increasing global responses to climate change, China has made great
efforts to reduce greenhouse gas emissions, particularly for energy conservation and emission reduction
in energy intensive sectors, with significant results. While mitigating greenhouse gas emissions from
these energy intensive sectors, China has revealed certain co-benefits of reducing pollutant emissions
and their negative health effects. For example, according to Watts et al.’s [2] study on the health
co-benefits of energy saving and emission reduction technologies, low-carbon transitions in the areas of
energy, transportation and agriculture enable residents to increase their exercise (for instance, through
greater involvement in green transportation) and reduce the risk of diseases caused by environmental
pollution. The co-benefits of greenhouse gas emissions reduction have positive effects on ecosystems,
economic activities, health, air pollution and resource efficiency. Among them, health co-benefits
reveal the positive effects of climate policies in the short term and can offset to a certain extent the
costs of mitigation actions. At the same time, health co-benefits are closer to the public interest and can
generate benefits faster, thus facilitating the implementation of climate policies.

According to the assessment of the health effects of energy intensive sectors in the previous section,
the health effects and related economic losses of the power and metal processing sectors accounted
for nearly 80% of all energy intensive sectors. Therefore, this study used the power sector and the
steel sector as examples to construct transition scenarios and predict pollutant emissions from different
scenarios. For more details on the transition scenarios, please see Tang et al. [52] and An et al. [56].

Due to the high dust removal rate in the power industry, PM2.5 emissions can be ignored compared
with other pollutants [52]. It can be seen that the reduction of SO2 emissions in the power sector would
have significant health co-benefits, with the number of cases of chest discomfort decreasing between
2020 and 2050. Figure 2 shows the health effects of SO2 emissions under different scenarios in the
power sector. By comparing different scenarios, Scenario 4 (PDC integrated scenario) had the lowest
SO2 emissions, resulting in the lowest number of cases of chest discomfort, estimated at 72,700 in 2020
and expected to be reduced to 6700 by 2050. Scenario 1 could reduce 77,600 cases of chest discomfort
between 2020 and 2050 and Scenario 2 could reduce 79,900 cases. In comparison, the reduction in
SO2 emissions under the MPD integrated scenario had the greatest health co-benefits. Therefore,
power demand control in consumption and fuel technology upgrades can significantly reduce sectoral
emission levels and bring significant health co-benefits.
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Figure 3 shows the health economic losses of SO2 emissions from the power sector under different
scenarios. Scenario 1 had the largest health economic losses, while Scenario 4 had the lowest. From the
perspective of reducing economic losses in each scenario, Scenario 1 could reduce economic losses by
4.69 billion Yuan between 2020 and 2050. Scenario 2 could reduce losses by 4.83 billion Yuan, while
Scenarios 3 and 4 could reduce losses by 3.84 billion and 4 billion Yuan, respectively. The reduction
of SO2 emissions under the MPD integrated scenario could minimise economic losses caused by
health effects. Therefore, emission reduction in the power sector can continually weaken the health
effects of pollutant emissions and this co-benefit of health can offset the costs of emission reduction to
some extent.
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Figure 4 shows the health effects of SO2 emissions under different scenarios in the steel sector.
It can be seen that the number of cases of chest discomfort under the 2015 baseline scenario was
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approximately 600,000. There should be a slight increase in 2025 and this increase could continue until
after 2040. Therefore, the health co-benefits of SO2 emissions in the steel sector revealed a fluctuating
trend, with inflection points in 2025 and 2040. Under different scenarios, Scenario 4 had the largest
reduction in the number of cases of chest discomfort, while Scenario 5 had the lower. As a result, low
steel demand can bring relatively greater health co-benefits, but some uncertainty remains.
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This study further calculated the health economic losses of SO2 emissions under different scenarios
in the steel sector. As shown in Figure 5, economic losses had the same trend as health effects, with the
same inflection points. Scenario 6 had the largest economic losses, while Scenario 3 had the lowest.
Therefore, controlling steel demand can reduce the economic losses caused by the health effects of
air pollution. From the perspective of reducing economic losses in each scenario, SO2 reduction in
Scenario 4 minimised economic losses.
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In addition, this study estimated the health effects of PM2.5 emissions in the steel sector under
different scenarios. As shown in Figure 6, compared with SO2 emissions, PM2.5 emissions had a
relatively small effect on health, but followed the same trend as SO2 emissions. The number of cases of
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chest discomfort under the 2015 baseline scenario was approximately 200,000. After 2015, the number
of cases gradually decreased. However, there should be a slight increase in 2025 and this increase could
continue until after 2040. Therefore, the reduction of PM2.5 emissions still had some uncertainty. Under
different scenarios, Scenario 4 had the largest reduction in the number of cases of chest discomfort,
while Scenario 5 had the lowest, indicating the urgency and need to reduce steel demand.
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Figure 7 shows the health economic losses of PM2.5 emissions in the steel sector under different
scenarios. In contrast to the health effects in Figure 6, Scenario 5 had the largest economic losses,
while Scenario 4 had the lowest. However, it can be concluded that controlling the demand for steel
can reduce the economic losses caused by the health effects of air pollution. From the perspective of
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Current studies have suggested that health benefits can offset the costs of energy conservation
and emission reduction policies. Some studies have shown that even a small increase in air pollutants
would lead to increased health costs. Crawford-Brown et al. [37] considered that by 2020, Mexico’s
mitigation policy would result in the reduction of 3000 deaths and 417,000 non-fatal diseases per year.
In addition, some studies have quantified the health co-benefits of emission reduction, suggesting
that the reduction of one ton of CO2 emissions would save between US $2 and US $380 [62] and the
reduction of one ton of CH4 emissions would save between US $700 and US $5000 [63,64]. The results
of this study are consistent with the current literature.

5. Conclusions

Air pollution has become one of the most serious environmental problems and one of the biggest
challenges for China’s development. In particular, SO2 and PM2.5 have seriously affected human
health and led to huge health costs. The results of this study show that SO2 and PM2.5 emissions
in energy intensive sectors led to approximately 850,000 premature deaths, and 10 million cases of
respiratory diseases and chest discomfort, resulting in health-related economic losses of 1.2 trillion Yuan,
representing 1.6% of GDP. Therefore, in the face of severe environmental pollution and increasingly
prominent health effects, there is a need to focus on the health effects of energy intensive sectors and to
use health co-benefits to better promote energy conservation and emission reduction.

Among the 10 energy intensive sectors examined in this study, the health-related economic losses
caused by the power sector and the metal processing sector accounted for 80% of all energy intensive
sectors. Therefore, this study used these two industries as examples to measure the potential health
co-benefits of low carbon transition scenarios. The predictions showed that power demand control in
consumption and fuel technology upgrades would significantly reduce overall SO2 emissions from the
power sector and have obvious health co-benefits. The reduction of SO2 emissions under the Low
Demand Enhanced Scenario in the steel sector would minimise the health effects and economic losses
caused by air pollution, but the health co-benefits of PM2.5 emission reduction were highly uncertain,
particularly in the inflection point years when new sources of pollution may appear.

The Chinese government has taken active measures to combat air pollution, such as the new
National Ambient Air Quality Standards, the 12th Five-Year Plan on Air Pollution Prevention and
Control in Key Regions and the national Air Pollution Prevention and Control Action Plan (2013–2017).
Despite these measures, government environmental policies do not pay enough attention to health
issues. To analyse the characteristics and trends of the effects of haze on human health, it is necessary
to establish a haze health effect monitoring network nationwide through systematic and long-term
monitoring, to assess the exposure level to characteristic pollutants under haze weather, health risks and
characteristics, people prone to haze-related diseases, susceptible populations and regional differences.
As a result, the government can study and publish environmental policies and interventions to reduce
health risks.

The results of this study show that the health effects of pollutant emissions from energy intensive
sectors were significant. SO2 and PM2.5 emissions caused nearly 1 million premature deaths, leading to
huge health and economic losses. Therefore, in the process of pollution control and health interventions
in China, we should pay attention to the health effects of energy intensive sectors and their related
health economic losses. From a technical perspective, energy intensive sectors should strengthen and
promote their transformation into a cleaner approach. In the power sector, market-oriented reforms
and cross-regional transmission of clean electricity will help achieve green transformation. Using
smart public policy to target the production of the few energy-intensive commodities can also have
a major positive impact. For the steel sector, eliminating backward production capacity, developing
short-process steelmaking, energy-saving technological transformation and technological innovation
can promote the green transformation. Therefore, we should focus on promoting the transformation
of energy intensive sectors, mainly the power sector, by promoting the reform of the electric power
system and strengthening unified planning in the power sector.
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In addition to mitigating greenhouse gas emissions from energy intensive sectors, the results also
revealed certain co-benefits of reducing pollutant emissions and related negative health effects. The
study shows that the health co-benefits of carbon reduction in the power sector would be significant
and the momentum of transformation should be maintained, promoting the low carbon transition of the
power sector. In the process of energy conservation and emission reduction, for sectors with obvious
health co-benefits, policy instruments should be used more flexibly, for example by encouraging clean
transformation with various subsidies or rewards related to the health co-benefits, which may partly
offset the costs of emission reduction.

Finally, due to the limitation of data and the measurement of ER relationship coefficients, this study
estimated two pollutants and selected two sectors as cases, the health effects of many environmental
pollutants, as well as emerging pollutants, should be well-studied in the future. With the continuous
emphasis on China’s emission reduction issues, it is hoped that in future studies, the sources and
emission reduction strategies of negative health effects in more sub-sectors, as well as the sub regional
exposure response assessment could be explored.
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