
A necroptosis-related prognostic
model for predicting prognosis,
immune landscape, and drug
sensitivity in hepatocellular
carcinoma based on single-cell
sequencing analysis and
weighted co-expression network

Jingjing Li1,2†, Zhi Wu3†, Shuchen Wang2, Chan Li4,
Xuhui Zhuang2, Yuewen He2, Jianmei Xu4, Meiyi Su5,
Yong Wang2, Wuhua Ma2, Dehui Fan4,5 and Ting Yue6*
1Department of Anesthesiology, Jincheng People’s Hospital, Jincheng, Shanxi, China, 2Department of
Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine,
Guangzhou, China, 3Department of General Surgery, Jincheng People’s Hospital, Jincheng, Shanxi,
China, 4The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou,
China, 5Department of Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital,
Guangzhou, China, 6Department of Oncology Rehabilitation, Jincheng People’s Hospital, Jincheng,
Shanxi, China

Background: Hepatocellular carcinoma (HCC) is a highly lethal cancer and is

the second leading cause of cancer-related deaths worldwide. Unlike

apoptosis, necroptosis (NCPS) triggers an immune response by releasing

damage-related molecular factors. However, the clinical prognostic features

of necroptosis-associated genes in HCC are still not fully explored.

Methods: We analyzed the single-cell datasets GSE125449 and

GSE151530 from the GEO database and performed weighted co-expression

network analysis on the TCGA data to identify the necroptosis genes. A

prognostic model was built using COX and Lasso regression. In addition, we

performed an analysis of survival, immunity microenvironment, and mutation.

Furthermore, the hub genes and pathways associated with HCC were localized

within the single-cell atlas.

Results: Patients with HCC in the TCGA and ICGC cohorts were classified using

a necroptosis-related model with significant differences in survival times

between high- and low-NCPS groups (p < 0.05). High-NCPS patients

expressed more immune checkpoint-related genes, suggesting

immunotherapy and some chemotherapies might prove beneficial to them.

In addition, a single-cell sequencing approachwas conducted to investigate the

expression of hub genes and associated signaling pathways in different cell

types.

OPEN ACCESS

EDITED BY

Geng Chen,
Stemirna Therapeutics Co., Ltd., China

REVIEWED BY

Yutian Zou,
Sun Yat-sen University Cancer Center
(SYSUCC), China
Zheng Chen,
Fudan University, China

*CORRESPONDENCE

Ting Yue,
dr_tingyue@163.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 01 July 2022
ACCEPTED 01 September 2022
PUBLISHED 21 September 2022

CITATION

Li J, Wu Z, Wang S, Li C, Zhuang X, He Y,
Xu J, Su M, Wang Y, Ma W, Fan D and
Yue T (2022), A necroptosis-related
prognostic model for predicting
prognosis, immune landscape, and drug
sensitivity in hepatocellular carcinoma
based on single-cell sequencing
analysis and weighted co-
expression network.
Front. Genet. 13:984297.
doi: 10.3389/fgene.2022.984297

COPYRIGHT

©2022 Li, Wu, Wang, Li, Zhuang, He, Xu,
Su, Wang, Ma, Fan and Yue. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 21 September 2022
DOI 10.3389/fgene.2022.984297

https://www.frontiersin.org/articles/10.3389/fgene.2022.984297/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.984297/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.984297/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.984297/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.984297/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.984297/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.984297/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.984297&domain=pdf&date_stamp=2022-09-21
mailto:dr_tingyue@163.com
https://doi.org/10.3389/fgene.2022.984297
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.984297


Conclusion: Through the analysis of single-cell and bulk multi-omics

sequencing data, we constructed a prognostic model related to necroptosis

and explored the relationship between high- and low-NCPS groups and

immune cell infiltration in HCC. This provides a new reference for further

understanding the role of necroptosis in HCC.
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Introduction

Primary liver cancer is the sixth most common cancer in the

world and the second leading cause of cancer-related death (Yang

et al., 2019). Hepatocellular carcinoma (HCC) is the most

common type of primary liver cancer (Chaudhary et al.,

2019). Most HCC patients are diagnosed at an advanced

stage. The gold standard treatments, including tumor

resection, local ablation with radiofrequency, and sometimes

liver transplantation, have low success rates with high relapse

rates and short survival times (Dhanasekaran et al., 2016).

Additionally, patients with HCC who present with similar

tumor, lymph node, and metastasis (TNM) stage have

different clinical outcomes, and there are few current effective

prognostic indicators.

Recent research has demonstrated the importance of the

tumor microenvironment (TME) in promoting tumor

aggressiveness (Altorki et al., 2019). The survival of patients

with various malignancies can be prolonged by immune

checkpoint inhibitors. However, many patients with HCC

currently often respond poorly to immune checkpoint

inhibitors, which may be due to low mutational loads,

acquiring new immune checkpoints, and producing

immunosuppressive factors (Riley et al., 2019). Therefore,

there is a need to identify new biomarkers for HCC as well as

to comprehend their significance in TME.

Programmed cell death has a strong impact on the

characterization of the TME ecosystem (Chevrier et al., 2017).

Resistance to apoptosis, a problem affecting cancer development,

is one of the hallmarks of cancer (Reyna et al., 2017). In the

process of cancer cell resistance to death, growth signals are

overactivated, the metabolism is reprogrammed, and a change in

the immune microenvironment occurs (Sahin et al., 2017).

Inducing cancer cell death is becoming increasingly popular

as a potential cancer treatment method (Bersuker et al., 2019).

HCC cells can die by several different mechanisms, including

apoptosis and necroptosis (NCPS) (Yuan et al., 2019). Both

mechanisms play a significant role in homeostasis,

inflammation, anti-infection, and tumorigenesis (Karki et al.,

2021; Koren and Fuchs, 2021).

Necroptosis was once believed to be the “accidental death” of

cells. However, current research indicates that necroptosis is

distinct from conventional apoptosis (González-Juarbe et al.,

2017). Necroptosis leads to membrane destabilization, which

subsequently precedes swelling and lysis of cells, resulting in the

release of intracellular constituents (González-Juarbe et al.,

2017). Inhibited caspase 8 and receptor-interacting serine/

threonine protein kinase 1 (RIPK1) are both involved in

necroptosis pathway activation via recruitment and activation

of receptor-interacting serine/threonine protein kinase 3

(RIPK3) (Alvarez-Diaz et al., 2016). Necroptosis occurs when

caspase 8 is inactivated or absent, resulting in the activation and

autophosphorylation of RIPK1 and RIPK3(Tanzer et al., 2017).

During this process, the cell membrane ruptures, and the

contents are released, stimulating an immune response

(Kalliolias and Ivashkiv, 2016). Necroptosis becomes attractive

as an alternative to apoptosis for killing tumor cells if apoptosis

fails to kill them (Kalliolias and Ivashkiv, 2016). As well, the

immunemicroenvironment is positively impacted by necroptosis

(Gong et al., 2019).

Interestingly, the role of necroptosis in cancer is complex. In

general, high levels of necroptosis result in strong adaptive

immune responses that inhibit the progression of tumors. The

recruitment of strong immune responses may also contribute to

tumor progression (Koo et al., 2015; Najafov et al., 2017).

Moreover, the inflammatory response may contribute to

tumorigenesis and metastasis, as well as generate an

immunosuppressive tumor microenvironment. Guo et al.

(2022) has shown that loss of key necroptosis gene

significantly reduces clinical symptoms of liver injury and

fibrosis. Necroptosis has completely opposite effects on

different types of cancer, the mechanism of which is still

unclear. With the emergence of immune checkpoint therapy,

changes in the immune microenvironment resulting from

necroptosis are also important to consider. There is therefore

a need to investigate the relationship between necroptosis

and HCC.

Here, we downloaded the data of HCC patients from the TCGA

and ICGC databases, as well as two single-cell datasets, GSE125449

(Ma et al., 2019) and GSE151530 (Ma et al., 2021), and one

microarray dataset, GSE76427 (Grinchuk et al., 2018) from the

GEO database. The TCGA cohort was used for model building. The

ICGC cohort and GSE76427 were used to validate the results of our

analysis. Two single-cell sequencing datasets, GSE125449 and

GSE151530, were chosen for single-cell analysis because of their

relatively large sample size and inclusion of clinical data. Through
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comprehensive bioinformatic analysis, we developed a prognostic

model based on necroptosis and classified HCC patients into low-

and high-risk groups, the results of which were significantly

different. Furthermore, we explored the potential value of the

signature in guiding the tumor mutational load, immune

microenvironment, and drug sensitivity.

FIGURE 1
Flowchart of the analysis.
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Methods

Download and processing of
transcriptome data

This flowchart illustrates the key steps in the analysis

(Figure 1). The data of HCC were downloaded from TCGA

(https://portal.gdc.cancer.gov/) as a training cohort (Grossman

et al., 2016). Count data and TPM data of HCC were extracted

using R software (4.2.0), and a total of 363 tumor samples with

complete clinical data were obtained. The HCC dataset was

downloaded through ICGC (https://dcc.icgc.org/) database as

a validation cohort, and the count data type and TPM data type

of HCC were extracted, and a total of 240 tumor samples were

obtained with complete clinical information (Zhang et al., 2019).

GSE76427, measured using the Illumina HumanHT-12 V4.

0 expression beadchip, contained 115 HCC samples

(Grinchuk et al., 2018). The raw CEL files for GSE76427 were

downloaded from the GEO database. More details of the data

processing are in Supplementary Material S1, S2.

Download and processing of single-cell
data

The single-cell datasets GSE125449 and GSE151530 for HCC

were downloaded from the GEO database (https://www.ncbi.nlm.

nih.gov/geo/) (Barrett et al., 2013). The GSE125449 dataset contains

nine HCC samples and the GSE151530 dataset contains 32 HCC

samples. We performed quality control on the data of all samples.

We retained cells with genes expressed in at least 10 cells, less than

10% of mitochondrial genes, more than 200 genes, less than 5%

hemoglobin genes, less than 50% ribosomal genes, and expression

between 200 and 7000. We set a limit of 3000 highly variable genes.

Next, we normalized all samples, removed batch effects, and

integrated them by SCT. Then, using the tSNE method with the

“DIMS” parameter set to 20, the dimensionality of the data was

reduced. Cell clustering was then carried out using the “KNN”

method with a resolution of 2.0. Subsequently, the cells were

annotated with the Human Primary Cell Atlas (HPCA) from the

“SingleR” package as a reference dataset (Mabbott et al., 2013).

Finally, the proportion of NCPS-related genes in each cell can be

calculated using the “PercateFeatureSet” function.

Identification of NCPS-related genes

In the GeneCards database (https://www.genecards.org/),

614 genes associated with necroptosis were identified (Safran

et al., 2021). A total of 92 genes were identified that had an

association score of greater than 1.0 with necroptosis

(Supplementary Material S3). Then, the NCPS-related genes

were scored for each sample by the combined analysis of

ssGSEA (Single Sample Gene Set Enrichment Analysis) and

WGCNA (Weighted Co-Expression Network Analysis). The

log2 processed data were used for ssGSEA analysis.

ssGSEA

Gene sets enriched in a sample are often quantified by using

the ssGSEA method with “GSVA” package (version: 1.44.2)

(Bindea et al., 2013; Hänzelmann et al., 2013). In this study,

ssGSEA analysis was utilized to determine the NCPS-related

scores of each patient with HCC.

WGCNA

WGCNA analysis is one method used in systems biology for

determining patterns of genetic association among diverse

samples (Langfelder and Horvath, 2008). In addition to

identifying highly covariant genomes, WGCNA analysis can

be used to identify potential biomarkers or therapeutic targets

based on the correlation between genomes and phenotypes. In

this study, gene modules associated with NCPS scores in HCC

were found by “WGCNA” package (version: 1.71), and genes

associated with necroptosis were obtained. Non-gray modules

were identified by setting a soft threshold of eight, a minimum

number of module genes of 80, and combining modules that had

similarities of less than 0.3.

Construction of NCPS-related prognostic
model

First, univariate COX analysis was used to identify NCPS-

related genes with prognostic values by using the “survival”

package (version: 3.3-1). Next, a prognostic model was

developed based on the least absolute shrinkage and selection

operator (LASSO) regression for NCPS-related genes by using

the “glmnet” package (version: 4.1-4) (Lossos et al., 2004;

Friedman et al., 2010). In this way, the NCPS score could be

calculated for each HCC sample by the formula. Gene expression

levels were weighted by their respective coefficients of LASSO

regression to calculate the NCPS score. The formula was as

follows:

NCPS score � ∑
n

i�1
Coefi × Expi (1)

where n, Expi, Coefi, represented the number, the expression

value, and the coefficient of each selected gene, respectively.

According to the median value of the TCGA-HCC cohort,

patients could be classified into low- and high-risk groups.

Thereafter, we assessed the accuracy of the model by

comparing prognostic differences between the two groups.
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Validation of NCPS-related prognostic
model

The ICGC cohort and GSE76427 were selected as the external

validation cohorts. According to the formula of the prognostic

model, NCPS scores for each sample were calculated, and

patients were categorized based on their median NCPS scores

into high-risk and low-risk groups. We then conducted a survival

analysis comparing the high- and low-NCPS groups. Receiver

operating characteristic (ROC) curves were utilized to evaluate

the model’s accuracy by using the “timeROC” package (version:

0.4) (Li et al., 2018). To determine whether the model grouped

HCC patients more effectively, principal component analysis

(PCA) was performed using the “PCAtools” package (version:

2.8.0) and “scatterplot3d” package (version: 0.3-41).

Immune infiltration and mutation
landscape

We performed immune infiltration analysis of HCC patients

in the TCGA database using immune cell infiltration algorithms

from the IOBR package (version: 0.99.9) (Zeng et al., 2021). Next,

we examined the differences in the levels of immune cell

infiltration between the two NCPS groups and presented the

immune cells with different levels of infiltration as a heat

map. Also, the expression of immune checkpoint-related

genes in the various NCPS subgroups was visualized by a

boxplot. We identified the top 20 genes with the highest

mutation rates by comparing the mutation rates between

groups with high and low NCPS scores.

Nomogram

Using clinical data and NCPS values, a nomogram was

developed in this study to assess the probability of mortality

in patients with HCC using the “rms” package (version: 6.3-0)

and “regplot” package (version: 1.1). This nomogram was

evaluated by using prognostic ROC curves and decision curve

analysis (DCA) to determine its accuracy in predicting patient

outcomes. The DCA analysis was performed using the “ggDCA”

package (version: 1.1) (Vickers and Elkin, 2006).

Drug sensitivity, immunohistochemistry,
pathways

To improve personalized treatment, we calculated half

maximal inhibitory concentrations (IC50) using the

“pRRophetic” package (version: 0.5) and compared these data

between high-risk and low-risk groups (Geeleher et al., 2014).

Low IC50 values indicate greater drug effectiveness. The Human

Protein Atlas (HPA) database (version: 21.1, http://www.

proteinatlas.org/) is the most comprehensive database for

assessing protein distribution in human tissues (Uhlén et al.,

2015).

HPA database was used to obtain prognostic gene expression

data. Immunohistochemical staining images of normal and HCC

tissues were used to analyze the protein expression of genes. In

addition, we performed an enrichment analysis of pathways

associated with different cell types in the single-cell data and

then mapped the significantly different pathways to tSNE plots

for visualization. Pathway enrichment analysis was performed

using the “irGSEA” package (version: 1.1.2). Finally, the

pathways associated with HCC in the TCGA dataset were

analyzed.

Statistical analysis

Statistical analysis was performed using the R software

(version 4.2.0). Continuous data were analyzed using Mann-

Whitney tests, and categorical data were analyzed using Fisher’s

exact tests. Pearson correlation coefficient was used to estimate

the correlation between continuous variables. The Kaplan-Meier

method was used for survival analysis. The Log-rank test was

used to determine the significance of differences. All statistical

analyses were considered significant if the p-values were less

than 0.05.

Results

Annotation of single-cell sequencing data
and identification of differentially
expressed genes associated with NCPS

We first analyzed the single-cell sequencing datasets

GSE125449 and GSE151530 for HCC to integrate different

samples. As shown in Figure 2A, there were no significant

batch effects in the 23 samples, and further analysis of the

results could be conducted. The K-Nearest Neighbor (KNN)

algorithm was used to divide all cells into 43 clusters

(Figure 2B). After entering 92 genes related to NCPS using

the “PercateFeatureSet” function, a percentage of the genes

associated with NCPS was calculated for each cell. Cells were

classified based on the median percentage of NCPS genes and

represented as tSNE plots (Figure 2C). We then identified eight

distinct cell types based on the expression of surface markers of

different cell types in different clusters. They were T cells,

macrophages, endothelial cells, NK cells, monocytes, smooth

muscle cells, B cells, and tumor cells (Figure 2D). The surface

markers for eight types of cells are shown in Figure 2E.

Furthermore, we identified 3598 genes that were

differentially expressed between high- and low-NCPS groups
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(Supplementary Material S4). Using the WGCNA analysis of

363 samples from the TCGA cohort, we have obtained gene

modules associated with necroptosis. In total, eight non-gray

modules were identified by setting a soft threshold of 8

(Figure 3A). As shown in Figure 3B, MEsalmon, MEtan, and

MEpurple were strongly associated with the NCPS score.

Further analysis was performed on the genes in these three

modules.

FIGURE 2
Single-cell analysis. (A) There were no significant batch effects in the 23 samples. (B) Dimensionality reduction and cluster analysis. (C)
Percentage of genes in each cell that are involved in necroptosis. (D) Annotation of cells in accordance with their surface marker genes. (E) A list of
the surface markers of the eight types of cells.
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The NCPS-related prognostic model
could be used to classify HCC patients and
predict their prognosis

An intersection was drawn between differential genes derived

from single-cell analysis and genes identified by WGCNA. In

Figure 3C, 74 genes are shown as candidates for the next step in

the analysis (Supplementary Material S5). Based on univariate

COX analysis within the TCGA cohort, 45 genes have been

identified as significantly associated with prognosis. The LASSO

regression analysis employed a random seed of 2022, and the

results indicated that gene contraction stabilized with minimal

partial likelihood deviation when the number of genes included

was 8 (Figures 3D,E). Table 1 summarizes the results of the Lasso

regression for each of these genes. The prognostic model was

constructed from eight genes, including RAD21, NBN, PRKDC,

FIGURE 3
Construction of prognosticmodel. (A,B)WGCNA screening formodules relating to necroptosis. (C) The intersection between differential genes
identified by single-cell analysis and genes identified by WGCNA. (D,E) Using Lasso regression, the final genes were selected for the prognostic
model.
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MAP2K2, RIPK2, BOP1, POLR2E, and GPX4. As follows was the

prognostic model.

NCPS � RAD21*0.07523793 + NBN*0.02974632

+ PRKDC*0.2080255 +MAP2K2*0.13063826

+ RIPK2*0.05091183 + BOP1*0.0940779

+ POLR2E*0.18787475 + GPX4* 0.1444125

Based on median values, patients were divided into high-

and low-risk groups. Figure 4A showed that the high-NCPS

group in the training cohort had a worse prognosis (p = 0.015).

Figure 4B demonstrated that patients with high-NCPS had

worse outcomes than those with low-NCPS in the validation

cohort (p = 0.0078). ROC curves were generated for both the

training and validation cohorts to test the prognosis assessment

ability. As shown in Figure 4C, the area under the curve (AUC)

values were 0.722, 0.746, 0.741, and 0.763 at 1, 2, 3, and 5 years

in the TCGA cohort, respectively. In the validation cohort,

AUC values were 0.730, 0.653, 0.625 and 0.623 at 1, 2, 3 and

5 years, respectively (Figure 4D). In the GSE76427 cohort, the

results showed that the high-NCPS group had a worse

prognosis (p = 0.0037), and AUC values were 0.682, 0.696,

and 0.778 at 2, 3 and 5 years, respectively (Supplementary

Material S6).

Based on these results, the NCPS-related prognostic model

was found to be accurate in predicting the outcomes of patients in

all three cohorts. Furthermore, PCA was performed on the eight

genes included in all three cohorts, and the results were similar.

The results showed that the model performed well in classifying

HCC patients (Figures 4E,F).

The nomogram could be more reliable in
predicting patient outcomes than other
indicators

Combining clinical information and NCPS scores, we

constructed a nomogram that allows us to assess patients’

prognoses. In Figure 5A, the estimated mortality rates for

patients with the high-NCPS score “TCGA-G3-A7M9” were

0.626, 0.92, and 0.984 at 1, 3, and 5 years based on gender, age,

T-stage, and total stage (Table 2). Based on the low-NCPS

score, the estimated mortality rates for patients with “TCGA-

DD-AADS” were 0.0389, 0.102, and 0.153 at 1, 3, and 5 years

based on sex, age, T-stage, and total stage (Figure 5B). In

Supplementary Material S7, NCPS scores and clinical

characteristics of 363 patients from the TCGA-HCC dataset

are presented. Accordingly, a clinical decision could be

based on assessing a patient’s risk and guiding their

subsequent treatment. Furthermore, the accuracy of the

nomogram was assessed through ROC analysis, which

showed AUCs of 0.75, 0.67, and 0.68 for 1, 3, and 5 years,

respectively (Figure 5C). In addition, we assessed the utility of

the model to support clinical decision-making by using

decision curve analysis (DCA) and reported the net clinical

benefit of the model. The results showed that the nomogram is

better than other clinical indicators, indicating that the

nomogram is effective in predicting the patient’s prognosis

(Figure 5D).

Survival analysis and cellular localization
of the eight hub genes

Survival analysis was performed for each of the eight hub

genes. Compared with patients with low expression,

those with high levels of RAD219 (p = 0.0078), RIPK2 (p =

0.005), BOP1 (p = 0.0038), POLR2E (p = 0.02), and MAP2K2

(p = 0.017) had significantly poorer outcomes (Figure 6A). To

investigate the expression of the eight hub genes in

various cell types, we conducted a single-cell sequencing

analysis. As shown in Figures 6B–J, RAD21, BOP1,

POLR2E, and PRKDC were mainly expressed in tumor

cells, RIPK2 was mainly expressed in monocytes,

MAP2K2 was mainly expressed in tumor cells and

macrophages, NBN was mainly expressed in macrophages

and monocytes, and GPX4 was mainly expressed in tumor

cells and T cells.

TABLE 1 Eight genes were identified by lasso regression to construct a prognostic model.

ID Coef Hazard_ratio Low_CI High_CI p_value

RAD21 0.07523793 1.61760529 1.18401058 2.20998607 0.00252028

NBN 0.02974632 1.69458991 1.18308239 2.42724849 0.00401446

PRKDC 0.2080255 1.68776122 1.27783985 2.22918228 0.00022688

MAP2K2 0.13063826 1.83095476 1.27010213 2.6394691 0.00119002

RIPK2 0.05091183 1.61290563 1.22724908 2.11975272 0.00060646

BOP1 0.0940779 1.48888676 1.1924913 1.85895175 0.00044089

POLR2E 0.18787475 2.33187249 1.40355261 3.87418988 0.00108012

GPX4 0.1444125 1.69395714 1.12709302 2.54592189 0.01122826
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The NCPS scores are positively correlated
with the levels of immune cell infiltration
and the expression of immune checkpoint
genes

As shown in the above analysis, patient outcomes varied

significantly within the NCPS subgroups. To explore the reasons

for this and inform immunotherapy, comparisons of the levels of

immune cell infiltration between the various groups were

conducted.

As shown in Figure 7A, six different immune infiltration

algorithms have been used to estimate the relationship

between necroptosis and immune cells. Specifically, the

three algorithms of MCP counter, Quanti-seq, and TIMER

clearly demonstrated that there were more immune cell

infiltrations in the high-NCPS group, including

macrophages, NK cells, T cells, monocytes, B cells, and

dendritic cells. We then investigated the expression of

genes associated with immune checkpoints. Figure 7B

demonstrated that many immune checkpoint genes, such as

PDCD1 and CTLA4, were more highly expressed in the high

NCPS group. High NCPS patients were likely to have a higher

degree of immune infiltration. However, patients with high-

NCPS may suffer from low response states due to high levels of

immune checkpoint genes, and immune checkpoint inhibitors

may be of greater benefit to patients with such conditions. In

FIGURE 4
Validation of prognostic model. (A) Survival analysis of the training set showed significantly poorer outcomes for NCPS high group (p = 0.015).
(B) Survival analysis results in the validation set were similar to those in the training set (p=0.0078). (C) ROC curve of the training set. (D) ROC curve of
the validation set. (E,F) 3D-PCA analysis in the training set and validation set.
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addition, we examined the immune infiltration results

obtained by different algorithms. The QuantTIseq

algorithm showed that patients with high-NCPS levels had

more macrophages, B cells, and T cells (Figure 7C).

A high-NCPS score is associated with a
greater incidence of gene mutations

According to the NCPS scores in the high- and low-group,

20 of the top mutated genes were identified. As shown in Figures

8A,B, the incidence of mutations in the 20 most frequently

mutated genes was 89.53% (High NCPS) and 82.76 % (Low

NCPS) for the two groups. In the high-NCPS group, the

highest mutation rates were PT53 (40%), CTNNB1 (30%), and

TTN (29%). In the lowNCPS group, TTN (25%), CTNNB1 (24%),

and PT53 (21%) were the mutations with the highest rates. A

higher incidence of mutations was observed in the high-NCPS

group as compared to the low-NCPS group. Mutations were

analyzed for eight hub genes (Supplementary Material S8). The

highest Variant Classification shown in Figure 8C was Missense

Mutation. Single nucleotide polymorphism (SNP) was the highest

Variant Type (Figure 8D). Figure 8E indicated that an average of

100 genes were mutated in each sample. Figure 8F showed that the

top three base mutation types of single nucleotide variants (SNVs)

were C>T, C>A, and T>C. In addition, we analyzed the correlation
between pairs of mutated genes. Figure 8G showed a strong co-

relation between FLG and OBSCN (p < 0.0001, OR = 8.803),

FAT3 and DNAH7 (p = 0.00064, OR = 6.925). There was a strong

mutually exclusive relationship between CTNNB1 and TP53 (p =

FIGURE 5
Construction of the nomogram. (A) High-NCPS patient “TCGA-G3-A7M9”: Mortality rates were estimated to be 0.626, 0.92, and 0.984 at 1, 3,
and 5 years, respectively. (B) Low-NCPS patient “TCGA-DD-AADS”: Mortality rates in 1, 3, and 5 years were estimated to be 0.0389, 0.102, and 0.153,
respectively. (C) The ROC curve for the nomogram. (D) DCA analysis showed that the nomogram was more effective than other clinical indicators.

TABLE 2 Comparison of clinical data from patients with high- and
low-NCPS in the TCGA-HCC dataset.

Patient ID TCGA-G3-A7M9 TCGA-DD-AADS

NCPS score 4.501 2.920

Gender Male male

Status Dead Alive

Age (year) 70.104 63.636

M_stage MX M0

N_stage NX N0

Stage Stage IIIB Stage I

T_stage T3b T1

Survival time (year) 0.153 1.299

1-year mortality rates CI: 0.626 (0.432, 0.82) CI: 0.0389 (0.0234, 0.0646)

3-year mortality rates CI: 0.93 (0.782, 0.99) CI: 0.102 (0.0617, 0.165)

5-year mortality rates CI: 0.984 (0.906, 0.999) CI: 0.153 (0.094, 0.243)
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FIGURE 6
Survival analysis and cellular localization of the eight hub genes. (A) The survival analysis of eight hub genes in the TCGA cohort. (B–J) The
expression of eight hub genes in different types of cells.
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0.00811, OR = 0.459), AXIN1 and CTNNB1 (p = 0.00733, OR =

0.109) (Supplementary Material S9).

Drug sensitivity of HCC and hub gene
protein expression are positively
correlated with NCPS scores

Based on the “pRRophetic” package, we assessed the

sensitivity of different NCPS subgroups to drugs commonly

used as a treatment for HCC. The high-risk group showed

higher sensitivity to cisplatin, docetaxel, paclitaxel, sunitinib,

tipifarnib, bexarotene, bicalutamide, bortezomib, and

bleomycin, while the low-risk group showed higher sensitivity

to metformin, camptothecin, temsirolimus (Figure 9A). The

immunohistochemical analysis of the HPA database showed

that protein products with high NCPS-related genes were

expressed at higher levels in HCC samples compared to

normal tissues (Figure 9B).

Pathway enrichment and localization in
single-cell sequencing data

Pathway enrichment analysis of single-cell data revealed that

HALLMARK OXIDATIVE PHOSPHORYLATION was

FIGURE 7
Immune infiltration analysis of TCGA cohort. (A) Heat map of immune cell infiltration in high and low NCPS groups with six immune infiltration
algorithms. (B) Expression of immune checkpoint genes in high- and low-NCPS groups. (C) Results of the quanTIseq algorithm.
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upregulated in Malignant cells but downregulated in

T cells, TECs, and B cells. HALLMARK ALLOGRAFT

REJECTION was downregulated in Malignant cells,

upregulated in T cells, downregulated in CAFs, and

upregulated in TAMS. HALLMARK-TNFA -SIGNALING-

VIA-NFKB was downregulated in Malignant cells and

upregulated in TAMs. HALLMARK-TGF-BETA-

SIGNALING was upregulated in TECs (Figure 10). In

addition, we explored the expression of these signaling

pathways in different cell types by single-cell sequencing

analysis (Figures 11A–D) and profiled the pathways

associated with disease (Figure 11E).

FIGURE 8
Mutation landscape of TCGA cohort. (A,B) Mutated genes in high- and low-NCPS groups. (C,D) Classification and types of variants. (E)
Mutations in each sample. (F) The base mutation types of SNVs. (G) The correlation between pairs of mutated genes.
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Discussion

With increasing incidence, HCC has become the second

leading cause of cancer-related deaths (Bray et al., 2018). Due

to lifestyle changes, HCC has become the fastest growing cancer

in developed countries, but the response to antitumor therapy is

relatively poor. Approximately 50% of HCC patients receive

systemic therapy, traditionally with first-line sorafenib or

lenvatinib. In the past 5 years, immune checkpoint inhibitors

have completely altered the treatment regimen for HCC and

improved the prognosis (Llovet et al., 2022). The immune

microenvironment plays a significant role in the progression

of HCC, and HCC with high- and low-necroptosis respond

differently to immune checkpoint inhibitor therapy. However,

at present, there are no validated biomarkers to aid in clinical

decision-making in this regard.

Immune checkpoint inhibitors are used because immune

cells can receive inhibitory signals by activating immune

checkpoint molecules. By activating immune checkpoint

molecules to receive inhibitory signals, their activity and

FIGURE 9
Drug sensitivity and Immunohistochemical analysis. (A) Drug sensitivity analysis in. high- and low-NCPS groups. (B) Immunohistochemical
analysis of eight hub genes.
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proliferation are blocked (Huang and Chang, 2019). These

immune checkpoints can be used by cancer cells, leading to

impaired immune surveillance (Liu and Qin, 2019). PD-1, PD-

L1, and cytotoxic T cell antigen 4 (CTLA-4) are the main

immune checkpoints that have been targeted by monoclonal

antibodies.

Utilizing comprehensive data analysis on HCC datasets from

TCGA, ICGC, and GEO databases, we built a prognostic profile

for NCPS-related genes associated with HCC. We calculated risk

scores to identify high- and low-risk groups of patients with

HCC. All three cohorts both showed that the high-risk group did

significantly worse than the low-risk group in HCC. Xie et al.

(2022) found similar results in triple-negative breast cancer,

indicating that the higher the NCPS score, the larger the

tumor and the worse the prognosis. Furthermore, the ROC

curve revealed that this feature might be accurate in

predicting the prognosis of patients with HCC at 1, 3, and

5 years. Based on the immune microenvironment analysis,

immunotherapy was more likely to be effective in necroptosis

with higher expression levels. The low response to

immunotherapy of HCC could be attributed in part to the

low mutational load and the generation of new immune

checkpoints (Ricciuti et al., 2019; Scheiner et al., 2022).

Therefore, it becomes fascinating to explore the immune

FIGURE 10
Pathway enrichment analysis of single-cell data.
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microenvironment of HCC. Necroptosis may play an important

role in TME by the release of inflammatory molecules during the

induction of apoptosis. However, it remains unclear whether

necroptosis plays a role in HCC.

Necroptosis is a necrotic programmed cell death that is

powerfully immunogenic and participates in a complex

interplay of autophagy and apoptosis (Gong et al., 2017).

There is growing evidence that necroptosis plays an important

role in prognosis, disease progression and tumor metastasis, and

immune surveillance in cancer patients (Gong et al., 2019).

Targeting necroptosis through immune checkpoint is also

emerging as a new approach in tumor therapy.

The role of necroptosis in cancer is complex. It is still unclear

exactly what role necroptosis plays in cancer. In general, high

expression of necroptosis elicits strong adaptive immune

responses that can inhibit tumor progression (Yatim et al.,

2015). However, these recruited strong immune responses

may also promote tumor progression. The inflammatory

response may promote tumorigenesis and metastasis, as well

as may generate an immunosuppressive tumor

microenvironment (Seifert and Miller, 2017). Therefore, it is

essential to investigate the molecular mechanisms and

physiopathological aspects of necroptosis, as well as its

interaction with immunity. In addition, it is imperative to

FIGURE 11
Pathway enrichment analysis. (A–D) Localization of different pathways in the single-cell dataset. (E) The number of pathways enriched in the
TCGA cohort.
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discover the correlation between specific necroptosis markers

and the prognosis of HCC. This is to unravel the confusion of

necroptosis correlation in HCC and further develop targeted

antitumor therapeutic drugs. In this study, combining single-cell

analysis and second-generation sequence analysis, we were able

to identify a significant difference between NCPS groups in terms

of immune cell infiltration in HCC. Significant differences were

observed between the high- and low-NCPS groups. In addition,

the study findings indicated that a high level of NCPS group

corresponds to a high level of immune checkpoint gene

expression. Therefore, patients with HCC who have a high

NCPS are more likely to respond to immunotherapy.

The datasets GSE125449 and GSE151530 have been initially

explored to reveal changes in the immune microenvironment of

HCC. Among the published results, GSE125449 reveals different

degrees of heterogeneity of malignant cells within and between

tumors and different TME landscapes by single-cell sequencing

techniques. GSE151530 provides insights into the collective

behavior of HCC cell communities by single-cell sequencing

and potential tumor evolution in response to therapy drivers. We

first classified HCC cells into two groups based on their NCPS

scores by analyzing single cells of GSE125449 and GSE151530.

This provided a reference for us to study the heterogeneity of

necroptosis in HCC. Based on these two cell populations, we

calculated the differentially expressed genes, which then served as

a basis for constructing a prognostic model. For the validation of

the prognostic model, survival data from the ICGC dataset was

analyzed.

Our study has some limitations. First, a comprehensive

analysis of HCC tissues is needed to fully validate how the

eight NCPS-related genes are involved in the development of

HCC. This was not examined in the current study. Second,

further validation with larger patient datasets is needed better

to estimate the accuracy of the model’s predictions. Finally,

further experimental evidence is needed to fully understand

the role and mechanisms of eight NCPS-related genes in HCC.

Conclusion

Through the analysis of single-cell and bulk multi-omics

sequencing data, we constructed a prognostic model related to

necroptosis and explored the relationship between high- and

low-necroptosis groups and immune cell infiltration in HCC.

This provides a new reference for further understanding the role

of necroptosis in HCC. This may be useful in developing new

therapeutic targets for the treatment of HCC. However, further

molecular experiments are required to confirm the present findings.
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