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Abstract: Accurate estimations for the near future levels of blood glucose are crucial for Type 1 Diabetes
Mellitus (T1DM) patients in order to be able to react on time and avoid hypo and hyper-glycemic
episodes. Accurate predictions for blood glucose are the base for control algorithms in glucose
regulating systems such as the artificial pancreas. Numerous research studies have already been
conducted in order to provide predictions for blood glucose levels with particularities in the input
signals and underlying models used. These models can be categorized into two major families:
those based on tuning glucose physiological-metabolic models and those based on learning glucose
evolution patterns based on machine learning techniques. This paper reviews the state of the art
in blood glucose predictions for T1DM patients and proposes, implements, validates and compares a
new hybrid model that decomposes a deep machine learning model in order to mimic the metabolic
behavior of physiological blood glucose methods. The differential equations for carbohydrate
and insulin absorption in physiological models are modeled using a Recurrent Neural Network
(RNN) implemented using Long Short-Term Memory (LSTM) cells. The results show Root Mean
Square Error (RMSE) values under 5 mg/dL for simulated patients and under 10 mg/dL for real patients.

Keywords: blood glucose prediction; type 1 diabetes mellitus; deep machine learning;
physiological models

1. Introduction

Type 1 Diabetes Mellitus (T1DM) affects the capacity of the pancreas to produce insulin and affects
the Blood Glucose (BG) regulation mechanisms in the body. Patients suffering T1DM have to monitor
their BG levels, insulin injections and food intake in order to continuously adjust them. Very high or low
values of BG levels can cause different inconveniencies and damages to the human body. Mechanisms
able to anticipate them could increase the quality and even save lives for those suffering T1DM.

Artificial BG level regulation systems work based on three major parts: data gathering, control
algorithms and actuation mechanisms. Data gathering obtains BG related measurements either
automatically from different body worn sensors or manually introduced readings from the patient.
Continuous Glucose Monitoring (CGM) devices are commonly used by T1DM patients in order
to get readings every few minutes. CGM devices have been commonly incorporated into clinical
research studies [1]. Other sensors such as heart rate or acceleration measurement units could also
be used in order to get additional data that may have an impact on upcoming values of BG levels.
Control algorithms can be categorized into physiological–mathematical and machine learning models.
Actuation mechanisms can be divided into open-loop and closed-loop systems depending on the agent
responsible to act in order to adjust the insulin injections [2]. Providing models for accurate prediction
of glucose levels in T1DM patients is critical both for their glycemic control and for the development of
closed-loop systems [3].
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This paper focuses on the use of the most common data sources/signals used in previous research
studies for BG level estimation over prediction horizons of 30 to 60 min; including current and past BG
measurements from CGM devices, fast and slow acting insulin injections and food intake. A horizon
of 30 to 60 min of accurate predictions will allow the patient to modify insulin or meal intakes with
enough time for the insulin and carbohydrate absorption in order to prevent adverse glycemic events.
Based on this input information, a new physiological inspired model implemented using deep learning
components which are trainable and adjustable to each particular user is developed and validated.
The proposal outperforms previous models which use generic machine learning models in order to
learn patterns from BG signals. The proposed model is trained and validated both on simulated
data using the AIDA diabetes software simulation program [4,5] and with real patient data from
the D1NAMO open dataset [6].

The paper is organized into the following sections. Section 1, this section introduces the objectives
of the study. Section 2 summarizes the previous results from related studies and justifies the gap that
the current paper covers. The proposed physiologically inspired machine learning model is described
in Section 3. Section 4 is dedicated to describing the datasets used in order to validate the results.
Section 5 captures the major results when applying the proposed model to both simulated and real
data. Finally, Section 6 draws some conclusions and presents the future work.

2. Related Work

Machine learning techniques and methods have been widely used in order to predict and diagnose
diabetes, predict health complications caused by the evolution of certain diabetes related symptoms,
assess the genetic background and the environmental factors and even to provide support for health
care management [7]. Zou et al. [8] used several classification methods based on decision trees, Random
Forest and Neural Networks in order to classify participants into diabetic or healthy individuals
showing accuracies of around 0.8 for two different datasets. Ashiquzzaman et al. [9] were able to
improve the classification accuracy to 0.88 by adding dropout layers to the machine learning model.
The authors in [10] provided a systematic updated review of the state of the art in machine learning for
diabetes care in four main areas: automated retinal screening, clinical decision support, predictive
population risk stratification, and patient self-management tools.

For T1DM diagnosed patients, the use of Continuous Glucose Monitoring (CGM) devices
in combination with machine learning techniques has been widely used for predicting near
future glycemic events. The research study in [11] used a Deep Believe Network (DBN) model
and Electrocardiogram (ECG) signal to detect the natural occurrence of nocturnal hypoglycemia, using
15 children with T1DM who were monitored for 10 h overnight at the Princess Margaret Hospital
for Children in Perth, Western Australia. Bertachi et al. [12] also investigated the feasibility of a
machine-learning-based prediction model to anticipate Nocturnal Hypoglycemia (NH) in T1DM
patients, using Continuous Glucose Monitoring (CGM) devices and physical activity trackers under
free-living conditions at home. By using supervised machine learning algorithms, individualized
prediction models were generated using a Multilayer Perceptron (MLP) and a Support Vector Machine
(SVM), showing that more than 70% of the NH may be avoided using the proposed methodology.

Machine learning techniques have also been applied to estimate upcoming values of BG
levels. Accurate estimations for prediction horizons of 30 to 60 min will allow a T1DM patient
to take appropriate actions in advance in order to avoid hypo and hyperglycemic episodes that
will have a negative impact on the patient’s health. Accurate predictions are also the basis for
the implementation of the artificial pancreas that makes the life for T1DM patients easier and more
convenient. Pappada et al. [13] used a Neural Network-based model to predict blood glucose levels.
The model incorporated food intake, insulin and exercise data, which was manually recorded
in order to increase the precision of the BG level estimation. The algorithm worked well for
predicting hyperglycemic episodes (with accuracies around 0.95 for a 60 min prediction horizon),
but failed to predict hypoglycemic episodes. The authors in [14] described a model for blood glucose
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estimation/prediction that uses a Kalman filter in order to estimate hidden values in the model
and implements a Support Vector Regression (SVR) algorithm to estimate future values based on
current and past levels of carbohydrates, insulin and BG levels. The results are comparable to those
manually predicted by a doctor. The authors in [15] also used an SVR model that, based only on
Continuous Glucose Monitoring (CGM) data, tries to predict blood glucose levels independently
of other factors, improving the results from other similar previous studies by adding Differential
Evolution (DE) algorithms over data from 12 patients using CGM devices. The obtained average
of the Root Mean Square Error (RMSE) was 10.78 and 12.95 mg/dL for Prediction Horizons (PHs),
respectively, equal to 30 and 60 min. Ali et al. [16] proposed an improved method based on Artificial
Neural Networks (ANNs) for the blood glucose level prediction of Type 1 Diabetes (T1D) using only
CGM data as inputs validated on real CGM data of 13 patients, achieving RMSE values of 7.45 mg/dL
and 9.03 mg/dL for Prediction Horizons (PHs), respectively, for 30 min and 60 minutes. The authors
in [17] proposed a meta-learning approach based on the idea of using regularized learning algorithms
in predicting blood glucose. Meta-learning approaches are designed to be portable from patient to
patient while outperforming other algorithms in terms of clinical accuracy. This feature opens the way
for using them in diabetes smartphone applications.

In order to improve the results for BG level estimation, several deep learning-based models
have been proposed based on CGM signals, complemented sometimes with other wearable sensor
data and manual recordings. The study in [18] investigated methods for deep multi-output blood
glucose forecasting showing that the results using deep learning methods outperformed previous
shallow learning alternatives. Mhaskar et al. [19] also proposed a deep learning approach to BG level
estimation based on the previous BG levels but using a pre-clustering mechanism to train specific
models for hypo, eu and hyperglycemic segments. The authors also demonstrated that deep learning
methods can outperform shallow networks. The research study in [20] also presented an approach for
predicting blood glucose levels for diabetics up to one hour into the future based on deep learning
methods. The authors used a Recurrent Neural Network (RNN) based on Long Short-Term Memory
(LSTM) cells trained in an end-to-end fashion, requiring nothing but the glucose level history for
the patient. The method was validated using “The Ohio T1DM Dataset for Blood Glucose Level
Prediction” [21], achieving RMSE values of 20.1 mg/dL for a 30 min prediction horizon and 33.2 mg/dL
for a 60 min prediction horizon. Sun et al. [22] also used an LSTM model based on the BG signal to
predict upcoming values for BG levels and compared results with Auto-Regressive Integrated Moving
Average (ARIMA) and SVR models. The results outperformed previous methods, achieving RMSE
values of 21.7 mg/dL and 36.9 mg/dL for prediction horizons of 30 and 60 min, respectively. A similar
study using an LSTM RNN to predict upcoming values for BG levels can be found in [23]. The mean
value of the RMSE of the model was 12.38 mg/dL based on data from 10 children and only used
previous BG levels to estimate upcoming values. The authors in [24] tried to learn the chaotic properties
in the glucose signal obtained from CGM systems using a model based on Echo State Network’s (ESNs)
and achieved RMSE values of 13.57 mg/dL for a 30 min prediction horizon when implementing subject
specific variants to the model. The authors in [25] proposed an approach based on Recurrent Neural
Network’s (RNNs) trained in an end-to-end fashion, using the blood glucose signal, and were able
to provide an estimate of the certainty in the predictions by training the recurrent neural network to
parameterize a univariate Gaussian distribution over the output.

Although the main information for BG level predictions used in previous research studies
is based on the current and recent past values from the CGM device measurements, adding
data from other sources and wearable sensors that measure variables affecting the metabolic
process could lead to optimized results [26]. The authors in [26] carried out a literature review
regarding modeling options and strategies of machine learning focusing on the prediction of BG
dynamics in type 1 diabetes. The authors recognized that due to the complexity of BG dynamics,
it remains difficult to achieve a universal model that produces an accurate prediction in every
circumstance (i.e., hypo/eu/hyperglycemia events) and that models adding information about food
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intake, insulin injections, physical exercise and mental health related parameters, such as stress
levels, could improve BG level prediction results. Hayeri in [27] added heart rate, step-count
and insulin information to the BG signal in order to improve results in the estimation of the next
levels for BG. The proposed algorithm was applied to nine children with T1DM and the model
was able to predict the user’s future glucose values with a 93% accuracy rate for 60 min ahead of
time. Zhu et al. in [28] used CGM data together with the insulin values and carbohydrate intake
estimations in the dataset in [21] and a deep learning model to achieve an RMSE value of 21.7 mg/dL
on a 30 min prediction horizon. The research study in [29] used both CGM and insulin data and a deep
learning model based on RNN with LSTM cells to predict the levels of BG in the next 30 min. The study
achieved an RMSE value of 7.55 mg/dL and anticipated the occurrence of 97.79% of hyperglycemia
events (glucose > 180 mg/dL), and 90.87% of hypoglycemia events (glucose < 70 mg/dL). Li et al. [30]
also used insulin and carbohydrate intake information together with the BG signal from a CGM
device and a deep learning model based on the combination of a Convolutional Neural Network
(CNN) for automatic feature extraction and then an LSTM RNN for time series prediction in order to
estimate the BG levels with a 30 and 60 min prediction horizon. The authors obtained RMSE values
of 9.38 mg/dL for 30 min predictions and RMSE values of 18.87 for 60 min predictions. According to
the results in [26], Hobbs et al. [31] designed a dynamic glucose prediction model that included both
heart rate measurements and variables representing the carbohydrate consumption and insulin boluses
in order to improve results for physically active adolescents. The authors achieved an RMSE value
of 26.33 mg/dL for a 30 min prediction horizon which slightly improved the prediction results for
the same dataset without including the heart rate information (RMSE value of 28.64 mg/dL for a
30 min prediction horizon).

The BG level prediction results from the machine learning models have also been compared
with results provided by the mathematic metabolic models adjusted to fit each patient. Mirshekarian
el al. in [32] implemented a deep learning model to fit BG signals based on RNN with LSTM cells
and compared the achieved results with those achieved fitting a physiological model to the data.
The machine learning model slightly outperformed the physiological model achieving RMSE values
of 21.4 mg/dL and 38.0 mg/dL for prediction horizons of 30 and 60 min, respectively. The authors
in [14] described a solution that used a generic physiological model of blood glucose dynamics to
generate informative features for a Support Vector Regression (SVR) model that was trained on
patient-specific data. The model outperformed diabetes experts at predicting blood glucose levels.
The authors in [33] used the physiological models described in [34,35] to generate a 54-dimensional
feature space. Then a deep learning model based on an RNN with LSTM cells was used based on
the computed features. The authors recognized that one major drawback of physiological models is
the requirement for prior knowledge to adjust the physiological parameters. The authors achieved an
RMSE value in the best scenario of 14.04 mg/dL for a 60 min prediction horizon. The authors in [12]
used the insulin and carbohydrate absorption models in [34,35] to try to estimate hypoglycemic events
overnight for TD1M children. A review comparing physiological models partially or totally replaced
by machine learning techniques can be found in [36].

In this paper, a new mechanism inspired by metabolic models for glucose dynamics [14,32,33]
and trainable on a per-patient-basis is proposed. The differential equations for carbohydrate
and insulin absorption are modeled using a Recurrent Neural Network (RNN) implemented using
Long Short-Term Memory (LSTM) cells.

3. Proposed Model

The variations over time of blood glucose levels depend among other factors of current blood
glucose levels, carbohydrate intake and insulin injections (according to the specific absorption rates
from different insulin types). The glucose metabolic processes can be modelled using a set of
differential equations that have been previously proposed in research studies such as [14,32,33].
Considering the carbohydrate intake, fast and slow acting insulin boluses and past blood glucose
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levels as inputs, the plasma glucose, insulin and carbohydrate levels depend on digestion, absorption,
insulin dependent and independent utilization, renal clearance and endogenous liver production
processes [14]. For the carbohydrate and insulin inputs, a Recurrent Neural Network (RNN) will be
able to learn the digestion and absorption processes when trained together with the data from current
values and the memory from the past. Combining the output signals from the absorption and digestion
processes together with the blood glucose signal into a second learning layer, the plasma blood glucose
level variations could be estimated.

The proposed method is captured in Figure 1. A specific Long Short-Term Memory based Recurrent
Neural Network (LSTM RNN) is used to learn the carbohydrate digestion and insulin absorption
processes from each input signal. The individual effect for each digestion and absorption process after
the LSTM RNN layer is combined in order to assess the blood glucose variations for the next Continuous
Glucose Monitor (CGM) reading. According to the mathematical metabolic models in [14,32,33], there
are some BG variations influenced by current BG levels such as those induced by renal clearance,
insulin independent BG utilization and endogenous liver production. The model in Figure 1 applies a
different LSTM RNN network to learn the time patterns from the BG levels and combines the output of
such RNN with the combined output from the processed insulin and carbohydrate signals in order to
estimate the BG variation for the next CGM reading.
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The question marks in the different layers in the model represent the number of time samples
fed into the model. In order to take into account the influence over time for all the input signals,
a time span of 9 h has been considered for the results presented in this paper. The simulated data used
in this paper will produce data samples each 15 min, so in order to generate a 9 h data window a total
of 36 samples are required. Different time spans could be used depending on the absorption curves for
each of the inputs (in particular the type of insulin used).

The model will learn the Blood Glucose (BG) dynamics estimating the variation for the next
expected CGM measure as captured from the differential equations in the metabolic models [14,32,33].
Different prediction horizons are calculated after the model is trained by executing the model
in prediction mode as many times as needed in order to cover the required time span. The estimated BG
variations are used to compute the estimated next values so that the model can be used to predict future
samples using previously assessed data in a recurrent way. Since the model only predicts the evolution
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of the BG levels, the input values for the insulin and food intake required to recurrently run the model
in prediction mode are set to 0. This will allow the model to unfold predictions based on the metabolic
dynamics when no external inputs are added. Since future values for meals and insulin injections are
not fed into the model, the model will generate an estimate about what will happen to the glucose
signal if no external action is taken by the patient. Therefore, the model could be used to warn the user
in advance about negative episodes if no action is taken and recommend particular actions to avoid
such episodes.

4. Description of the Datasets

Two different datasets have been used in order to validate the proposed model: a dataset generated
using a diabetes simulator in order to have the power to generate as many data samples as required
and a second dataset with real data (containing a more limited set of data but in a real use case
scenario). Both datasets contain information from meals, insulin boluses (slow and fast acting insulin)
and CGM readings.

The first dataset has been generated using the AIDA diabetes simulator [4,5] which is intended
for simulating the effects on the blood glucose profile of changes in insulin and diet for a typical
insulin-dependent (type 1) diabetic patient. The simulator includes 40 different patient models with
different parameters controlling the metabolic model that is used in order to generate BG levels for
different food intake and insulin injection patterns. The AIDA diabetes simulator can be downloaded
as a freeware tool or it can be used online. The simulator uses a 15 min sample rate for simulated
BG levels.

The second dataset, the D1NAMO dataset [6], contains data for nine patients with type 1
diabetes. The data acquisition was made in real life conditions using a Zephyr BioHarness 3 wearable
device (https://www.zephyranywhere.com/). Apart from insulin boluses, the dataset consists of ECG,
breathing, and accelerometer signals, as well as glucose measurements and annotated food pictures.
The pictures have been annotated by a nutritionist in order to estimate the number of calories taken by
each participant. The information from the ECG, breathing and accelerometer have not been used
in the current study since they are not present in the AIDA diabetes simulator in order to be able to use
the same model for both datasets. The CGM readings provide BG levels every 5 min. There is around
4 days of information for each participant. The major limitation in the dataset (apart from the size
of samples recorded) is that not all the meals taken by each participant are recorded in the dataset
and the exact times in which the meals were taken are not available either. However, using the time of
capture metadata for each picture for each meal, an estimate about when the recorded meals were
taken has been generated.

5. Results

The model described in Section 3 has been trained using both datasets as described in Section 4.
The model in Section 3 has been implemented in Python using Keras (https://keras.io/) and Tensorflow
(https://www.tensorflow.org/) libraries. The Python code is captured in Appendix A.

This section captures the main results and compares them with results from previous related
research studies.

5.1. Simulated Scenario

The AIDA diabetes simulator [4,5] has been used to generate 10 days of data for the different
models implemented by the tool. Two different training and validation methods have been used to
assess the quality of the model. The first validation method performs a 70–30% random split of the entire
dataset. The differential equations in the mathematical metabolic blood glucose dynamics models
define user dependent parameters. A user centered approach has therefore been used in order to adapt
the proposed method in Section 3 to the metabolic functions of each participant. The second validation
method uses 8 days of generated data for training and 2 different days for validation. Each day
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has been generated with different meal and insulin injection data so that each day has different BG
signals. The idea with this second validation method is to assess the quality of the model in learning
the metabolic processes so that it can generalize to new food and insulin scenarios.

5.1.1. Validation Based on a 70–30% Data Split

The simulated data for each patient model in the AIDA simulator has been randomly split
into a 70% training set, and the remaining 30% has been used for validation. Each training sample
contains a 9 h segment of data for each of the four input signals (CGM readings, food intake, fast
and slow insulin injections, 36 samples each). The model predicts the variations for the GCM signal
in order to assess the next sample (according to the differential equations defining the metabolic model
in [14,32,33]). Once the model is trained, the 30% validation samples are used to assess/estimate/predict
the next Blood Glucose (BG) level for each 36-sample window. Then, the oldest sample in the 36-sample
window is removed and the predicted values are added in order to estimate the values for the next
window in time. The prediction process is repeated until the prediction horizon is reached. In order to
compare results with previous related studies, two different horizons have been selected since they are
normally present in previous research: 30 and 60 min horizons.

Previous research studies use different metrics in order to assess the quality of the proposed blood
glucose models. Among them, the most widely used figure is the Root Mean Square Error (RMSE)
defined by the following equation:

RMSE =

√∑
N(Gm −Ge)

2

N
(1)

where Gm represents the measured BG level and Ge is used for the estimated value for BG level at
the same future instant of time.

Although RMSE has been widely used in previous publications and is therefore a convenient
metric for comparing results among them, the Clarke Error Grid Analysis (EGA) is preferred in terms
of clinical accuracy of blood glucose estimates [37]. The Clarke Error Grid captures the differences
between the estimations for blood glucose levels over the selected horizon and the real measurements
for the same instants of time. The Clarke Error Grid divides the bidimensional space into five different
zones (A to E), each of them showing different implications in terms of blood glucose management.
Zone A includes the predicted values that differ from the real values no more than 20%, or the values
in the hypoglycemic range (<70 mg/dL). The points in this zone are considered clinically accurate. Points
in Zone B capture values in which the difference between the prediction and real measurements are
bigger than 20% but would lead to benign or no treatment scenarios. This zone is clinically acceptable.
Zone C leads to estimations that imply overcorrecting behaviors based on the prediction errors for
blood glucose levels. Points in Zone D represent a failure to detect and treat deviations in blood
glucose levels in which the actual levels are outside of the acceptable levels while the predictions fall
within the acceptable range. Finally, Zone E captures points in which predicted values are opposite to
real/measured blood glucose levels, and therefore, the treatment would go in the opposite direction
to what is recommended. In this paper, RMSE values will be used to compare results with previous
studies and the Clarke Error Grid will also be used to assess the severity or the errors in the proposed
method in clinical terms.

The model in Section 3 has different parameters that must be adjusted in order to better capture
the dynamics behind the input signals. The major parameter of the proposed model consists of
the number of memory units inside each LSTM cell. A low number of memory units will make
the model unable to learn all the patterns in the signals while a big value could be prone to overfitting.
Table 1 shows the results for the RMSE figures for three different values for the number of memory
units inside each LSTM cell. Predictions over 30 and 60 min horizons are given. The optimum value
for both prediction horizons is when the number of memory units is 10. This will be the value selected
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for the rest of the scenarios in this section. The influence is more notoriously noticed for longer
term predictions.

Table 1. Root Mean Square Error (RMSE) values in mg/dL. In total, 70% training 30% validation.

Number of Memory Cells 30 min 60 min

5 3.53 7.09
10 3.45 4.72
15 3.47 6.45

Figures 2 and 3 show the result for the estimated blood glucose levels for both 30
and 60 min horizons. The results for a 60 min horizon are a bit worse and bigger differences
can be visually assessed per the relative maxima and minima values, however, both cases generate a
low error RMSE figure.
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The results can be observed in more detail by zooming out some particular days. Figure 4 shows
the predicted vs. the real measured values for BG levels for two entire days. The model is able to
better predict the raising BG level segments (normally caused after meal intakes) and, slightly worse,
the falling segments (induced by insulin and fasting periods). Both images show similar results.
The maximum and minimum instants (inflexion points) are estimated with low time lag figures.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 18 

 

 
Figure 3. Predictions on a 60 min horizon for 8 days for a simulated participant. 

The results can be observed in more detail by zooming out some particular days. Figure 4 shows 
the predicted vs. the real measured values for BG levels for two entire days. The model is able to 
better predict the raising BG level segments (normally caused after meal intakes) and, slightly worse, 
the falling segments (induced by insulin and fasting periods). Both images show similar results. The 
maximum and minimum instants (inflexion points) are estimated with low time lag figures. 

   
Figure 4. Predictions on a 60 min horizon for 2 single days for a simulated participant. 

Figure 5 captures the results for the Clarke Error Grid for a simulated participant for 30 and 60 
min prediction horizons. The majority of the estimations fall in Zone A (clinically accurate zone) for 
both cases. In the 30 min horizon prediction, from the 739 points in the validation set, 738 fall in Zone 
A and only one in zone D. In the 60 min horizon case, 729 fall in Zone A, five in Zone B and only one 
in Zone D. Zone B is clinically acceptable while Zone D represents a failure to detect a hypo or 
hyperglycemic point in advance. 

Figure 4. Predictions on a 60 min horizon for 2 single days for a simulated participant.

Figure 5 captures the results for the Clarke Error Grid for a simulated participant for 30
and 60 min prediction horizons. The majority of the estimations fall in Zone A (clinically accurate
zone) for both cases. In the 30 min horizon prediction, from the 739 points in the validation set, 738
fall in Zone A and only one in zone D. In the 60 min horizon case, 729 fall in Zone A, five in Zone B
and only one in Zone D. Zone B is clinically acceptable while Zone D represents a failure to detect a
hypo or hyperglycemic point in advance.Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 
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In order to assess how the model is able to learn the underlying metabolic processes, Figure 6 shows
the predicted BG level variations on a given day together with the values of the carbohydrate intake
and insulin boluses. The food intake increases the BG levels while insulin has the opposite effect.
The bigger the input values, the bigger the variations expected.

5.1.2. Validation Based on 8 Days for Training 2 Different days for Validation Data Split

A second validation method is used in this section. For each participant, 10 days of simulated data
has been generated. The first 8 days are used for training the model in Section 3 while the information
from the last 2 days is used for validation. The times, hours and amounts for the input signals (food
and insulin) are different for all the generated days so that the time series in the validation period are
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therefore different from those seen by the model from the training data. The objective is to assess if
the model can learn the underlying metabolic processes and generalize to new data for the same user.
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A similar analysis in order to assess the optimal value for the number of memory units in each
LSTM cell is shown in Table 2. The results are similar to those in Table 1, and an optimal value is
obtained for 10 units. The RMSE values are a bit better in this case.

Table 2. RMSE values in mg/dL. A total of 8 days of data for training with 2 different days for validation.

Number of Memory Cells 30 min 60 min

5 2.77 7.1
10 2.83 4.35
15 2.63 5.76

Figure 7 shows the predictions over a 60 min horizon for a particular day in the validation set.
The graphical results show that the predictions follow significantly well the shape of the real predicted
signal. In some cases, the predicted signal is able to anticipate the maxima and minima values with a
bit more than 60 min.

5.2. Scenario with Real Data

For validating the model presented in Section 3 with real data, the D1NAMO dataset has been
used [6]. The dataset contains nine T1DM patients wearing a CGM device providing readings every
5 min. The dataset also contains information for meals and insulin injections. The data for each
participant is around 4 days and some of the meals are not recorded which can cause convergence
problems in some cases for the model, especially if the number of memory cells were increased
(overfitting problems). In order to avoid misleading the training of the model when including
segments with missing data, data segments with a significant BG level increase likely to be caused by a
meal intake that is not recorded are not taken into account. For these segments, the patient records
the insulin boluses but not the related meal information. Moreover, data segments for which there are
events in the meal or insulin signals in the prediction window period are not taken into account when
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validating the algorithm since these events modify the internal model dynamics as proposed in [38]
and can not be predicted based on the information provided as input to the model (the authors in [38]
used a similar approach).
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In order to compare the results with simulated data, Table 3 captures the RMSE values for a
similar model configuration (using 10 memory units per LSTM cell) using a 70% training and 30%
validation split.

Table 3. RMSE values in mg/dL split70% for training and 30% for validation.

Number of Memory Cells 30 min 60 min

10 6.42 11.35

Figure 8 shows the prediction results for a participant in one of the days. The model adjusts
both the hypoglycemic episode during the night and the hyperglycemic behavior during the day.
The sensor used shows saturation around 400 mg/dL which represents a measurement error in this case.
The prediction model tries to assess/predict values higher than 400 mg/dL at the beginning of
the saturation window (when the model is fed with accurate data) but adjusts the predictions to
the saturated samples for the final part of the glucose peak when the information used for estimating
future values is based on saturated data samples.

The Clarke Error Grid for a real participant is shown in Figure 9. In this case, the prediction errors
captured in Table 3 are bigger than the simulated case and the points outside Zone A in the Clarke
Error Grid will be bigger. For the 30-min horizon, 868 points fall in Zone A, 205 in Zone B, 8 in Zone C,
13 in Zone D and there are no points in Zone E. The majority of the points fall therefore in zones A and B
which are considered clinically accurate or acceptable. The 8 points in Zone C may lead to overreaction
and the 13 points in Zone D will imply a failure to detect a glycemic episode 30 min in advance.
For the 60 min horizon, 582 points are in Zone A, 367 in Zone B, 77 in Zone C, 57 in Zone D and 5
in Zone E. The majority of the points continue to fall in zones A and B but the number of error in zones
C, D and E increase.
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A final experiment has been done in order to assess the transferability of the model trained for
one participant and applied to estimate the data for a different participant. The physiological glucose
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dynamics models in [14,32,33] have several metabolic parameters that have to be adjusted for each
participant. In our case, when the model is trained for a participant, the training of the model will
adjust its internal weights to predict the glucose variations for this participant. The error between
the predicted variations of BG levels for this participant and the real values caused by the metabolic
dynamics for that participant are tried to be minimized. When transferring the model trained for
one participant to a different one, the average RMSE values that have been obtained in this scenario
have been 49.38 mg/dL which indicate that the model cannot be directly transferred to new users.
As a future study, a bigger dataset will be used in order to train the model with the information of a
significant variety of participants in order to assess its transferability to other participants.

5.3. Comparing Results with Previous Related Studies

The results for RMSE figures in mg/dL for previous related studies are captured in Table 4.
Although different datasets are used for the studies, some using real users and some using different
diabetes simulators to generate data, the results achieved by the algorithm proposed in this paper show
very promising numbers. The optimal results for the model in this paper are achieved for simulated
data which could be expected since their deterministic approach to data generation models and since
the input signals used in the simulator are the same as the ones used for training and validating
the model. For a real use case, the glucose dynamics models are more complex and are influenced by
other factors such as physical activity or mental stress.

Table 4. RMSE for 30 min Blood Glucose (BG) estimation using deep (underlined) and shallow
learning models.

Study Input Variables Method Used RMSE (mg/dL)

Li et al. [24] GCM data Echo State Network (ESN) 23.57

Zhu et al. [28] CGM data, insulin and carbohydrate Causal CNN 21.7

Sun et al. [22] GCM data RNN-LSTM 21.7

Martinsson et al. [20] GCM data RNN-LSTM 20.1

Sparacino et al. [39] CGM Data AR 18.78

Pérez-Gandia et al. [40] CGM Data Feed-Forward NN 17.5

Zecchin et al. [41] CGM data, glucose rate after meals Feed-Forward NN and first-order
polynomial model 14.0

Idriss [23] GCM data RNN-LSTM 12.38

Turksoy et al. [42] CGM data, insulin on board, energy
expenditure, galvanic skin response Recursive ARMAX model 11.7

Hamdi et al. [15] CGM data SVR and DE 10.78

Li et al. [30] CGM data, insulin and carbohydrate CNN+RNN-LSTM 9.38

Mosquera-Lopez et al. [29] CGM and insulin RNN-LSTM 7.55

Ali et al. [16] CGM Data Feed-Forward NN 7.45

Our model for real patients CGM data, insulin and carbohydrate Metabolic inspired model using RNN-LSTM 6.42 1

Georga et al. [38]
CGM data, meal intake,

insulin concentration, energy
expenditure, time

SVR—Random Forest (RF) 5.7

Our model for simulated patients CGM data, insulin and carbohydrate Metabolic inspired model using RNN-LSTM 3.45 1

1 For a 70% training 30% validation split.

Most of the models in Table 4 are purely based on the glucose readings from a GCM device which
lacks important information from other inputs such as meals and insulin boluses. The best published
results that have been found for glucose predictions using a real patient dataset are presented in [38],
where 15 T1DM patients following a multiple dose insulin therapy were monitored from 5 to 22 days
in free-living conditions. The authors make use of meals and insulin data as inputs, but they also add
physical activity as an additional input which is not considered in the AIDA dataset used in this paper.
The results for real user data in our case show similar RMSE values as those in [38] in a sub-optimal
setting (not taking physical activity into account in the model).
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6. Conclusions

The results captured in Table 4 show that some patterns controlling the evolution of the BG level
signal for T1DM patients can be learnt by using different machine learning techniques. Depending on
the input signals and the machine learning methods, different accuracy figures are achieved when trying
to predict upcoming values for the BG signal. Table 4 also shows that implementing more complex
machine learning models does not necessarily mean achieving better results. In fact, the best results
in previous studies captured in Table 4 are achieved by a support vector machine used for regression
purposes, known as Support Vector Regression (SVR), when some of the features used as inputs are
derived from generic metabolic models for insulin and carbohydrate absorption. This paper proposes,
implements, validates and compares a new hybrid model that imbricates the differential equations
in metabolic models inside a deep machine learning structure in order to mimic the metabolic behavior
of physiological blood glucose models and be trainable for each patient.

The model works better for simulated patients since the complexity of the dependencies from
insulin and carbohydrate intake in BG levels are limited to a control set of configuration parameters.
Using the AIDA diabetes simulator [4,5] an RMSE of 3.45 mg/dL is achieved for a 30 min prediction
horizon when using a 70–30% random data split for training and validation. Different configurations
for the size of memory cells inside the proposed model have been tested, validating that there is an
optimal value for the complexity of the model (a more complex model does not necessarily achieve
better results, but a model adapted to the internal physiological dependencies among the input signals
and the body metabolism). In our case, the optimal value for the LSTM memory units was 10.

The model is also able to learn from real patients. Using the dataset in [6], with nine real T1DM
patients the model achieves results under 10 mg/dL for the prediction horizon on 30 min when
trained for each particular patient/participant using part of the data in the dataset and validating
the same patients with the rest of the data (using again a 70–30% random data split for training
and validation). The model trained for one user does not necessarily achieve good results for predicting
upcoming glucose levels for other patients/participants (in fact the glucose dynamics models use
tunable parameters for each particular user).

One limitation of the dataset in [6] is the number of days in which the data is recorded for each
participant. As a future work, the model will be used to predict upcoming values for BG levels using
other datasets.
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TIN2016-77158-C4-1-R and in part by the European Regional Development Fund (ERDF).
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Appendix A Model Implementation

This appendix shows the model implementation in Python so that results can be replicated:

input1 = Input(shape = (time_span, 1))
x11 = LSTM(units = mem_cells, activation = ‘relu’, return_sequences=False)
x12 = x11(input1)
x13 = Dense(units = 3, activation = ‘relu’)
x1 = x13(x12)
input2 = Input(shape = (time_span,1))
x21 = LSTM(units = mem_cells, activation = ‘relu’, return_sequences = False)
x22 = x21(input2)
x23 = Dense(units = 3, activation = ‘relu’)
x2 = x23(x22)
input3 = Input(shape = (time_span, 1))
x31 = LSTM(units = mem_cells, activation = ‘relu’, return_sequences = False)
x32 = x31(input3)
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x33 = Dense(units = 3, activation = ‘relu’)
x3 = x33(x32)
input4 = Input(shape = (time_span,1))
x41 = LSTM(units = mem_cells, activation = ‘relu’, return_sequences = False)
x42 = x41(input4)
x43 = Dense(units = 3, activation = ‘relu’)
x4 = x43(x42)
added = Concatenate(axis = -1)([x2, x3, x4])
out1 = Dense(1)(added)
added2 = Concatenate(axis = -1)([x1, added])
out2 = Dense(1)(added2)
model = Model(inputs = [input1, input2, input3, input4], outputs=[out1, out2])
model.compile(loss = ‘mean_squared_error’, optimizer = keras.optimizers.Adam(0.001))
history = model.fit([xTrain[:,:,4:5], xTrain[:,:,1:2], xTrain[:,:,2:3], xTrain[:,:,3:4]], [yTrain, yTrain],

epochs = 100,
batch_size = bs,
validation_split = 0.3,
verbose = 1,
shuffle = False)
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