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a b s t r a c t 

This dataset demonstrates the use of computational 

fragmentation-based and machine learning-aided drug 

discovery to generate new lead molecules for the treatment 

of hypertension. Specifically, the focus is on agents targeting 

the renin-angiotensin-aldosterone system (RAAS), commonly 

classified as Angiotensin-Converting Enzyme Inhibitors 

(ACEIs) and Angiotensin II Receptor Blockers (ARBs). The 

preliminary dataset was a target-specific, user-generated 

fragment library of 63 molecular fragments of the 26 ap- 

proved ACEI and ARB molecules obtained from the ChEMBL 

and DrugBank molecular databases. This fragment library 

provided the primary input dataset to generate the new lead 

molecules presented in the dataset. The newly generated 

molecules were screened to check whether they met the 

criteria for oral drugs and comprised the ACEI or ARB core 

functional group criterion. Using unsupervised machine 

learning, the molecules that met the criterion were divided 

into clusters of drug classes based on their functional group 

allocation. This process led to three final output datasets, 

one containing the new ACEI molecules, another for the 

new ARB molecules, and the last for the new unassigned 

class molecules. This data can aid in the timely and efficient 

design of novel antihypertensive drugs. It can also be used in 

precision hypertension medicine for patients with treatment 
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resistance, non-response or co-morbidities. Although this 

dataset is specific to antihypertensive agents, the model 

can be reused with minimal changes to produce new lead 

molecules for other health conditions. 

© 2024 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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pecifications Table 

Subject Bioinformatics. 

Specific subject area Applying machine learning and computational fragment-based drug discovery 

to design new hypertension small molecules . 

Type of data Tables, Images, and Figures. 

Raw, Analysed, Filtered. 

Data collection The preliminary data on existing FDA-approved ACE Inhibitors and ARBs was 

collected from ChEMBL, a chemical database of bioactive molecules, and 

DrugBank, a drug database. This data was extracted in SDF format, which 

allows the molecule’s structure, atoms and bonds to be analysed. This analysis 

was conducted computationally on Jupyter Notebook using Python version 

3.9.12 with the RDKit library, on a Conda version 23.1.0 environment . 

Data source location Institution: University of Johannesburg, Institute for Intelligent Systems 

City: Johannesburg 

Country: South Africa . 

Data accessibility The data can be accessed from the data repository in the location specified 

below. 

Repository name: Mendeley Data 

Data identification number: 10.17632/brgzpd5wj4.1 

Direct URL to data: https://data.mendeley.com/datasets/brgzpd5wj4/1 

The instructions for accessing these data are contained in the data repository, 

alongside the data files. These instructions also contain the steps for 

reproducing the data, which can be accessed from: 

https://doi.org/10.5281/zenodo.11636007 

Related research article None. 

. Value of the Data 

• This data is useful for understanding the computational generation of new small molecules

for the treatment of hypertension, using existing hypertension small molecules as a building

block. 

• The data demonstrates a pool of newly generated ACEIs and ARBs that can aid in the future

development of novel hypertension drugs. These drugs can then be personalised to individ-

ual hypertensive patients and their treatment response, increasing therapeutic outcomes, and

reducing side effects. 

• The new lead molecules displayed in the dataset can be considered for the treatment of

hypertension through the renin-angiotensin-aldosterone system (RAAS). 

• Computational chemists and bioinformaticians can conduct molecular docking simulations on

the new hypertension lead ACEIs and ARBs to determine their binding affinity to the target

site. Subsequently, these molecules can be synthesised for further screening. 

• The fragment library dataset can be used to generate new molecules that treat other health

conditions that are not specified in this dataset. 

• Other researchers can consider incorporating generative machine learning techniques using

this dataset to produce additional candidate ACEI and ARB molecules, containing the required

core functional group structure and molecular properties. This AI-enhanced approach can also

be applied to other drug discovery studies. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.17632/brgzpd5wj4.1
https://data.mendeley.com/datasets/brgzpd5wj4/1
https://doi.org/10.5281/zenodo.11636007
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2. Background 

With over 1 billion affected adults [ 1 ], hypertension (or high blood pressure) is one of the

most critical public health challenges worldwide. This condition is one of the main risk factors

for developing cardiovascular, diabetes, kidney, and other related diseases [ 2 ]. Although effec-

tive antihypertensive agents exist, only 21 % of hypertensive patients have their condition under

control [ 3 ], with the rest failing to adhere to their treatment prescription due to adverse effects

and others suffering from treatment non-response (resistant hypertension) [ 4 ]. 

By augmenting the conventional drug discovery process, using computational methods such

as machine learning and fragment-based drug design, new drugs can be designed in shorter

timelines and at lower costs [ 5 ]. This study aims to use fragmentation-based and machine

learning-aided drug discovery techniques to generate a dataset of new lead drug molecules for

the treatment of hypertension. These molecules are generated using fragments of existing hy-

pertension molecules and subsequently clustered and screened to confirm that they possess the

properties of ACEI and ARB hypertension drugs. 

The value of this dataset is to increase the pool of available treatment options, especially for

those hypertensive individuals who may not respond well to the existing treatment. 

3. Data Description 

This dataset [ 6 ] consists of eight (8) data files for the input data and nine (9) files from the

output dataset. These files, their locations and contents are described in Tables 1 and 2 below. 

Fig. 1 contains a two-dimensional (2D) illustration of the original set of ACE Inhibitors ob-

tained from the ChEMBL and DrugBank databases. In contrast, Fig. 2 illustrates the original set

of ARB molecules used for the preliminary dataset obtained from the same databases. These

original molecules were fragmented to generate the fragment library, the primary input dataset.

Table 3 shows the physicochemical properties of the original molecules (15 ACEIs and 10

ARBs) and the newly generated 492 ACEIs, 681 ARBs and 363 unassigned new lead molecules.

Here, a side-by-side comparison can be drawn to ascertain how well the new molecules per-

formed against the original molecules and the criteria for oral drugs. 

4. Experimental Design, Materials and Methods 

4.1. Materials 

The experiments were conducted using Python 3 (version 3.9.12) on Jupyter Notebook (ver-

sion 6.4.8) with the Anaconda (Conda v23.1.0) package manager and environment on a MacBook

Pro with an M1 max chip. The code workbooks comprising the experiments, Conda libraries

used, and their dependencies are located in the code repository [ 7 ]. Additionally, tools provided

by RDKit (an open-source cheminformatics and machine learning software) were used to com-

pute the chemistry-specific functions. 

4.2. Data collection method 

“The best way to find a new drug is to start with an existing one” [ 8 ]. Therefore, the objec-

tive of developing a dataset of new drugs for the treatment of hypertension requires the use of

existing hypertension drugs. Publicly available (existing) hypertension drugs were sourced from

ChEMBL, a chemical database of bioactive molecules, and DrugBank, a drug database, to form

the initial input dataset. Considering that the focus is on antihypertensive agents acting on the

renin-angiotensin-aldosterone system (RAAS), Angiotensin-Converting Enzyme Inhibitors (ACEIs) 
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Table 1 

Raw input data. 

No. Title Location File Type Description 

1 Chembl_C09.sdf Input Data Structured Data File 

(.sdf) 

List of FDA-approved C09 drugs 

(agents acting on the 

renin-angiotensin-aldosterone 

system) from the ChEMBL 

database. 

2 Drugbank_C09.sdf Input Data Structured Data File 

(.sdf) 

List of FDA-approved C09 drugs 

(agents acting on the 

renin-angiotensin-aldosterone 

system) from the DrugBank 

database. 

3 ACE Inhibitors.csv Input Data 

> ACE Inhibitors 

Comma-separated 

values (.csv) 

List of the 15 FDA-approved 

ACE Inhibitors sourced from 

both ChEMBL and DrugBank 

databases. 

The dataset contains the 

following columns: 

- Molecule Name 

- ATC Code 

- Class 

- Canonical SMILES 

4 Original ACE Inhibitors 

(Molecules in 2D 

format).png 

Input Data 

> ACE Inhibitors 

Portable Network 

Graphic (.png) 

Two-dimensional (2D) images 

of the 15 ACEI molecules from 

the ACE Inhibitors.csv file. 

5 ARBs.csv Input Data 

> ARBs 

Comma-separated 

values (.csv) 

List of the 10 FDA-approved 

ARBs sourced from both 

ChEMBL and DrugBank 

databases. 

The dataset contains the 

following columns: 

- Molecule Name 

- ATC Code 

- Class 

- Canonical SMILES 

6 Original ARBs 

(Molecules in 2D 

format).png 

Input Data 

> ARBs 

Portable Network 

Graphic (.png) 

Two-dimensional (2D) images 

of the 10 ARB molecules from 

the ARBs.csv file. 

7 Fragment_library.csv Input Data 

> Fragment Library 

Comma-separated 

values (.csv) 

List of 63 fragments used in 

generating the new C09 

molecules. 

The dataset contains the 

following columns: 

- Fragment 

- Molecular Weight 

- LogP 

- Hydrogen Donors 

- Hydrogen Acceptors 

- Ro3 Pass 

- Frequency 

8 Fragments as 2D 

images.png 

Input Data > Fragment 

Library 

Portable Network 

Graphic (.png) 

Two-dimensional (2D) images 

of the 63 molecule fragments 

from the Fragment_library.csv 

file. 
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Table 2 

Analysed and filtered output data. 

No. Title Location File type Description 

1 New ACEI lead 

molecules (with 

properties).xlsx 

Output Data > New 

ACE Inhibitors 

Microsoft Excel 

Spreadsheet (.xlsx) 

492 newly generated lead ACEI 

molecules with their scores for the 

following properties: 

Aromatic Rings (No.); Aliphatic Rings 

(No.); AVG Molecular weight; Exact 

Molecular weight; LogP; Hdonors; 

Hacceptors; Rotatable bonds; Heavy 

Atoms (No.); QED; Property Forecast 

Index; PSA; SAscore. 

2 New lead ACE 

Inhibitors (492 

molecules in 2D 

format).png 

Output Data > New 

ACE Inhibitors 

Portable Network 

Graphic (.png) 

Two-dimensional (2D) images of the 

492 new ACEI molecules from the New 

ACEI lead molecules (with properties).xlsx 

file. 

3 New ARB lead 

molecules (with 

properties).xlsx 

Output Data > New 

ARBs 

Microsoft Excel 

Spreadsheet (.xlsx) 

681 newly generated lead ARB 

molecules with their scores for the 

following properties: 

Aromatic Rings (No.); Aliphatic Rings 

(No.); AVG Molecular weight; Exact 

Molecular weight; LogP; Hdonors; 

Hacceptors; Rotatable bonds; Heavy 

Atoms (No.); QED; Property Forecast 

Index; PSA; SAscore. 

4 New lead ARBs 

(681 molecules in 

2D format).png 

Output Data > New 

ARBs 

Portable Network 

Graphic (.png) 

Two-dimensional (2D) images of the 

681 new ARB molecules from the New 

ARB lead molecules (with properties).xlsx 

file. 

5 New unassigned 

molecules_cluster 1 

(with 

properties).xlsx 

Output Data > New 

unassigned 

molecules 

Microsoft Excel 

Spreadsheet (.xlsx) 

363 newly generated lead molecules 

that were neither classified as ARB or 

ACEI, along with their scores for the 

following properties: 

Aromatic Rings (No.); Aliphatic Rings 

(No.); AVG Molecular weight; Exact 

Molecular weight; LogP; Hdonors; 

Hacceptors; Rotatable bonds; Heavy 

Atoms (No.); QED; Property Forecast 

Index; PSA; SAscore. 

6 New unassigned 

cluster 1 molecules 

(2D format).png 

Output Data > New 

unassigned 

molecules 

Portable Network 

Graphic (.png) 

Two-dimensional (2D) images of the 

363 new unassigned molecules from 

the New unassigned molecules_cluster 1 

(with properties).xlsx file. 

7 Original ACEIs 

(with 

properties).xlsx 

Output Data > 

Properties of 

original molecules 

Microsoft Excel 

Spreadsheet (.xlsx) 

15 original ACEI molecules with their 

scores for the following properties: 

Aromatic Rings (No.); Aliphatic Rings 

(No.); AVG Molecular weight; Exact 

Molecular weight; LogP; Hdonors; 

Hacceptors; Rotatable bonds; Heavy 

Atoms (No.); QED; Property Forecast 

Index; PSA; SAscore. 

8 Original ARBs (with 

properties).xlsx 

Output Data > 

Properties of 

original molecules 

Microsoft Excel 

Spreadsheet (.xlsx) 

10 original ARB molecules with their 

scores for the following properties: 

Aromatic Rings (No.); Aliphatic Rings 

(No.); AVG Molecular weight; Exact 

Molecular weight; LogP; Hdonors; 

Hacceptors; Rotatable bonds; Heavy 

Atoms (No.); QED; Property Forecast 

Index; PSA; SAscore. 

9 Comparison of 

physicochemical 

properties for all 

molecules.xlsx 

Output Data > 

Properties of new 

molecules 

Microsoft Excel 

Spreadsheet (.xlsx) 

A side-by-side comparison of the 

physicochemical properties of the new 

and original molecules. 
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Fig. 1. The original ACEIs used to create the fragment library (reference drugs) to inform the generation of new lead 

ACEI molecules. 
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Fig. 2. The original ARBs used to create the fragment library (reference drugs) to inform the generation of new lead ARB 

molecules. 
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Table 3 

Comparison of physicochemical properties of the original versus new molecules. 

Lipinski ̓s Rule of Five Other Physicochemical Properties Synthetic 

Accessibil- 

ity Score 

(SAscore) 

Molecular 

Weight 

(g/Mol) 

Lipophilicity 

(LogP) 

Hydrogen 

Bond 

Donors 

(HBD) 

Hydrogen 

Bond 

Acceptors 

(HBA) 

Rotatable 

Bonds 

Heavy 

Atoms 

Aromatic 

Rings 

Quantitative 

Estimate of 

Drug-Likeness 

(QED) 

Property 

Forecast 

Index 

(PFI) 

Topological 

Polar 

Surface 

Area 

(tPSA) 

Criteria < = 500 < = 5 < = 5 < = 10 < = 10 < 38 < 4 0.5–1 < 7 < 140 N/A 

Original 

ACEIs 

Count 15 15 15 15 15 15 15 15 15 15 15 

Mean 432.01 2.25 2.33 7.67 9.07 30.60 1.20 0.52 3.45 105.99 3.51 

Std. Dev. 93.78 1.60 1.59 1.54 2.34 6.93 0.77 0.15 2.07 24.27 0.44 

Min. 217.08 −0.52 1 4 3 14 0 0.13 0.48 57.61 3.00 

Max. 634.29 6.12 7 11 14 46 3 0.68 7.57 169.94 4.46 

New Lead 

ACEIS 

Count 492 492 492 492 492 492 492 492 492 492 492 

Mean 394.07 2.68 1.40 6.66 6.46 28.33 1.17 0.72 3.85 80.47 3.67 

Std. Dev. 60.76 1.09 0.61 1.35 1.37 4.67 0.85 0.09 1.67 18.43 0.44 

Min. 143.09 −0.36 0 3 2 10 0 0.35 -0.18 40.54 2.44 

Max. 495.22 4.99 4 10 10 35 3 0.92 6.99 136.81 4.64 

Original 

ARBs 

Count 10 10 10 10 10 10 10 10 10 10 10 

Mean 499.91 5.06 1.6 8.8 9.1 36.6 4.2 0.35 9.26 116.21 3.03 

Std. Dev. 76.71 1.21 0.70 2.44 1.60 5.74 1.23 0.14 1.97 30.64 0.37 

Min. 422.16 3.66 1 6 7 30 3 0.14 7.16 72.94 2.52 

Max. 610.25 7.26 3 12 12 45 6 0.59 13.26 162.16 3.62 

New Lead 

ARBs 

Count 681 681 681 681 681 681 681 681 681 681 681 

Mean 335.11 1.94 1.40 7.82 4.89 24.11 2.09 0.81 4.02 91.20 3.73 

Std. Dev. 53.40 1.11 0.54 1.45 1.28 3.95 0.69 0.09 1.49 19.85 0.48 

Min. 197.13 −0.58 0 4 3 14 1 0.54 0.42 41.29 2.24 

Max. 481.28 4.72 4 10 10 35 3 0.94 6.94 138.35 4.77 

New 

Unassigned 

Molecules 

(Cluster 1) 

Count 363 363 363 363 363 363 363 363 363 363 363 

Mean 378.84 2.92 0.81 5.29 4.90 24.51 1.05 0.78 3.97 55.61 4.66 

Std. Dev. 42.17 1.15 0.80 1.95 1.20 3.11 0.78 0.07 1.39 28.02 0.31 

Min. 260.14 −0.05 0 2 3 16 0 0.56 1.24 6.48 3.79 

Max. 497.18 4.99 4 10 9 34 3 0.91 6.99 124.26 5.35 
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and Angiotensin II Receptor Blockers (ARBs) were the drug classes extracted from the ChEMBL

and DrugBank databases. 

The drugs of the classes ACEIs and ARBs (or agents acting on the renin-angiotensin-

aldosterone system) were identified using the ATC classification code C09. These drugs were

identified by filtering the ‘Level 1 ATC Code Description’ to ‘C – cardiovascular system’. We then

filtered the ‘Level 2 ATC Code Description’ to ‘C09 – agents acting on the renin-angiotensin sys-

tem’. This search yielded a list of 29 small molecules from ChEMBL and 47 from DrugBank, a

total of 76 C09 drugs. 

However, after removing the duplicates, experimental and investigational drugs from the list,

there were 26 FDA-approved C09 drugs. The drug data of these 26 drugs was extracted from

these databases in SDF format in order to retrieve each molecule’s chemical structure and details

of its atoms, bonds and connectivity [ 9 ]. 

As a result, the dataset ( D) used for the initial preliminary work (input data) was a list of all

26 FDA-approved C09 drugs from the chemical databases, where 15 were ACEIs, 10 were ARBs,

and 1 was labelled as ‘other’. The one drug that was neither ACEI nor ARB was removed from the

list, to focus only on the ACEI and ARB drug classes. Ultimately, our input dataset comprised 25

C09 small molecules, of which 10 were ARBs and 15 were ACEIs. This dataset can be represented

as 

D = { d1 , d2 , d2 , . . . , d25 } 
This preliminary dataset D was used as the input into the fragmentation and generation pro-

cess to develop the new C09 small molecule output dataset. 

4.3. Data processing method 

The proposed framework illustrated in Fig. 3 below outlines the steps to transform the orig-

inal C09 drug data into the fragment library of fragment molecules (input dataset) that were

used to generate the new set of C09 lead molecules (final output dataset). This framework en-

tails designing new C09 molecules using computational fragmentation-based drug design aided

by machine learning. 

The pool of 26 original C09 molecules were used as the preliminary data to inform the dis-

covery of new C09 lead molecules. This preliminary data was fragmented using the RDKit BRICS

module. A set of 64 unique fragments were produced from this process. These fragments were

each tested to determine whether they met the fragment Rule of Three (Ro3) criteria. This cri-

terion states that fragments should have a molecular weight lower than or equal to 300 Da, a

LogP, hydrogen bond donor, and hydrogen bond acceptor scores of three (3) or less. Following

the application of these criteria, 1 fragment was eliminated as it did not pass this criterion. The

remaining 63 fragments and their Ro3 scores formed the fragment library. 

Using the RDKit BRICS module, a sample of 10,0 0 0 from a possible 39,711 new molecules

were generated from the fragment library, forming the new molecule dataset. The properties of

the new molecules were screened to determine whether the new molecules met the Lipinski

Rule of Five (Ro5) and physicochemical property criterion for oral drugs. 

The criterion recommends that molecules meet the following rules: 

1. Lipinski Ro5 [ 10 ]: 

a. Molecular Weight < = 500 

b. LogP < = 5 

c. Hydrogen Bond Donors < = 5 

d. Hydrogen Bond Acceptors < = 10 

2. Physicochemical properties: 

a. Number of Heavy Atoms < 38 [ 11 ] 

b. Number of Rotatable Bonds < = 10 [ 12 ] 

c. Number of Aromatic Rings < 4 [ 13 ] 
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Fig. 3. Proposed framework of the steps followed to produce the datasets of the new lead C09 molecules. 

 

M

 

q  

b  

e

 

i  

a  

i  

T  

e  

i  

s  

m  

t

 

A  

t  
d. PSA (Polar Surface Area) < 140 [ 12 ] 

e. QED (Quantitative Estimate of Drug-Likeness) 0.5 – 1 [ 14 ] 

f. PFI (Property Forecast Index) < 7 [ 15 ]. 

The scores for each of these metrics were calculated using the RDKit.Chem Descriptors, rd-

olDescriptors, Lipinski and QED modules. 

They were then screened to check whether they contained the core functional groups re-

uired for ACEIs (carboxyl, sulfhydryl, and phosphinyl [ 16 , 17 ]) and ARBs (tetrazole, biphenyl,

enzimidazole [ 18 , 19 ]). The new molecules that did not meet the Ro5, physicochemical prop-

rties, and core functional groups criterion were eliminated from the dataset. 

Using the k-means unsupervised machine learning algorithm, the remaining new molecules

n the dataset were grouped into three (3) clusters, the k value recommended by the elbow

nd silhouette methods. The k-means clustering, and molecular similarity screening steps are

mportant for determining which of the new molecules are in the ACEI or ARBs drug classes.

he allocation of new molecules into each cluster was based on the functional groups present in

ach molecule. In order to ascertain which cluster contained ACEIs or ARBs, molecular similar-

ty tests were conducted. The Tanimoto molecular similarity metric was used to determine the

imilarity scores of the new molecules against the original ACEI molecules and the original ARB

olecules. The new and original molecules were translated to MACCS Keys Fingerprints to apply

he FingerprintSimilarity (Tanimoto equivalent) function from the RDKit DataStructs library. 

The similarity scores demonstrate which clusters of new molecules are more ACE-like or

RB-like based on their similarity scores to the original ACEI and ARB molecules. Cluster 1 ob-

ained the lowest similarity score with the original ACEI and ARB datasets. Therefore, this cluster
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Fig. 4. Sample of newly generated ACEI lead molecules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

and its molecules were not labelled ACEI or ARB, and instead remained uncategorised. Only the

molecules with a similarity score greater than or equal to 0.7 (out of 1) were considered for the

new datasets of ACEI and ARB lead molecules [ 20 ], while the rest were eliminated. 

Finally, the datasets of new lead ACEI and ARB molecules were assessed for their synthetic

accessibility score (SAscore). This metric, which determines the ease of synthesizing a molecule,

was used to compare the original and new lead molecules, as indicated in Table 3 . The final

datasets of the newly generated ACEI and ARB lead molecules contain 492 new ACEIs and 681

new ARBs. A sample of the new lead ACEI, ARB and uncategorised lead molecules is provided in

Figs. 4 , 5 , and 6 . Below, along with a legend indicating the core functional group structures of

each drug class, to confirm that the new lead molecules are indeed ACEIs and ARBs. 

The comprehensive list of final datasets of the new C09 molecules are listed in Table 2 and

can be accessed through the data repository, together with the step-by-step code used to gen-

erate this data. A Jupyter Notebook is provided for each step of the framework, indicating the

input data used, the process required to transform that data, and the output data generated from

that step. These input and output datasets can also be accessed from the data repository, under

the folders “Input Data” and “Output Data”. 
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Fig. 5. Sample of newly generated ARB lead molecules. 
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Fig. 6. Sample of newly generated unassigned new lead molecules. 

 

 

 

Limitations 

Although the preliminary dataset of original C09 molecules was relatively small, thousands of

new molecules could be generated using the framework proposed in the previous section. How-

ever, the limitation of the final output datasets is that they contain molecules that are specif-
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cally targeting the RAAS to treat hypertension. These new molecules were not examined for

heir ability to treat hypertension through other therapeutic target sites. 

The dataset provided can be further enhanced by conducting molecular docking screening to

etermine those new lead molecules with high binding affinity to their respective target sites,

nd subsequently compare this data against that of the original molecules. 

thics Statement 

The authors have read and followed the ethical requirements for publication in Data in Brief

nd confirm that the current work does not involve human subjects, animal experiments, or any

ata collected from social media platforms. 

RediT Author Statement 

Odifentse Mapula-e Lehasa : Conceptualisation, Methodology, Software, Formal Analysis, In-

estigation, Data Curation, Writing - Original Draft, Funding acquisition. 

Uche A.K. Chude-Okonkwo : Conceptualisation, Methodology, Software, Validation, Formal

nalysis, Investigation, Data Curation, Writing - Review & Editing, Supervision, Funding acqui-

ition. 

ata Availability 

Input Data (Original data) (Mendeley Data). 

Output Data (Original data) (Mendeley Data). 

cknowledgments 

The University of Johannesburg funded this work under the Global Excellence Stature (GES

.0) grant (grant number: 201212831 ). 

eclaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal rela-

ionships that could have appeared to influence the work reported in this paper. 

eferences 

[1] B.C. Rossier, M. Bochud, O. Devuyst, The hypertension pandemic: an evolutionary perspective, Physiology 32 (2)

(2017) 112–125, doi: 10.1152/physiol.0 0 026.2016 . 

[2] A. Mannan, et al., Association between comorbidity and health-related quality of life in a hypertensive population:
a hospital-based study in Bangladesh, BMC Public Health 22 (1) (2022) 1–12, doi: 10.1186/s12889- 022- 12562- w . 

[3] World Health Organization (WHO), “Hypertension” [Online]. Available: https://www.who.int/news-room/fact-
sheets/detail/hypertension . 

[4] R.M. Carey, et al., Resistant hypertension: detection, evaluation, and management a scientific statement from the
American heart association, Hypertension 72 (5) (2018) E53–E90, doi: 10.1161/HYP.0 0 0 0 0 0 0 0 0 0 0 0 0 084 . 

[5] D.H. Freedman, Hunting for new drugs with AI, Nature 576 (7787) (2019) S49–S53, doi: 10.1038/

d41586- 019- 03846- 0 . 
[6] O. Lehasa, U.A.K. Chude-Okonkwo, Data for machine learning-aided computational fragment-based design of small

molecules for hypertension treatment, Mendeley Data 1 (2024), doi: 10.17632/brgzpd5wj4.1 . 
[7] O.M. Lehasa and U.A.K. Chude-Okonkwo, “Computational-FBDD-for-hypertension: version 2.” Zenodo, 2024. 10.

5281/zenodo.11636007 . 

https://data.mendeley.com/datasets/brgzpd5wj4/1
https://data.mendeley.com/datasets/brgzpd5wj4/1
https://doi.org/10.1152/physiol.00026.2016
https://doi.org/10.1186/s12889-022-12562-w
https://www.who.int/news-room/fact-sheets/detail/hypertension
https://doi.org/10.1161/HYP.0000000000000084
https://doi.org/10.1038/d41586-019-03846-0
https://doi.org/10.17632/brgzpd5wj4.1
http://10.5281/zenodo.11636007


O.M.-e. Lehasa and U.A.K. Chude-Okonkwo / Data in Brief 55 (2024) 110677 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[8] W. Jahnke , D.A. Erlanson , Fragment-based Approaches in Drug Discovery, WILEY-VCH Verlag GmbH & Co. KGaA,

Weinheim, Germany, 2006 . 
[9] USA Food and Drug Administration (FDA), “Quick guide to creating a structure-data file (SD File) for DMF

submissions disclaimer.” [Online]. Available: https://www.fda.gov/media/151718/download#: ∼:text=sdf”%2C“SDFile”, 

bonds%2Cconnectivity%2Candcoordinates . 
[10] C.A. Lipinski, Lead- and drug-like compounds: the rule-of-five revolution, Drug Discov. Today Technol. 1 (4) (2004)

337–341, doi: 10.1016/j.ddtec.20 04.11.0 07 . 
[11] A.L. Hopkins, G.M. Keserü, P.D. Leeson, D.C. Rees, C.H. Reynolds, The role of ligand efficiency metrics in drug dis-

covery, Nat. Rev. Drug Discov. 13 (2) (2014) 105–121, doi: 10.1038/nrd4163 . 
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