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X inactivation represents a complex multi-layer epigenetic mechanism that profoundly
modifies chromatin composition and structure of one X chromosome in females. The
heterochromatic inactive X chromosome adopts a unique 3D bipartite structure and a
location close to the nuclear periphery or the nucleolus. X-linked lncRNA loci and their
transcripts play important roles in the recruitment of proteins that catalyze chromatin
and DNA modifications for silencing, as well as in the control of chromatin condensation
and location of the inactive X chromosome. A subset of genes escapes X inactivation,
raising questions about mechanisms that preserve their expression despite being
embedded within heterochromatin. Escape gene expression differs between males and
females, which can lead to physiological sex differences. We review recent studies
that emphasize challenges in understanding the role of lncRNAs in the control of
epigenetic modifications, structural features and nuclear positioning of the inactive X
chromosome. Second, we highlight new findings about the distribution of genes that
escape X inactivation based on single cell studies, and discuss the roles of escape
genes in eliciting sex differences in health and disease.
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INTRODUCTION

Evolution of the mammalian sex chromosomes from a pair of autosomes resulted in the emergence
of distinct heteromorphic chromosomes that govern sex determination (Graves, 2016). The Y
chromosome contains few genes (∼70) and is present only in males, while the X chromosome
contains many genes (∼900–1500) and is present in two copies in females and one copy in males.
This contributes to gene dosage imbalance between X-linked and autosomal genes and between
the sexes (Disteche, 2016). To relieve these imbalances two mechanisms of dosage compensation
evolved: X upregulation of expressed genes in males and females, and X inactivation or silencing of
one X chromosome in females (Deng et al., 2014).

Here we focus on X chromosome inactivation (XCI), a mechanism that results in silencing of a
randomly chosen X chromosome in early female embryogenesis (Lyon, 1961). XCI is characterized
by a cascade of molecular events beginning shortly after embryo implantation, and is faithfully
maintained throughout somatic cells in an organism, providing a robust model to study epigenetic
and structural changes associated with gene silencing (Galupa and Heard, 2018). This complex
process starts with the cis-coating of the future inactive X chromosome (Xi) by the long-non-
coding RNA (lncRNA) Xist (Borsani et al., 1991; Brockdorff et al., 1991; Brown et al., 1991).
Layers of chromatin and DNA modifications catalyzed by proteins initially recruited by Xist
RNA are then put in place over several days during early development for stable transcriptional
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silencing of each gene on the Xi (Froberg et al., 2013;
Mira-Bontenbal and Gribnau, 2016). These modifications are
associated with profound changes in the 3D structure and
location of the Xi, both processes depending on X-linked
lncRNA loci. The Xi adopts a bipartite structure consisting of
two superdomains of chromatin condensation separated by the
lncRNA locus Dxz4, and the Xi visits the nucleolus, a process
facilitated by the lncRNA Firre (Zhang et al., 2007; Rao et al.,
2014; Deng et al., 2015; Minajigi et al., 2015; Yang et al., 2015;
Giorgetti et al., 2016; Fang et al., 2019).

Despite the multiple layers of gene repression that stabilize
XCI, a subset of developmentally critical genes remains expressed,
albeit at a lower level, from the Xi (Carrel and Willard, 2005;
Berletch et al., 2011). These escape genes adopt chromatin
signatures and structural features more akin to those found
in regions of active transcription (Balaton and Brown, 2016).
Such genes can have higher expression in females, leading
to sex differences in normal physiology and in susceptibility
to disease. Abnormal escape gene dosage contributes to a
milieu of deleterious phenotypes including infertility, intellectual
disability, immune diseases, and cancer (Disteche, 2016;
Balaton et al., 2018).

This review focuses first on mechanisms that govern X
chromosome structure and nuclear location in relation to XCI,
with a specific emphasis on the role of X-linked lncRNAs in these
processes. We next discuss mechanisms that allow a select subset
of genes to escape silencing in the context of the repressed Xi
environment and how single-cell RNA sequencing has been used
to identify novel escape genes. Lastly, we review new data on the
role of escape gene dosage in sex differences in health and disease.

LONG NON-CODING RNAS CONTROL
EPIGENETIC AND STRUCTURAL
FEATURES OF THE INACTIVE X
CHROMOSOME

The importance of lncRNAs in controlling nuclear structure and
gene expression has become increasingly clear (Engreitz et al.,
2016). Here we consider three X-linked lncRNAs, Xist, Dxz4, and
Firre, which have been implicated in various aspects of the onset
and maintenance of XCI.

Xist
Recent reviews have considered the role of Xist in great detail
(Mira-Bontenbal and Gribnau, 2016; Galupa and Heard, 2018).
Thus, we will focus our discussion on issues related to structural
changes on the Xi. One of those is a localized chromatin
conformation change at the X inactivation center (XIC), which is
essential for the correct initiation of XCI. The XIC harbors both
the Xist locus and its antisense transcription unit Tsix, together
with multiple other loci that regulate Xist (Froberg et al., 2013;
Galupa and Heard, 2018). The Xist and Tsix promoters lie in
separate but adjacent regions of local chromatin interactions
called topologically associated domains (TADs) (Nora et al.,
2012). Interestingly, swapping the Xist/Tsix transcriptional unit

and placing their promoters in each other’s TADs leads to a
switch in their expression dynamics, indicating the topological
partitioning of the XIC is critical for proper initiation of XCI
(van Bemmel et al., 2019).

Once XCI is initiated, chromosome-wide structural changes
give rise to the condensed Barr body coated by Xist RNA
(Figure 1). Imaging studies show the rapid formation of a
nuclear compartment devoid of transcriptional machinery and
euchromatic marks, in which X-linked genes, initially located
at the periphery of the Xist RNA cloud, adopt a more internal
position when silenced (Chaumeil et al., 2006; Clemson et al.,
2006). Subsequent chromatin conformation analyses by Hi-
C demonstrate that Xist is essential for the formation of
the unique Xi bipartite structure further discussed below (see
section “Dxz4”) (Minajigi et al., 2015; Giorgetti et al., 2016).
Most of the Xi shows attenuation of local TADs and of large
A/B compartments of active and inactive chromatin, normally
evident on autosomes and the active X chromosome (Lieberman-
Aiden et al., 2009; Dixon et al., 2012; Minajigi et al., 2015;
Giorgetti et al., 2016). Xist RNA pull-down studies have identified
two RNA-binding proteins implicated in liquid-to-solid phase
transition, FUS and hnRNPA2, suggesting the possibility that
phase separation facilitates heterochromatin formation and Xi
silencing (Calabrese et al., 2012; Patel et al., 2015; Ryan et al.,
2018). Indeed, most proteins within the Xist interactome are
predicted to be prone to phase separation. By high-resolution
RNA-FISH about one hundred Xist foci can be identified on the
Xi, these foci having a comparable shape, size, and morphology
to other phase-separated condensates such as paraspeckles and
stress granules (Cerase et al., 2019).

Xist RNA-mediated gene silencing is accomplished through
recruitment of proteins that establish epigenetic and structural
modifications on the Xi (Figure 1A; Chu et al., 2015; McHugh
et al., 2015; Minajigi et al., 2015; Moindrot et al., 2015; Monfort
et al., 2015). Originally, spreading of Xist RNA and its protein
complexes was thought to be linear, but new studies have revealed
complex interactions between epigenetic and genomic features,
such as genomic distance from the Xist locus, gene density, and
proximity to long interspersed nuclear elements (LINE) that
act as waystations to enhance Xist RNA coating throughout
the Xi 3D space (Sousa et al., 2019). Sequence analysis of Xist
RNA reveals that a significant proportion of the primary RNA
sequence is comprised of blocks of local tandem repeats (named
A-F) with different functions in XCI. The utmost importance
of the A-repeat in X silencing but not in Xist RNA coating
was recognized early on, and has been further strengthened by
demonstrating that it recruits the transcriptional repressor SPEN
(Wutz et al., 2002; Zhao et al., 2008; Nesterova et al., 2019). The
B-repeat together with a short part of the C-repeat are crucial for
spreading of Xist RNA and for attracting the polycomb silencing
complexes PRC1 and PRC2 (Pintacuda et al., 2017; Nesterova
et al., 2019). Conversely, ablating PRC1 or PRC2 impairs Xist
spreading, supporting interactive roles for this mega-protein-
RNA complex (Colognori et al., 2019).

A new study has now clarified the precise order of appearance
of histone modifications relative to X silencing (Żylicz et al.,
2019). Importantly, loss of histone acetylation, in particular
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FIGURE 1 | Long non-coding RNAs control epigenetic and structural characteristics of the Xi. (A) XCI begins with the expression of Xist located in the XIC (black).
Xist RNA spreads (squiggly black line) along the X chromosome and recruits several protein complexes (see text). Major histone modifications take place, including
histone deacetylation by HDAC3, followed by ubiquitination of H2AK119 mediated by the PRC1 complex, methylation of H3K27 mediated by the PRC2 complex,
and finally incorporation of histone macroH2A. Gene A represents a gene that becomes inactivated (red) while gene B is an escape gene (green) that remains
unchanged. This schematic focuses on histone modifications and does not show recruitment of other proteins or other repressive epigenetic modifications such as
DNA methylation. Shown below the schematic are examples of female mouse nuclei showing an Xist cloud (green) after RNA-FISH, and enrichment of histone
modifications (pink) by immunostaining of H2AK119Ubi, H3K27me3, and macroH2A. Nuclei are counterstained by Hoechst 33342. (B) The genomic location of
Firre, Dxz4 and Xist is indicated on a schematic of the mouse X chromosome along a Hi-C contact map of the Xi in mouse Patski cells. Two superdomains of
frequent contacts are separated by the Dxz4 region. The color scale shows normalized contact counts [adapted from a published figure (Bonora et al., 2018) in
Nature Communications, under Springer Nature Publishing License: http://creativecommons.org/licenses/by/4.0/. (C) The Xi preferred locations are near the
nucleolus or the nuclear periphery, as shown in examples of mouse fibroblast nuclei after RNA-FISH for Xist (green) to locate the Xi and immunostaining for
nucleophosmin (red) to locate the nucleolus. Nuclei are counterstained by Hoechst 33342.
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H3K27ac, is clearly one of the very first events following
Xist RNA accumulation during XCI initiation (Figure 1A).
Indeed, the histone deacetylase HDAC3 is pre-loaded at
putative enhancers and is vital for efficient silencing of most
genes on the Xi. Ubiquitination of histone H2K119 is then
initiated by the nuclear matrix-PRC1 protein complex (hnRNPK-
PCGF3/5-PRC1), signaling subsequent recruitment of other
PRC1 complexes and of PRC2 (Figures 1A,B; Pintacuda et al.,
2017). Tri-methylation of histone H3K27 is mediated by PRC2
and appears slightly later, even after gene silencing (Żylicz et al.,
2019). The chromatin scaffolding protein SMCHD1 (structural
maintenance of chromosomes flexible hinge domain-containing
protein 1) plays an important role in gene silencing and structure
of the Xi (Blewitt et al., 2008). A recent study proposes the Xi
bipartite structure forms via an intermediate condensation step
mediated by SMCHD1, in which A/B compartments initially
fuse into S1/S2 compartments that subsequently merge into the
compartment-less architecture of the Xi (Wang et al., 2018).
Consistent with this finding, SMCHD1 loss of function results
in the appearance of sub-megabase domains, A/B compartments,
and a partial restoration of TAD boundaries on the Xi
(Gdula et al., 2019). These changes are associated with de-
repression of some X-inactivated genes and a local decrease in
H3K27me3, but this reactivation is not observed in immortalized
mouse embryonic fibroblasts, suggesting SMCHD1 facilitates
H3K27me3 enrichment during XCI (Sakakibara et al., 2018;
Gdula et al., 2019). At other heterochromatic regions of the
genome SMCHD1 co-localizes with the repressive histone mark,
H3K9me3, a process mediated by LRIF1 (Ligand Dependent
Nuclear Receptor Interacting Factor 1). However, SMCHD1
remains enriched over the Xi even when SMCHD1-LRIF1
interactions are perturbed, suggesting an alternative mechanism
by which SMCHD1 is targeted to the Xi, possibly via histone
H2AK119 ubiquitination (Brideau et al., 2015; Jansz et al., 2018).
Two later events that lock in silencing of the Xi are replacement
of histone H2A by macrohistone H2A and DNA methylation of
CpG islands by DNMT3B (Figure 1A; Gartler and Riggs, 1983;
Costanzi and Pehrson, 1998; Gendrel et al., 2012).

Dxz4
During the establishment of XCI the Xi condenses in two
superdomains of long-range contacts separated by a region
that contains the conserved Dxz4 lncRNA microsatellite repeat
(Figure 1B; Deng et al., 2015; Minajigi et al., 2015; Darrow et al.,
2016; Giorgetti et al., 2016). This bipartite configuration is present
in both mouse and human, albeit with different superdomain
sizes, and deletion of Dxz4 specifically from the Xi results in
disruption of the bipartite structure in both species, indicating
a conserved function (Darrow et al., 2016; Giorgetti et al., 2016;
Bonora et al., 2018). The deleted Xi acquires a configuration that
resembles the Xa with enhanced TADs and compartments, but
only in part, suggesting that, in addition to Dxz4, other factors
control the Xi configuration.

CTCF-mediated interactions between the Dxz4/DXZ4 loci and
other X-linked loci appear to be integral to forming chromatin
loops for packaging the Xi. Indeed, Dxz4/DXZ4 bind the zinc-
finger protein CTCF and components of the ring-shaped cohesin

complex only on the Xi (Horakova et al., 2012a,b). Elsewhere
in the genome convergent CTCF binding motifs at the base
of a chromatin loop clearly favor strong interactions, and the
inversion of CTCF sites disrupts loop formation (de Wit et al.,
2015). The mouse Dxz4 locus contains a bank of CTCF motifs
arranged in tandem orientation, while the human locus contains
two banks of motifs with a different orientation (Horakova
et al., 2012a,b). Our group reported that inversion of the mouse
Dxz4 locus results in a massive reversal in long-range contacts,
indicating that the Dxz4 locus itself acts as a structural platform
for frequent long-range contacts with multiple X-linked loci in a
direction dictated by the orientation of its CTCF motifs (Bonora
et al., 2018). The anchoring of megabase size chromatin loops at
Dxz4 causes the appearance of a line (or flame) emanating from
Dxz4 in the contact map (Figure 1B). Whether contacts between
Dxz4 and other X-linked loci rapidly fluctuate in individual cells
remain to be determined. Surprisingly, deletion of Dxz4 causes
only minor reactivation of X-linked genes and few changes in
escape gene expression (Giorgetti et al., 2016; Bonora et al., 2018).
A more recent study reported no changes in gene expression at
all, suggesting inconsistencies between cell lines (Froberg et al.,
2018). Furthermore, mice with a deletion of Dxz4 on the Xi
show no apparent phenotype (Andergassen et al., 2019). Thus,
the bipartite structure of the Xi has no clear function in gene
regulation of the Xi at this point. However, conservation of the
locus and of the bipartite structure between human and mouse
suggest preservation of function.

Firre
Firre is another X-linked lncRNA locus that influences the
epigenetic features and 3D structure of the Xi. We and others
have shown that Firre is transcribed only from the active
X chromosome (Calabrese et al., 2012; Froberg et al., 2018;
Andergassen et al., 2019; Fang et al., 2019). Multiple isoforms of
the Firre transcripts including lncRNAs and circular RNAs have
been reported (Izuogu et al., 2018). Like Dxz4, the Firre region
harbors many local repeats including the R0 repeat that recruits
the chromatin organizers CTCF and YY1, as well as RAD21,
a component of the cohesin ring complex (Yang et al., 2015;
Hacisuleyman et al., 2016). The Firre locus recruits the nuclear
matrix protein hnRNPU and interacts with many genomic
regions, which might explain why depletion of Firre RNA causes
widespread autosomal gene dysregulation (Hacisuleyman et al.,
2014; Andergassen et al., 2019; Fang et al., 2019; Lewandowski
et al., 2019). In regards to XCI, depletion of Firre RNA in
differentiated fibroblasts does not disrupt Xist coating or gene
silencing; however, a loss of H3K27me3 is observed on the Xi
(Yang et al., 2015; Fang et al., 2019). In contrast, embryonic stem
cells depleted of Firre prior to differentiation show no changes
in H3K27me3 (Froberg et al., 2018). Together, these results
support a role for Firre RNA in maintenance but not initiation
of H3K27me3 enrichment on the Xi in differentiated cells.

Firre RNA is also important for maintenance of Xi location
within the nucleus. Indeed, depletion of Firre in differentiated
cells causes a decrease in perinucleolar and nuclear periphery
association of the Xi (Yang et al., 2015; Fang et al., 2019). The
perinucleolar and periphery compartments are often associated
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with heterochromatin and nucleolar location of the Xi has
been proposed to be important for faithful replication of its
epigenetic state (Figure 1C; Zhang et al., 2007; de Wit and
van Steensel, 2009). Association of the Xi with the lamina
may be facilitated by the lamin B receptor (LBR) recruited by
Xist RNA (Chen C.K. et al., 2016). However, both the active
and inactive X chromosomes are preferentially located near the
nuclear periphery, suggesting that factors unrelated to XCI may
control positioning (Bischoff et al., 1993). Surprisingly, tethering
of one or both XIC alleles to the nuclear lamina via a TetR-EGFP-
LaminB1 fusion protein does not disrupt XCI initiation, which
would imply that XIC pairing and a visit to the nucleolus are not
essential for XCI initiation (Pollex and Heard, 2019).

Deletion of Firre on the Xi does not disrupt the bipartite
organization of the Xi, but causes localized changes in contact
distribution, which may reflect disruption of the long-range
contacts between Firre andDxz4 thought to secure Xi compaction
(Darrow et al., 2016; Barutcu et al., 2018; Bonora et al., 2018;
Froberg et al., 2018; Fang et al., 2019). Long-range contacts
between loci may help isolate the Xi in a specific compartment
or phase of the nucleus either near the nuclear periphery or the
nucleolus. The lncRNA loci Xist, Firre, and Dxz4 could play a
concerted role in condensation and isolation of the Xi in a specific
phase, which would ensure differential regulation of the two X
chromosomes. Few studies have directly tested such a hypothesis
due to the challenges in experimental design (Heard et al., 2004).

DETECTION OF GENES THAT ESCAPE X
INACTIVATION BY SINGLE-CELL
ANALYSES

Despite being located in a constitutively repressed environment, a
select subset of genes has evolved mechanisms to avoid silencing
and thereby remain expressed from the Xi. A number of genes
escape XCI in an individual-, tissue-, and cell type-specific
manner, which can cause sex differences in gene expression
(Berletch et al., 2015; Cotton et al., 2015; Tukiainen et al.,
2017; Balaton et al., 2018). In mouse, 3–7% of X-linked genes
escape transcriptional silencing, while that number increases to
20–30% in human (Berletch et al., 2015; Balaton and Brown,
2016). Comparisons between species show that a core set of
genes escapes XCI in most cells and tissues in mammals,
while other genes vary between cell types, tissues and species.
New approaches by single-cell RNA sequencing (scRNA-seq)
combined with SNP (single nucleotide polymorphism) analyses
of allelic gene expression provides data on thousands of
individual cells of varying types and thus promises a more
complete picture of the variation in escape status between cell
types (Figure 2A). Assigning escape status to a given gene
formally requires finding biallelic reads in single cells or in a
tissue with completely skewed XCI. A main advantage of single
cell approaches is that tissues with random XCI can be analyzed,
but allelic dropout can cause problems for genes with low
expression (Reinius and Sandberg, 2015). A limited scRNA-seq
analysis of about 1,000 cells representing two human cell types
has uncovered genes (e.g., FHL1 and ATP6AP2) with incomplete

XCI in a subset of cells, and also confirmed heterogeneity of
XCI for TIMP1 (Tukiainen et al., 2017). Another allelic scRNA-
seq in human fibroblasts shows little overlap with other studies
in terms of identified escape genes, highlighting the difficulty of
building a consensus (Wainer Katsir and Linial, 2019). Variability
in escape from XCI between individuals has been confirmed
in a single-cell allelic expression analysis from five individuals
(Garieri et al., 2018).

Developmental scRNA-seq studies have followed XCI
progression during embryogenesis. A study of human
preimplantation embryos reports that bi-allelic X-linked
gene expression may persist until the blastocyst stage, together
with dampening of both alleles (Petropoulos et al., 2016).
However, re-analysis of these and additional data has provided
a more detailed panorama of random XCI from human oocyte
to blastocyst, demonstrating progressive establishment of
mono-allelic X-linked gene expression and of X upregulation to
maintain balance of expression throughout the genome (Moreira
de Mello et al., 2017; Zhou et al., 2019). Unfortunately, very little
information on escape genes is included in these studies, despite
findings of extensive sex differences in overall gene expression. In
mouse, XCI dynamics during embryonic stem cell differentiation
show a gradual decrease in expression of escape genes, consistent
with partial spreading of silencing (Chen G. et al., 2016).

STRUCTURAL AND EPIGENETIC
FEATURES OF ESCAPE GENES

Expectedly, genes expressed from the Xi lack epigenetic
signatures characteristic of inactivated genes and appear to be
located away from repressive genomic elements. A recent study
using allele-specific PRO-seq and predictive machine learning
shows that primary determinants of escape from XCI include
distance from Xist and density of LINE elements (Sousa et al.,
2019). Interestingly, escape genes often cluster in domains, a
common finding in human, while mouse escape genes are often
isolated (Tsuchiya et al., 2004; Prothero et al., 2009; Berletch
et al., 2011). In general, escape regions lack repressive histone
marks such as H3K27me3, and are enriched in active histone
marks such as acetylation, and in transcription elongation marks
including RNA PolII S2P and H3K36me3 (Figure 1A; Disteche
and Berletch, 2015; Sousa et al., 2019). DNA hypomethylation
of CpG islands is a reliable predictor of escape status, which
has been successfully used to identify escape genes in an array
of human tissues where allelic analyses are difficult due to few
SNPs and/or absence of XCI skewing (Cotton et al., 2015; Duncan
et al., 2018). Surprisingly, escape genes in brain and liver adopt
specific DNA methylation signatures that include enrichment in
non-CG hypermethylation (mCH) throughout their gene body,
which may help maintain an open chromatin structure (Keown
et al., 2017; Duncan et al., 2018).

Escape genes tend to reside toward the outside of the
compacted inactivated interior of the Xi (Figure 2B; Chaumeil
et al., 2006; Heard and Bickmore, 2007; Splinter et al., 2011;
Deng et al., 2015; Bonora and Disteche, 2017). However, it
remains to be determined exactly how the 3D structure of the Xi
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FIGURE 2 | Escape genes distribution and structure. (A) Single-cell RNA-seq (scRNA-seq) enables determination of patterns of escape from XCI in cell types within
a tissue. Beginning with a tissue, for example brain, individual cell types (colored pink, light pink, and blue) can be identified by scRNA-seq. Subsequent SNP
analysis determines the escape status of each X-linked gene based on reads from the Xa and the Xi (escape gene, esc, colored green; inactivated gene, inact,
colored black; gene that partially escapes, ∼esc, colored light green). Each cell type can be associated with the escape status of an ensemble of X-linked genes. For
example, a specific cell type (pink) shows escape of the example gene (circled green), while another cell type (blue) shows inactivation of this same gene (circled
black). Combination of data on an ensemble of genes can potentially inform sex differences in a particular cell type. (B) 3D model of the Xi at 1 Mb resolution in
mouse brain colored to display the density of allelic CTCF binding (red indicates more binding and blue, less binding). Two domains of condensation are seen
separated by Dxz4 at the hinge. The white dots indicate chromosome ends, the orange dot, Dxz4, and the green dots, escape genes. Escape genes tend to be
located at the outside of the Xi 3D structure [adapted from a published figure (Deng et al., 2015) in Genome Biology, under Springer Nature Publishing License:
http://creativecommons.org/licenses/by/4.0/]. (C) Partial Hi-C contact maps (4 Mb resolution) of the active (Xa) and inactive (Xi) X chromosomes in a 4 Mb region
around the escape gene Ddx3x and the inactivated gene Eda2r highlight the attenuation of TADs (blue) on the mouse Xi, except at the escape gene Ddx3x where
TADs are visible on both the Xi and Xa. The color scale shows normalized contact counts (blue, higher contact count, red, lower contact count) [adapted from a
figure (Bonora et al., 2018) published in Nature Communications, under Springer Nature Publishing License: http://creativecommons.org/licenses/by/4.0/].

influences the propensity for escape from XCI. One factor may
be repeat E of Xist, which is required for localization of ASH2L,
a component of the histone methyltransferase that methylates
H3K4 for increased expression (Yue et al., 2017). Other factors
may be involved, for example, the lncRNAs often found near
escape genes (Reinius et al., 2010). Escape genes often co-
localize with clusters of CTCF binding and with TADs, suggesting
local Xi compartmentalization (Figure 2C; Giorgetti et al., 2016;
Bonora et al., 2018). However, deletion of Dxz4 and loss of the
bipartite structure of the Xi causes little or no disruption in

escape gene expression (Giorgetti et al., 2016; Bonora et al., 2018;
Froberg et al., 2018).

It is increasingly clear that intrinsic genetic escape elements
act in cis to facilitate expression from the Xi (Balaton
et al., 2018). We and others have proposed that spreading
of silencing into the escape region or vice versa spreading
of gene activity into a silenced gene may be prevented by
insulator elements such as CTCF or YY1, but these elements
may not be sufficient and mechanisms may differ between
escape genes (Filippova et al., 2005; Li and Carrel, 2008;
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Horvath et al., 2013; Chen C.Y. et al., 2016). Interestingly, a BAC
harboring the human escape gene RPS4X inserted at the silenced
Hprt locus in mouse retains escape status in vivo, both through
the onset of XCI and the life of the mouse (Peeters et al., 2018). It
will be interesting to identify the apparently conserved insulator
elements involved in this process and to test their role in shaping
regions of escape, for example by isolating them into separate
chromatin loops or phases within the nucleus.

ROLE OF X-LINKED GENES IN SEX
DIFFERENCES AND IN DISEASE

One main consequence of escape from XCI is differential gene
expression between males and females (Mele et al., 2015).
A recent study based on thousands of transcriptomes spanning
29 human tissues provides a detailed survey of sex-biased gene
expression in humans and demonstrates that expression of escape
genes is usually female-biased (Tukiainen et al., 2017). However,
a subset of escape genes located in the pseudoautosomal region
shared between the X and Y chromosomes is male-biased,
probably due to lower expression in females due to spreading
of silencing on the Xi (Tukiainen et al., 2017). The biological
implications of these sex bias remain largely unexplored. While
it is clear that certain escape genes, e.g., Kdm6a, and its Y-paralog
Uty are expressed in different parts of the mouse brain, their
role in phenotypic sex differences has not been clarified (Xu
et al., 2008). In fact, few traits have been linked to sex bias in
X-linked gene expression in normal healthy individuals. One
example is longevity, with recent evidence suggesting that having
two X chromosomes prolongs lifespan, independent of gonadal
sex. This was demonstrated by using the four core genotype
(FCG), a mouse model capable of differentiating the effects of
hormones versus sex chromosome complement, which showed
that XX mice with either ovaries or testes lived longer than XY
mice of either gonadal phenotype (Davis et al., 2019). In addition,
having two X chromosomes leads to improved blood pressure
regulation and an increase in the capacity to blunt the effects of
brain injuries (Pessoa et al., 2015; McCullough et al., 2016).

In terms of disease susceptibility there is ample evidence
suggesting that sex bias in X-linked gene expression play a role.
For example, having two X chromosomes increases the risk

of developing autoimmunity [reviewed in Syrett and Anguera
(2019)]. This phenomenon may be a result of unusual XCI
patterns in immune cells, which could leave certain X-linked
genes involved in immune response susceptible to reactivation
(Wang et al., 2016; Syrett et al., 2019). This is supported by
studies demonstrating that the Toll-like receptor seven gene,
which escapes XCI in human lymphocytes, causes systemic lupus
erythematosus when overexpressed in mouse models (Deane
et al., 2007; Souyris et al., 2018). The X chromosome harbors
a high number of genes important in brain function, and
dosage of some escape genes has been implicated in neurological
phenotypes such as seizures and Autism Spectrum Disorder
(Shoubridge et al., 2019). For example, loss of function mutations
in the escape gene, IQSEC2, contribute to the manifestation of
phenotypes that include moderate to severe intellectual disability
(Shoubridge et al., 2019). Another example is KDM5C, an escape
gene that encodes a histone demethylase and regulates neuronal
development and function (Iwase et al., 2016; Scandaglia et al.,
2017; Kim et al., 2018). Mutations in KDM5C cause intellectual
disability in males and females, illustrating the dosage sensitivity
of this gene (Brookes et al., 2015).

Variability in expression of escape genes may contribute to
sex differences in predisposition to certain cancers (Arnold
and Disteche, 2018). Many types of cancers are sex-biased in
nature and some of those skewed toward a male prevalence
may be explained by mutations in X-linked escape genes called
EXITS (Escape from X Inactivation Tumor Suppressor) (Table 1;
Dunford et al., 2017). One example is bladder cancer, with
incident rates ranging from three to five times higher in men
than women (Edgren et al., 2012). Recent studies in FCG mice
show that XX mice with bladder cancer survive at increased
rates compared to XY mice regardless of gonadal sex, suggesting
that X-linked gene dosage is an intrinsic determinant of survival
(Kaneko and Li, 2018). Interestingly, the female-biased escape
gene KDM6A is a strong tumor suppressor that acts through
demethylation-dependent and -independent mechanisms to
reduce bladder cancer cell proliferation (Kaneko and Li, 2018).

Disorders of sex chromosome number such as Turner
syndrome (45,X) and Klinefelter syndrome (47,XXY) directly
implicate escape genes in abnormal phenotypes, since such genes
would be haplo-insufficient and overexpressed, respectively, in
these conditions. One of the hallmark of Turner syndrome is

TABLE 1 | Human non-PAR escape genes as tumor suppressors in male-biased cancers.

Gene∗ Escapes status¶ Cancer type Male to female ratio References

KDM6A Ubiquitous Bladder 3-5:1 Kaneko and Li, 2018

Lymphoma 1.6:1; 4:1 Morton et al., 2006; Horesh and Horowitz, 2014

Glioblastoma 2:1 Sun et al., 2015

T-cell acute lymphocytic leukemia 3:1 Goldberg et al., 2003; Van der Meulen et al., 2015

KDM5C Ubiquitous Clear cell kidney 2:1 Ricketts and Linehan, 2015

ATRX Variable Glioblastoma 2:1 Sun et al., 2015

DDX3X Ubiquitous Medulloblastoma 2:1 Sun et al., 2015; Valentin-Vega et al., 2016

T-cell acute lymphocytic leukemia 3:1 Goldberg et al., 2003; Valentin-Vega et al., 2016

∗Gene list based on (Dunford et al., 2017).
¶Escape status as reported in Patrat et al. (2009) and Cotton et al. (2013, 2015).
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premature ovarian failure and infertility. The X chromosome
is three-fold more enriched for genes expressed in female
reproductive organs when compared to autosomes, indicating
a role in female fertility (Liu, 2019). Defining the contribution
of specific X-linked genes in abnormal Turner phenotypes is a
work in progress. For example, the escape genes KDM6A and
TIMP1 are hypothesized to be involved in premature ovarian
failure and aortic aneurysm formation, respectively (Trolle et al.,
2016; Viuff et al., 2019). Recent screens of X-linked copy number
variation (CNV) in cohorts of healthy women and those with
primary ovarian insufficiency (POI) show a high prevalence
of deletions encompassing escape genes as well as lncRNAs
(Yatsenko et al., 2019). Of course, escape genes would not be
the only X-linked genes involved in Turner infertility, since all
X-linked genes become reactivated in female primordial germ
cells, a process mediated by PR-domain containing protein 14
(PRDM14) for removal of H3K27me3 on the Xi (Mallol et al.,
2019). The infertility observed in Klinefelter individuals could
potentially also result from abnormal escape gene dosage, but
another large factor would be abnormal meiotic pairing of the
sex chromosomes. Interestingly, any abnormal X chromosome
numbers (XXY, XXX or X) cause a general disruption of
DNA methylation patterns at autosomal genes, demonstrating
widespread epigenetic effects of X aneuploidy (Trolle et al., 2016;
Skakkebaek et al., 2018). Furthermore, the number of X and/or
Y chromosomes influences spatial chromosome conformation,
particularly of the active X chromosome, but the role of this
structural change is not elucidated (Jowhar et al., 2018). Together,
these findings implicate improper X-linked gene dosage as
a causative factor in disease phenotypes ranging from brain
function, cancer susceptibility, to impaired fertility.

PERSPECTIVE

While a great deal has been learned about the various lncRNAs
and proteins that control structural and epigenetic features of
the Xi and its silencing, their exact modes of action remain
to be further studied. In terms of the 3D structure of the
Xi it will be of great interest to define factors involved in
nuclear compartmentalization and phase separation. Additional
experiments are needed in order to link the specific 3D structure
and nuclear location of the Xi with its distinct epigenetic

landscape. Moreover, little is known about contacts between each
X chromosome with the rest of the genome in female cells and
tissues, and about such contacts with the heterochromatic Y
chromosome in male cells and tissues. Tissue-specific differences
in the arrangement of chromosomes within the nucleus are
poorly understood, and few functional studies have examined
the consequences of manipulating chromosomal location. The
epigenetic controls of escape from XCI also warrant further
functional studies. Unfortunately, current analyses toward
identifying escape genes in specific cell types and tissues are
limited due to the relatively small number of informative
polymorphisms in human. However, single-cell analyses are
progressing at a fast rate, with some methods allowing analyses
in thousands of cells in tissues to establish maps of gene
expression or accessibility in a whole organism, as shown for
example in a recently published atlas of mouse tissues/cell types
(Cusanovich et al., 2018). While there is compelling evidence of
sex differences in susceptibility to disease, understanding the role
of individual sex-linked genes will require careful manipulation
of their dosage.
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