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The B‑Score is a novel metric 
for measuring the true performance 
of blood pressure estimation 
models
Tomas L. Bothe*, Andreas Patzak & Niklas Pilz

We aimed to develop and test a novel metric for the relative performance of blood pressure estimation 
systems (B-Score). The B-Score sets absolute blood pressure estimation model performance in 
contrast to the dataset the model is tested upon. We calculate the B-Score based on inter- and 
intrapersonal variabilities within the dataset. To test the B-Score for reliable results and desired 
properties, we designed generic datasets with differing inter- and intrapersonal blood pressure 
variability. We then tested the B-Score’s real-world functionality with a small, published dataset 
and the largest available blood pressure dataset (MIMIC IV). The B-Score demonstrated reliable and 
desired properties. The real-world test provided allowed the direct comparison of different datasets 
and revealed insights hidden from absolute performance measures. The B-Score is a functional, novel, 
and easy to interpret measure of relative blood pressure estimation system performance. It is easily 
calculated for any dataset and enables the direct comparison of various systems tested on different 
datasets. We created a metric for direct blood pressure estimation system performance. The B-Score 
allows researchers to detect promising trends quickly and reliably in the scientific literature. It further 
allows researchers and engineers to quickly assess and compare performances of various systems and 
algorithms, even when tested on different datasets.

High arterial blood pressure (BP) levels lead to higher numbers of cardiovascular events and all-cause mortality1,2. 
Cuff-based BP measurement devices have dominated the field of arterial BP determination for over one century. 
There has been substantial recent interest in alternative, cuff-less and continuous BP measurement devices1–8. 
Cuff-less BP measurement has the advantage of being possibly less disturbing (night BP) and providing beat-
to-beat BP data. More data points benefit secondary parameter calculation, such as the BP variability9–14. The 
growing interest manifests itself in a multitude of research papers, proposing various options for cuff-less BP 
estimation15–20.

Model performance has been assessed in a multitude of ways. Unfortunately, the performance of proposed BP 
estimation models is only evaluated by absolute metrics. Used absolute metrics include the mean value deviation, 
standard deviation, mean absolute error, root mean squared error (RMSE), and many more. Regrettably, these 
absolute values depend not only on the BP model’s sophistication but also on what dataset it is used on. Datasets 
can be very different: Compare 24 h ambulatory BP measurements of clinical patients with measurements taken 
at rest in a laboratory setting amongst the young and healthy. Clinical patients are a heterogeneous group and 
therefore BP values differ more between individual patients than between young and healthy subjects (inter-
personal variability). Further, 24 h measurements are less stable than measurements taken at rest within single 
patients (intrapersonal variability). This results in a critical problem: A given absolute value (e.g., mean value 
deviation) does not provide information about the true model performance. In reverse, model performances 
cannot be compared when not tested on the same dataset. Absolute metrics will show better results for “easier” 
(lower variability) datasets. Two options remain: Testing every model on the same dataset or creating a metric 
able to depict dataset-adjusted performance. Option one seems to be nearly impossible due to various reasons 
(e.g., proposed models use very different input data)7,21–23. In consequence, a new metric of dataset-adjusted 
(relative) model performance is needed. Such metric would allow easy and reliable comparison between models 
even when tested on different datasets.
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After realizing this lack of comparability between different BP estimation model performances, we decided 
to develop a metric of relative model performance, the Base-Score (B-Score). The B-Score is designed to be 
intuitively understandable. It allows direct and easy evaluation of model performance, as higher B-Scores equal 
better dataset-adjusted (relative) model performance.

We tested the B-Score on generic datasets and further provide a real-world application example of comparing 
two very different datasets in this work. We used a published model tested on a small dataset and set it in contrast 
to the MIMIC IV clinical database, the to our knowledge largest dataset available24,25.

Methods
The B-Score is calculated by comparing a proposed model’s absolute performance to dataset specific base-perfor-
mances (B1, B2). These base performances are: The B1-performance, measuring the interpersonal variability, the 
B2-performance, measuring the intrapersonal variability, and the M-performance, measuring the performance 
of a minimalistic BP estimation model (M). Setting the absolute performance of the researcher’s model (T) into 
contrast with the three base performances (B1, B2 and M) results in a novel measure of relative performance. 
The B-Score for systolic and diastolic estimations are calculated separately, allowing a differentiated analysis of 
systolic and diastolic performance.

B‑Score calculation.  Root mean squared error (RMSE).  The B-Score to evaluates relative model perfor-
mance based on absolute performance measures. The metric of absolute model performance on which the B-
Score is based on is the root mean squared error (RMSE). We chose the RMSE for a specific reason: It is a meas-
ure of average differences between a researcher’s values and a reference method but also takes the reliability of 
those differences into account. This becomes evident when comparing the RMSE to another measure of absolute 
performance (e.g., the mean absolute error). Being off 4 mmHg in every measurement leads to a mean absolute 
error of 4.0. If every second measurement is perfectly accurate but every other measurement is off by 8 mmHg 
the mean absolute error stays 4.0. In scenario one the RMSE equates to 4.0 as well but changes to 5.66 in the 
second case. The RMSE provides additional information about the measurement consistency which is important 
for any BP estimation. Further, it also provides information about the absolute error, combining the advantages 
of pure absolute measures (e.g., mean absolute error) and pure measures of proportionality (e.g., correlation 
coefficient)

n = number of samples.

Test‑RMSE.  The Test-RMSE (T-RMSE) is the measure of absolute performance which we designed the B-Score 
to base upon. It is the RMSE between the BP estimations a researcher’s model derived values and the reference 
values provided in the study.

n = number of samples.

B1‑RSME.  The B1-RMSE is the measure of interpersonal variability in the researcher’s dataset. The B1-RMSE 
is calculated as the RMSE between the mean of all reference BP values and every single reference value. This is 
closely connected to the dataset’s standard deviation but not entirely equal. The reason for choosing the RMSE 
are explained above.

n = number of samples.

B2‑RMSE.  The B2-RMSE is the measure of intrapersonal variability in the researcher dataset. The first meas-
urement for every subject is defined as their personal “calibration value”. The B2-RMSE is calculated as the RMSE 
between the calibration value (subject specific) and every single reference value. This equates to estimating a 
subjects first measurement result for every upcoming measurement.

n = number of samples.
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M‑RMSE.  The M-RMSE is the measure of how easy it is to derive a well-performing BP estimation model for 
the researcher’s dataset. To assess this, we created a minimalistic Deep Learning architecture. This architecture 
does not change but must be retrained for every given dataset (as well as for systolic and diastolic values). We 
designed the architecture to ensure reliable results and therefore applicability for almost all datasets.

This minimalistic tool intakes parameters present in every BP dataset: The subjects age, sex, the time of 
measurement, the heart rate, a calibration BP (see B2-RMSE), the time of calibration, the calibration heart rate, 
and the mean of all reference values (see B1-RMSE). The system then estimates BP values (Fig. 1).

The M-RMSE is calculated as the RMSE between the system’s estimations and every single reference value. 
Detailed insight into the Deep Learning architecture can be found in the Supplementary Appendix and the 
provided code (Supplementary Appendix 1/2).

n = number of samples.
As the M-RMSE is only based on a single BP calibration and subsequent monitoring of heart rate and time, 

it would be easily implemented using a singular cuff measurement and subsequent “smartwatch” monitoring. 
The M-RMSE is therefore a reasonable minimal standard for any BP estimation model to beat.

B‑Score.  To retrieve a measure of relative performance the B-Score sets the T-RMSE (absolute performance of 
researcher’s model) in relation to the three presented, dataset-specific RMSE values (B1, B2, M). The B-Score 
is designed to increase with increasing model performance. To achieve this, it rises the more the tested model 
(T-RMSE) outperforms the base performances (B1-, B2- and M-RMSE):

We defined the B-Score for all instances in which the T-RMSE is smaller than the M-RMSE. If this is not the 
case the proposed model performs worse than the minimalistic Deep Learning architecture and possibly worse 
than B1 or B2. We recommend to report “B-Score < 0.00” for every case that the T-RMSE is greater than any base 
performance (B1-, B2-, M-RMSE). The B-Score should be reported rounded to two decimal places.

A minimum of three patients with at least three measurements per patient are needed for B-Score calculation. 
We do not recommend calculating the B-Score for datasets containing less than 100 distinct BP measurements 
to ensure reliable results.

Reliable B‑Score results.  In line with the best practices of Machine Learning the M-RMSE is calculated via 
k-fold evaluation. To ensure reliable results, the calculation is repeated, resampled, and averaged, depending on 
the datasets size. In some cases, the M-RMSE might be larger than other base performances because of measures 
taken to ensure generalized model behaviour (e.g., Dropout, L2-regularization). Specific information is available 
in the provided code (Supplementary Appendix 2).

Testing the B‑Score for desired properties.  We tested the B-Score to confirm reliable results and 
desired properties of identifying superior BP estimation systems on generic datasets.
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Figure 1.   Minimalistic Deep Learning architecture used for M-RMSE calculation. It is a five-layer feed-forward 
Neural Network with Dropout and L2-Regression for ensuring reliable results. The system must be retrained for 
every dataset and provides BP estimations which are needed to M-RMSE calculation. For further information 
please see Supplementary Appendix 1/2.
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Dataset generation.  We created three datasets (3 × systolic + diastolic) to test the B-Score. The datasets 
display basic characteristics of BP profiles. Short-time and long-time fluctuation rhythms primarily influence 
BP fluctuations, which themselves are based on the Traube-Hering-Mayer- and circadian rhythms26–28. Based 
on these rhythms we modelled two (2 × systolic + diastolic) 24-h BP datasets. The datasets differ in inter- and 
intrapersonal variability and are therefore named “Normal 24-h” and “Hard 24-h” datasets. We further mod-
elled one dataset (systolic + diastolic) to be a 30-min dataset, replicating a laboratory measurement setting. It is 
named the “Lab” dataset. Additional information about the dataset generation is presented in the Supplementary 
Appendix 3.

For every dataset, 10,000 subjects with 50 measurements each were simulated, resulting in datasets with 
500,000 single measurement entries (Fig. 2).

We set a fictional T-RMSE value of 4 mmHg and calculated the B-Score accordingly for all six datasets. The 
B-Score can be considered functional if calculation is trouble-free and the retrieved B-Scores clearly rank the 
datasets from lowest (easiest, “Lab") to highest (hardest, “24-h Hard”).

B‑Score under increasing standard deviation.  We further simulated smaller (50,000 BP values) generic data-
sets with increasing BP standard deviation. Followingly, we calculated the base performances (B1-, B2- and 
M-RMSE) and B-Scores for all datasets and plotted the results against the BP standard deviation.

Published small dataset.  We used a small dataset published by Patzak et al. in 2015 to test the B-Score at 
the lower boundary of dataset size. The dataset consists of 12 patients with a total of 107 (each systolic and dias-
tolic) measurements. The authors validated a pulse-wave-velocity-based BP estimation device against intraarte-
rial measurements taken during dobutamine induced BP increases20. We calculated the systolic and diastolic 
B-Score for the proposed device and dataset.

MIMIC IV dataset.  The MIMIC IV clinical dataset is the latest iteration of the to our knowledge largest 
available clinical dataset providing BP data. Data are descended from mainly ICU patients24,25. We used the 
MIMIC IV dataset to stress test the B-Score for applicability for the largest available dataset.

Data cleaning.  We pre-processed the dataset to only hold data point suitable for the B-Score. Specifically, we 
kept data points which provided BP information as well as information about the additional input parameters 
(time of measurement, heart rate, sex, age) the M-RMSE requires. We kept BP data points within 3 standard 
deviations of the mean (= 99.8%) to mitigate the effect of stray-bullet measurements. We reduced the MIMIC IV 
dataset from nearly 330 million data points to a systolic and diastolic dataset (> 2.3 million entries each).

B‑Score interpretation.  We calculated the B1-, B2- and M-RMSE for both the systolic and diastolic MIMIC 
IV dataset. We were then able to interpret the results from the dobutamine-dataset in respect to the MIMIC IV 
dataset. More specifically, we were able to calculate a T-RMSE value of equal B-Scores. Reaching this T-RMSE 
value (on the MIMIC IV dataset) coequals the system performance proposed by Patzak et al.20. The calculation is 
easily obtained by transposing the B-Score equation. It is available in the Supplementary Appendix and directly 
computed in the provided code (Supplementary Appendix 2/4).

Figure 2.   Plot of 30,000 samples from the systolic “24-h Normal” dataset. The normally distributed circadian 
rhythm is displayed.
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Time complexity analysis.  We split the MIMIC IV dataset into smaller subsets to analyse the time needed for 
B-Score calculations depending on the dataset size. The calculation was performed on a single core of an Intel 
i9 12900K CPU.

Programming packages and code.  Programming packages.  We wrote our programs in Python 3 (3.7.10) 
and primarily used the NumPy (1.19.5) and pandas (1.1.5) libraries for dataset cleaning and processing29,30. For 
model creation and evaluation, we relied on the Tensorflow2 (2.4.1) and sklearn (0.22.2) libraries31,32. We used 
the Matplotlib (3.2.2) library and NN-SVG for visualization33,34.

Code.  The code for B-Score calculation is provided as an Supplementary Appendix to this article (Supplemen-
tary Appendix 2).

Results
B‑Score test with generic datasets.  The created development datasets showed expected normal distri-
butions, with highest variability in the “24-h Hard” and lowest in the “Lab” dataset (Supplementary Appendix 5).

We calculated the base performances (B1-, B2-, M-RMSE) values for each of the six datasets. We then calcu-
lated the B-Scores for all datasets with an assumed T-RMSE of 4.0 mmHg. Large differences between the T-RMSE 
and the base performances resulted in increased B-Scores. The B-Score scored highest for the “24-h Hard” dataset 
(as expected with constant T-RMSE; Fig. 3).

Figure 3.   RMSE values (upper panel) and calculated B-Scores (lower panel) for all systolic (left) and diastolic 
(right) generated datasets. As expected, the “24-h Hard” dataset generated the highest B-Score for a fictional 
T-RMSE. The RMSE values indicate differences in dataset complexity (“Lab” easy to “24-h Hard” hard) which 
are reflected in the associated B-Scores.
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With the base-performance values calculated, we were able to calculate the B-Scores for each development 
dataset. Visual intuition about model performance based on base-performance values correlates with the cal-
culated B-Scores (Fig. 3).

B‑Score under increasing standard deviation.  Simulating generic datasets with increasing BP stand-
ard deviation revealed a clear connection between increasing base performance values and increasing standard 
deviation. Subsequently, B-Scores rose with increasing BP standard deviation under constant T-RMSE values. 
The B-Score discriminated well between different tested T-RMSE values (Fig. 4).

Published small dataset (dobutamine).  We calculated the B-Score for the “dobutamine”-dataset. For 
diastolic values, the proposed device’s T-RMSE was larger than the M-RMSE. According to the B-Score’s defini-
tion this results in a B-Score of < 0.00. The systolic B-Score was 0.94 (Fig. 5).

MIMIC IV dataset.  We calculated the base performances (B1-, B2-, M-RMSE) for the systolic and diastolic 
MIMIC IV datasets (Fig. 6).

We used these base performance values to calculate the systolic and diastolic T-RMSE value. A new BP 
estimation would need to reach a systolic T-RMSE of 6.98 on the MIMIC IV dataset to perform coequally to 
the system proposed in the publication of the “dobutamine” dataset20. Smaller T-RMSE values would indicate a 
novel system outperforming the proposed device (Fig. 7).

We did not calculate a diastolic T-RMSE, as any T-RMSE smaller than the MIMIC IV B1-, B2- and M-RMSE 
values would be sufficient. Therefore, a T-RMSE smaller than the diastolic MIMIC IV M-RMSE (10.18, Fig. 5) 
outperforms the device tested on the “dobutamine” dataset.

Time complexity analysis.  The time complexity analysis revealed a U-shaped dependency between data-
set size and time needed for B-Score calculation. Calculation times were between 3 min for medium sized data-

Figure 4.   Base performances and B-Scores plotted against increasing standard deviations of simulated datasets. 
The upper panel shows rising base performance values (B1-, B2- and M-RMSE) for increasing standard 
deviation. Accordingly, the lower panel shows increasing B-Scores for constant T-RMSE values and increasing 
standard deviation. The B-Score discriminates between three tested T-RMSE values.
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sets (50,000 BP values) and 50 min for very small (250 BP values) and extremely large (2.3 million BP samples) 
(Fig. 8).

On multicore processors, systolic and diastolic B-Scores can be calculated simultaneously without notice-
able time delay. Noticeable, GPU acceleration does negatively affect calculation times. The standard deviation 
of dataset reshuffles (which are averaged for M-RMSE calculation) was below 3 mmHg for all subsamples and 
below 1 mmHg for all samples with more than 1250 samples.

Discussion
The B-Score is a tool for comparing the relative performances of BP estimation systems. It sets measures of 
absolute model performance (regularly reported) in contrast to dataset specific parameters (base performances). 
It is based on the RMSE, combining insights about absolute error (cf. mean-absolute error) and measurement 
consistency (cf. correlation coefficient). The B-Score allows the comparison of performances between various 
systems tested on different datasets as higher B-Scores equal better relative performance.

Figure 5.   RMSE values calculated for the “dobutamine” dataset. The resulting systolic B-Score was 0.943. The 
diastolic B-Score is < 0.00 as the T-RMSE is not smaller than the M-RMSE. Diverging systolic and diastolic 
relative performances are apparent. The systolic RMSE values were B1 = 32.25, B2 = 28.71, M = 26.83, T = 9.64. 
The diastolic RMSE values were B1 = 8.98, B2 = 7.86, M = 7.95, T = 10.35.

Figure 6.   Base performances (B1-, B2-, M-RMSE) calculated for the systolic and diastolic MIMIC IV dataset. 
Systolic data variance is higher than diastolic. The M-RMSE shows a predictive benefit over the B1- and 
B2-RMSE for both systolic and diastolic values. The systolic RMSE values were B1 = 22.96, B2 = 21.97, M = 19.07. 
The diastolic RMSE values were B1 = 12.91, B2 = 11.74, M = 10.18.
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We ensured reliable B-Score results and have shown its applicability by using generic datasets with differing 
inter- and intrapersonal BP variability. Further, the B-Score discriminated correctly between “easy” (“Lab”) and 
“hard” (“24 h Hard”) datasets, for a set fictional T-RMSE (= same absolute performance for all datasets). Further, 
the B-Score showed expected results for generic datasets with increasing BP standard deviation. It discriminated 
between different tested T-RMSE values for increasing base performance values.

To test the B-Score in real-world data, we used a small, published dataset with a proposed device for BP 
estimation (“dobutamine” dataset) and the to our knowledge largest available BP dataset (“MIMIC IV”). We 
calculated the B-Score for the “dobutamine” dataset and retrieved greatly differing results for systolic and diastolic 
performance. The B-Score revealed a markedly better systolic performance even though the absolute performance 
measures were largely the same between systolic and diastolic values. This illustrated the important additional 
information provided by a measure of relative performance (B-Score).

Further, we calculated the base performances (B1-, B2-, M-RMSE) for the MIMIC IV dataset. These param-
eters allowed us to calculate the T-RMSE value a new system would need to reach on the MIMIC IV dataset to 
provide coequal performance to the device tested by Patzak et al. (“dobutamine” dataset). The inter- and intrap-
ersonal BP variability in the MIMIC IV dataset was smaller than in the “dobutamine” dataset. Consequently, the 
needed T-RMSE to reach coequal relative performance was lower than the one derived from the “dobutamine” 
dataset.

This analysis revealed important insights into the described datasets but more importantly proved that the 
B-Score is easily calculatable even in extreme (comparing very small vs. very large datasets) real-world use cases. 
This is further underlined by the quick calculation times which allows to derive the B-Score within one hour on 

Figure 7.   B-Scores calculated for various systolic MIMIC IV T-RMSE values (black line). The red dot indicates 
the T-RMSE which reaches a coequal performance to the device proposed by Patzak et al. The red dashed lines 
indicate the B-Score (0.96) and T-RMSE (6.98) of coequality.

Figure 8.   Time complexity analysis for B-Score calculation derived from MIMIC IV subsamples increasing in 
size. The x-axis is scaled logarithmically to allow visual interpretation.
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using a modern CPU. This is true for virtually all dataset sizes, with minimum calculation times for medium-
sized datasets. The U-shaped time complexity curve is product of increasing calculation time per training episode 
for larger datasets and simultaneous reduction of repeated and reshuffled calculations due to increased trust in 
result reliability. We consider the resulting calculation times reasonable, especially noting that the calculation 
time needed only applies once per dataset, as the base performances can be used to recalculate the B-Score for 
any new model using the same dataset within seconds.

Additionally, time complexity analysis revealed narrow standard deviations between reshuffles, even for 
small datasets. This supports the assumption the B-Score calculation generates reliable and repeatable results.

We designed the B-Score to be intuitively understandable (higher B-Scores equal better relative performance) 
and easily calculable. Any researcher using a modern machine can calculate the B-Score for their data within 1 
workday using the provided code (Supplementary Appendix 2).

As the B-Score is partly determined by inter- and intrapersonal BP variability within a given dataset, research-
ers aiming for high B-Scores are incentivized to develop their models for high variability datasets. This is impor-
tant, because systems which perform well on heterogenous data are more likely to generalize to real-world 
applicability.

We envision investigators in the field of BP estimation devices to calculate base performance (B1-, B2-, 
M-RMSE) and B-Score values for their respective datasets and proposed systems. This will allow intuitive com-
parability between the plethora of systems available and under development.

We did not create the B-Score to replace validation studies and standardized validation protocols. These serve 
an important role in guaranteeing methodological comparability, which cannot be displaced by the B-Score.

We anticipate the B-Score to be an important tool for systems and devices which have not yet reached the 
stage of full-on clinical validation. It empowers researchers and engineers to quickly assess their system’s relative 
performance on whichever dataset they have available. Researchers will be able to detect promising trends in 
the scientific literature more quickly and securely when B-Score are reported in the scientific literature during 
early stages of development. Further, the B-Score can become a tool for advanced, post-validation system testing. 
It allows to compare performances for distinct groups (e.g., pregnant women, children, etc.) or under special 
circumstances (e.g., sport) which are not covered by validation protocols.

Conclusion
The B-Score is a novel, functional measure of relative BP estimation performance. We proved its reliable results, 
ease of calculation even for large datasets and desired properties with generated datasets. Followingly, the B-Score 
revealed important insights in an extreme, real-world use case (comparing a very small vs. very large dataset).

The B-Score is easily interpreted and quickly calculated for any given dataset. We envision the B-Score to 
be used in pre-validation studies for system development and in advanced, post-validation analyses for special 
subgroups or measurement circumstances.

We hope that the B-Score will in the future become a useful and broadly applied tool for model performance 
comparison. It enables the quick and secure detection of promising trends in the scientific literature and allows 
scientists and engineers to quickly assess the performance of their systems.

Data availability
The “dobutamine” dataset is a re-analysis of already published data (Ref.20) and is available from the corre-
sponding author of this publication upon reasonable request. The MIMIC IV dataset is available following the 
instructions from reference 25. The Code mentioned in the article is openly available in a public repository (Sup-
plementary Appendix 2). For further information about data availability, please contact the corresponding author.
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