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Despite clinical promise, dual-acting activators of PPARα and γ (here termed PPARα+γ agonists) have experienced high attrition
rates in preclinical and early clinical development, due to toxicity. In some cases, discontinuation was due to carcinogenic
effect in the rat urothelium, the epithelial layer lining the urinary bladder, ureters, and kidney pelvis. Chronic pharmacological
activation of PPARα is invariably associated with cancer in rats and mice. Chronic pharmacological activation of PPARγ can in
some cases also cause cancer in rats and mice. Urothelial cells coexpress PPARα as well as PPARγ, making it plausible that the
urothelial carcinogenicity of PPARα+γ agonists may be caused by receptor-mediated effects (exaggerated pharmacology). Based
on previously published mode of action data for the PPARα+γ agonist ragaglitazar, and the available literature about the role of
PPARα and γ in rodent carcinogenesis, we propose a mode of action hypothesis for the carcinogenic effect of PPARα+γ agonists in
the rat urothelium, which combines receptor-mediated and off-target cytotoxic effects. The proposed mode of action hypothesis
is being explored in our laboratories, towards understanding the human relevance of the rat cancer findings, and developing rapid
in vitro or short-term in vivo screening approaches to faciliate development of new dual-acting PPAR agonist compounds.

Copyright © 2008 Martin B. Oleksiewicz et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Selective small molecule agonists for the peroxisome
proliferator-activated receptors α and γ are used to treat
metabolic disorders. PPARα agonists (fibrates) are used
for their blood lipid lowering effects, and PPARγ agonists
(thiazolidinediones) for their insulin sensitizing effects [1–
3]. Additionally, dual-acting agonists for PPARα and PPARγ,
here termed PPARα+γ agonists, have been shown to have
clear therapeutic advantages over selective PPAR agonists in
animals as well as humans [3, 4]. Unfortunately, a high per-
centage of PPARα+γ agonists exhibited carcinogenic effect
during preclinical safety testing in rats and mice [2–7]. Based
on carcinogenicity findings for 6 PPARα+γ and 5 PPARγ
anonymous developmental compounds in rats and mice,
the FDA concluded that “PPAR agonists are multispecies,
multistrain, multisex, multisite carcinogens” (Table 1) [8].
The FDA further concluded that “mechanistic data to explain
mode of action for tumour formation is not available.

Tumours sites are consistent with the known distribution
of PPAR receptors. Oncogenic potency correlates with PPAR
agonist potency. A receptor-mediated mechanism cannot be
ruled out” [8].

Accordingly, the attrition rate amongst developmental
PPARα+γ agonists has been high, with amongst others
tesaglitazar (Galida), naveglitazar (LY519818), muraglitazar,
ragaglitazar, farglitazar, and imiglitazar (TAK559) recently
being discontinued due to clinical cardiac, kidney or liver
toxicity, or preclinical findings [3–5]. These 6 developmental
PPARα+γ agonists represent different nonthiazolidinedione
chemical structures, with different balances between PPARα
and γ activation [3, 5, 7, 11]. For 4 dual-acting agonists,
preclinical carcinogenicity findings have been published
muralitazar, ragalitazar, tesaglitazar, and naveglitazar are
nongenotoxic by standard tests. Muralitazar caused gall-
bladder adenomas (male mice), adipocyte neoplasms (male
and female rats), and urinary bladder tumours (male rats)
[27]. Ragalitazar caused urinary bladder and renal pelvis
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Table 1: Frequency of cancer findings for PPAR agonists in rats, mice, and hamsters. The table is adapted from [8–10] and comprises
rodent carcinogenicity data for between 16 and 30 PPARα agonists (pharmacological as well as industrial compounds) [9, 10], 5 PPARγ
agonists (pharmacological compounds only) [8], and 6 dual-acting PPARα+γ agonists (pharmacological compounds only) [8]. Numbers
in the cells: number of compounds causing the indicated pathology in the indicated rodent species; M: male; F: female. The difference in
rodent bladder and liver tumour frequency between PPARα, PPARγ, and PPARα+γ agonists is significant (P < .0001, Chi-square test). The
difference in rodent bladder cancer frequency betwen PPARγ and dual-acting PPARα+γ agonists is borderline significant (P = .0357 and
.081 by Chi-square and Fischer’s exact tests, resp.).

(a)PPAR agonist se-
lectivity (n, num-
ber of compounds)

(b),(f)Hemangio-
sarcoma

(c),(f)Urinary
bladder and
renal pelvis

(d)Fibrosarcoma
(f)Lipoma
and sarcoma

(e),(f)Liver Other

PPARα agonists (n=
30 for hepatocar-
cinogenicity, n=16
for extrahepatic tu-
mours)

None None None None
30 of 30, in
mice or rats

Typically pancreatic acinar
cell and Leydig cell tumours.
Thyroid and lung tumours
and leukaemia also described.

PPARγ agonists
(n = 5)

3 (mice, M
and F)

1 (rats, M
and F)

None
3 (rats, M
and F)

2 (rats and
mice, F)

1 (mice, gallbladder adeno-
ma). 1 (rats, stomach, leiom-
yosarcoma).

Dual acting
PPARα+γ
agonists (n = 6)

5 (mice, M and
F, hamster, M)

5 (rats, M
and F)

2 (rats, M
and F)

2 (rats, mice,
M and F)

3 (rats, mice,
M and F)

1 (rats, testicular). 1 (rats, ma-
mmary). 1 (mice, mammary
and stomach). 1 (rats, thy-
roid). 1 (rats, uterine). 1 (rats,
uterine and leukaemia).

(a)
Comparative data for PPAR selectivity are lacking. No study has to our knowledge for a panel of PPAR agonists compared activity on all PPAR isoforms,

between rats, mice, and humans, in the relevant cell type, for example, hepatocyte or urothelial. However, it is clear that selective PPARγ agonists may have
significant PPARα activity [3, 5, 11].
(b) Mice appear to be more sensitive to the effect of PPARγ agonists than rats [12].
(c)Rat urothelium may be more sensitive to the carcinogenic effect of dual-acting PPARα+γ agonists than mouse urothelium. Bladder cancer was seen in SD,
Wistar, and Fischer rats of both sexes [8]. Renal proximal tubular carcinoma was also observed with 2 dual agonists (undifferentiated sarcomatous tumours)
[8].
(d)One dual-acting PPARα+γ agonist for which fibrosarcoma has been described is tesaglitazar [13].
(e)One PPARγ agonist for which hepatocarcinogenesis has been described is troglitazone [14].
(f)PPARα and PPARγ are typically described as having a tissue-restricted expression, with PPARβ expression being more ubiquitous [2, 15, 16]. Endothelial
as well as urothelial cells coexpress PPARα and PPARγ isoforms [17–20]. White fat expresses mostly PPARγ [2, 15, 16], but it is increasingly recognized that
PPARα may also have function in white fat [21]. Liver expresses mostly PPARα [2, 15, 16], but it is increasingly recognized that PPARγ may also have function
in the liver [22–26].

tumours (male and female rats) [28–30]. Naveglitazar caused
urinary bladder tumours in female rats, with the evaluation
of carcinogenicity in male rats affected by poor survival [31].
Tesaglitazar caused mesenchymal sarcomas (male and female
rats) [13].

The involvement of PPARα and PPARγ in cancer patho-
genesis has been reviewed extensively [2, 5, 6, 32–36].
While PPARα activation is clearly carcinogenic in rodents
[9, 32, 33], the rodent PPARγ data are controversial, and it
appears that rodent PPARγ activation may have oncogenic
as well as tumour suppressor activity, likely depending
amongst others on cellular and physiological contexts [5,
6, 8, 9, 34, 36]. Further, potential interactions between
rodent PPARα and PPARγ in coexpressing cells have, to
our knowledge, essentially not been examined at all. Finally,
the human relevance of rodent data is unknown, as there
is indication that, for example, PPARγ agonists may have
clinical benefit against certain human cancers such as lung
cancer [37].

We base the present manuscript on the observation that
in rats, toxicity of dual-acting PPARα+γ agonists appears

to target cells coexpressing PPARα and PPARγ, resulting
in a qualitatively different target organ profile from that
of selective PPARα and PPARγ agonists (Table 1). Then,
we review the literature with the aim of constructing a
mode of action hypothesis for the carcinogenic effect of
ragaglitazar in the rat urothelium. Due to the complexity
of the available data, this is by definition speculative, and
involves weighing of probablilities rather than combining
facts, but the presented mode of action hypothesis forms
the basis for our own research regarding the mechanisms by
which PPAR agonists induce cancer in the rat urothelium.

2. COMPARING NORMAL PHYSIOLOGY OF
PPARs IN THE RAT AND HUMAN UROTHELIUM:
TOWARD SAFETY PPARallelograms

Expression of PPAR transcripts by urothelium occurs early
in development and is conserved across species [17, 38],
implying a tissue-specific role. In normal human urothe-
lium, PPARγ is most intensely expressed in the terminally
differentiated superficial cell layer [39, 40], and expression
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is decreased in high-grade urothelial cell cancer [41], further
indicating a potential role in urothelial cytodifferentiation.

Normal human urothelium isolated from urological
specimens from patients with no history of urothelial cancer
can be routinely established in serum-free primary cell
culture and maintained through multiple serial subcultures
(typically 6–10) as cell lines with a finite lifespan [42,
43]. These cultures show a regenerative phenotype and
do not spontaneously express gene/proteins associated with
late/terminal differentiation [42, 43].

Activation of PPARγ by agonists (troglitazone or rosigli-
tazone) in finite cultures of normal human urothelial cells
(NHU cell cultures) has been shown to induce expres-
sion of gene/protein markers associated with late/terminal
urothelial differentiation, including uroplakins, cytokeratins,
and tight junction constituents [40, 44–46]. The pro-
posed differentiation-inducing mechanism is via PPARγ-
dependent transduction of intermediary transcription fac-
tors, including HNF3α, IRF-1, and FOXA1, and the induc-
tion of differentiation is specifically blocked by PPARγ
antagonists, or siRNAs against PPARγ, IRF-1, and FOXA1
[46]. The induction of differentiation in NHU cell cultures by
troglitazone requires inhibition of PI3K/AKT or MEK1/ERK
signalling pathways downstream of EGFR [44], which in
NHU cells is important for driving proliferation [47].
Inhibition of the downstream EGFR pathways resulted in
dephosphorylation of PPARγ [44]. The interaction between
the signalling pathways that regulate differentiation (PPARγ)
and proliferation (EGFR) in urothelium may lie at the heart
of regulating urothelial homeostasis and the switch from
quiescent to regenerative phenotypes.

While PPARγ activation in NHU cell cultures induces
differentiation [40, 44–46], some selective PPARγ and most
dual-acting PPARα+γ agonists cause bladder cancer in rats
(Table 1) [8, 48]. Also, a recent study showed that the
specific PPARγ agonist rosiglitazone is a strong promoter of
hydroxybutyl(butyl)nitrosamine-induced bladder cancer in
rats [49]. It is unknown whether this apparent contradiction
represents a species difference, or a difference between in
vivo and in vitro experimental systems. Also, it is well
known that the outcome of PPARγ signalling is highly
context specific, that is, diametrally opposite biological
effects can be seen in different situations [5, 6, 34, 36].
Resolution of the different observations in NHU cell cultures
in vitro and rat tissue in vivo is of obvious relevance for
elucidating the bladder carcinogenicity mechanisms of dual-
acting PPARα+γ agonists in rats, and elucidating the human
relevance of the rat bladder cancer findings (Table 1). Using
a standard “safety parallelogram” approach for extrapolating
the human relevance of rodent findings, PPAR signalling
should be compared between rat urothelial cells in vivo and
in vitro, and also between rat and human urothelial cells in
vitro.

In this vein, we have recently compared normal rat
and human urothelia in situ as well as following culture,
and confirmed urothelial expression of all three PPARs
and the RXRα and RXRβ isoforms by immunolabelling.
Some difference in relative expression and localisation of
the different isoforms was apparent between species [18].

Also, rat urothelium exhibited a higher proliferative pool of
Ki67 positive urothelial cells than did human urothelium
[18], in agreement with a high percentage of G2/M cells
in rat urothelium [30]. In contrast, human urothelial cells
in situ appear arrested in G0/G1 [47]. The relevance of
these differences between rat and human urothelia for
PPAR signalling is at present unknown. However, PPAR and
RXR expression patterns were retained by both NHU and
cultured normal rat urothelial cells, opening the possibility
that normal urothelial cell culture systems may be used to
compare PPAR signalling between rats and humans [18, 42,
43, 50].

In short, most knowledge about PPARγ signalling in
urothelium stems from NHU cell cultures [40, 44–47], and
very little information exists regarding PPARα signalling
response in the urothelium [51, 52]. Nevertheless, based on
the observation that bladder cancer appears overrepresented
for dual-acting PPARα+γ agonists (Table 1), and direct
experimental indication of cross-talk between PPARα and
PPARγ in urothelium as well as other cell types [19, 28, 53–
55], our current hypothesis is that simultaneous activation of
PPARα and PPARγ could in some way modulate the prolifer-
ation/differentiation balance, contributing to carcinogenesis
of dual-acting PPARα+γ agonists in the rat urothelium
(Figure 3).

3. RANKING THE POSSIBLE MECHANISMS FOR
THE CARCINOGENIC EFFECTS OF RAGAGLITAZAR
AND NAVEGLITAZAR IN THE RAT UROTHELIUM:
WHAT IS PPARt OF THE PPARcel?

Ragaglitazar is a phenyl propanoic acid derivative with dual
PPARα+γ agonist activity [56, 57]. In 2-year rat carcino-
genicity assays, papillomas and carcinomas originating from
the transitional epithelial (urothelial) lining of the urogenital
tract were observed for all groups receiving ragaglitazar,
for both male and female animals [29]. The urothelial
papillomas and carcinomas were observed in the urinary
bladder, ureters, and renal pelvis [29]. In mouse 2-year
studies, one urinary bladder tumour was observed in a high-
dose male mouse [29]. The higher sensitivity of rats than
mice to urothelial tumours induced by ragaglitazar may be
shared by other dual-acting PPARα+γ agonists (Table 1).

Four nonexclusive mechanisms were initially consid-
ered for the urothelial tumours in ragaglitazar-treated rats
(Figure 1): (i) a receptor-mediated effect of the parent
compound, with carcinogenesis caused by activation of
PPARα and γ transcription factors in the urothelium, that
is, an exaggerated pharmacological effect, (ii) a genotoxic
effect of metabolites of the parent compound (the parent
compound itself is not genotoxic), (iii) a cytotoxic effect
of parent compound or metabolites on urothelium, causing
cancer due to a proliferation-driven chronic wound healing
response, (iv) formation of urinary solids (urolithiasis)
due to urinary changes induced by parent compound or
metabolites, leading to cancer due to chronic irritation of the
urothelium.

It is well known that certain agents cause urinary
bladder cancer in rodents secondary to urolith formation
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Figure 1: Possible mechanisms for the carcinogenic effect of dual-acting PPARα+γ agonists in the rat urothelium. (a) Simplified view of the
rat urinary tract, showing the urothelial lining of urinary bladder, ureters, and kidney pelvis. The star in the bladder lumen indicates the
expected predilection site for urolith residence, the ventral part of the bladder. In the shown part of the urogenital tract, there are no gross
anatomical differences between male and female rats. The epithelial lining is contiguous but exhibits differentiation differences through the
urogenital tract [58, 59]. The drawing is not to scale. (b) Four possible mechanisms for carcinogenic effect in rat urothelium by dual-acting
PPARα+γ agonist.

[48], and that such carcinogenic effect is not relevant for
humans because in humans uroliths do not predispose for
bladder cancer [60]. A urolithiasis-mediated mechanism
would be expected to affect primarily (albeit not exclusively)
male rats due to the lower efficacy with which males void
uroliths and act primarily in the ventral part of the urinary
bladder (Figure 1) [48]. Therefore, a urolithiasis-mediated
mechanism was ruled out primarily by the observation
that ragalitazar caused tumours also in the ureters and
renal pelvis, a conclusion supported by the occurrence of
bladder tumours in females [29]. In detailed follow-up
examinations in ragaglitazar-treated animals, urinary calculi
were not detected during necropsy, no microcrystals were
found to adhere to the urothelium by scanning electron
microscopy, sediments were not increased in the urine by
light microscopy, no significant changes were observed in
urinary composition [29]. Likewise, and naveglitazar did not
cause changes in urinary composition [31].

To explore mechanism (ii), profiling of urinary metabo-
lites by mass spectroscopy and examination of DNA damage
in urothelium isolated from ragaglitazar-treated rats by
single-cell gel electrophoresis assay (COMET) were per-
formed. Ragaglitazar exhibited multiple metabolites in rat
urine (>10), but there was low overall urinary excretion, and
DNA damage was not observed in the urinary bladder of
ragaglitazar-treated rats [29].

In summary, neither urinary calculi nor genotoxic dam-
age by urinary metabolites could explain the carcinogenic
effect of ragaglitazar in the rat urothelium. As a working
hypothesis, we, therefore, assumed that ragaglitazar caused
urothelial cancers in rats by a receptor-mediated effect of
the parent compound (mechanism (i) above), which may
be exacerbated by a cytotoxic effect of parent compound
or metabolites on urothelium, promoting a chronic wound
healing response (mechanism (iii) above). This mode of
action hypothesis (Figure 3), comprising 2 nonexclusive
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mechanisms (Figure 1(b), (i) and (iii)) was in agreement
with coexpression of PPARα and γ by the urothelium
[17, 18, 38], with the known propensity of various PPAR
agonists to exhibit cytotoxic effects [36, 61, 62], and with
the known positive correlation between cytotoxic and car-
cinogenic effects for some small molecule drugs [63, 64].
Similarly, it was concluded for naveglitazar-induced bladder
cancer in rats that a mechanism involving a direct effect
of the compound on PPARs in the urothelium should be
considered [31].

4. EARLY BIOMARKERS FOR RAGAGLITAZAR AND
NAVEGLITAZAR ACTIONS IN THE RAT UROTHELIUM

The mode of action hypothesis detailed above (Figure 3)
predicted that very early (precancerous) changes should
occur in the urothelium of ragaglitazar-dosed rats, reflecting
exaggerated pharmacology and/or cytotoxicity of the com-
pound.

To test whether this was the case, a method was developed
where a lysing guanidine buffer is injected in situ in the
bladder of anaesthetised treated animals, providing selective
lysis of the urothelial layer and minimizing the risk of
preparation artefacts (Figure 2).

Such urothelial lysates from male rats dosed orally for
2-3 weeks were examined by a combination of microarray,
RT-PCR, and Western blotting methods [28]. We found that
within 4 days of ragaglitazar treatment, the transcription fac-
tor Egr-1 was strongly upregulated in the bladder urothelium
of animals treated with 50 mg/kg/day ragaglitazar [28]. Inter-
estingly, Egr-1 was not upregulated in the bladder urothe-
lium of rats daily receiving either 8 mg/kg/day rosiglitazone
(a selective PPARγ agonist) or 200 mg/kg/day fenofibrate
(a selective PPARα agonist), but appeared upregulated in
the bladder urothelium of rats receiving a combination
of rosiglitazone and fenofibrate [28]. The significance of
these findings is being confirmed, but the data support
that in rats orally dosed with ragaglitazar, expression of
Egr-1 was acutely induced in the bladder urothelium, and
coactivation of PPARγ and PPARα was required for this.
Other early changes observed in the bladder urothelium
involved phosphorylation of the S6 ribosomal protein, and
the c-jun transcription factor [28].

Microscopically, hypertrophy (increased cell size), hyper-
plasia (increased number of cells), and increased pro-
liferation (increased DNA synthesis, measured by BrdU
incorporation) were observed in the bladder and kidney
pelvis urothelium of ragaglitazar-dosed rats, within 3 weeks
of daily oral dosing [28–30]. Because urothelial hypertrophy
is difficult to quantitate by light microscopy, we utilized flow
cytometry as well as DNA/protein measurements to show
that within 2-3 weeks of oral dosing with 5–50 mg/kg/day
ragaglitazar, the bladder urothelium underwent diffuse,
generalized hypertrophy; that is, the hypertrophy affected the
whole urothelial cell population [30]. Urothelial hypertrophy
was also observed in the kidney pelvis [29, 30]. Finally,
hypertrophy and hyperplasia were likewise observed in the
urothelium of ragaglitazar-dosed dogs and monkeys [29].

Interestingly, in naveglitazar-dosed rats, urothelial hypertro-
phy was the earliest change, seen at 27 weeks, followed by
urothelial hyperplasia at 53–79 weeks [31].

5. POTENTIAL RELEVANCE OF EARLY UROTHELIAL
CHANGES FOR LATER CANCER DEVELOPMENT

The c-jun transcription factor is a recognized oncogene
[65] and has been implicated in human bladder cancer
development [66, 67]. Futhermore, increased c-jun activity
has been linked to bladder cancer development in mice
exposed to the model bladder carcinogen arsenic [66, 67].

Egr-1 (Zif268) is a zinc finger transcription factor
mediating a broad range of cellular responses such as
proliferation, differentiation, apoptosis, neuronal plasticity,
and neovascularization [68–71]. Egr-1 is closely related to the
WT1 Wilms’ tumour suppressor, with these two zinc finger
transcription factors being able to be bound to the same
DNA sequence, but exerting opposite effects on transcription
[72–74]. Given the importance of the WT1 transcription
factor for kidney development [58], it is perhaps unsurpris-
ing that Egr-1 also has functional roles through the length
of the urogenital tract. Egr-1 expression is regulated during
kidney development [75], and postnatally, Egr-1 is involved
in control of kidney function [76], and bladder urothelium
function [77–79]. Egr-1 overexpression and interaction with
the WT1 Wilms’ tumour suppressor may be involved in
the pathogenesis of nephroblastoma [72–74]. Further, the
bladder and prostate epithelia are contiguous and have
common embryological origin [58, 80, 81], and interestingly,
Egr-1 is absolutely required for the development of prostate
cancer in a mouse model [82, 83]. Egr-1 has also been
implicated in human prostate cancer development [84]. In
vitro, Egr-1 is induced in human urothelial cancer cells
treated with the model bladder carcinogen arsenic [67], and
Egr-1 physically associates with BLCA-4, a recognized marker
of bladder cancer, in human urothelial tumour cells [85, 86].
c-jun and Egr-1 have also been shown to physically interact
in rat spontaneous pheochromocytoma PC12 cells [70].
Importantly, it is currently unknown whether the phospho-
rylation of c-jun and induction of Egr-1 in the urothelium of
ragaglitazar-treated rats correspond to increased activity of
these transcription factors.

Hypertrophy (increased cell size) is a surrogate parame-
ter for increased protein synthesis (translation) [87]. Intrigu-
ingly, phosphorylation of the ribosomal S6 protein is known
to stimulate protein translation, and S6 phosphorylation is
also linked to cellular size [88–93]. Thus, the increased S6
phosphorylation and hypertrophy observed in the urothe-
lium of ragaglitazar-treated rats may be causally linked [28,
30]. As mentioned, hypertrophy was also the earliest change
in the urothelium of naveglitazar-dosed rats [31].

Urothelial hypertrophy can also be induced by non-
carcinogenic agents [94]. Nevertheless, both hypertrophy
and increased protein synthesis have been reported as
precancerous changes following exposure to model bladder
carcinogens [95], and translational deregulation is increas-
ingly being recognized as playing a key role in cancer
development [88–90, 93, 96].
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In summary, while completely speculative, a causal link
between early urothelial changes (hypertrophy, S6 phos-
phorylation, c-jun phosphorylation, Egr-1 induction) and
later urothelial cancer development in ragaglitazar-treated
rats appears possible (Figure 3). As mentioned above, early
urothelial hypertrophy was also observed in naveglitazar-
dosed rats [31].

6. CYTOTOXIC AND NONGENOMIC EFFECTS OF
PPAR AGONISTS IN VITRO

Surprisingly, structurally different agonists for PPARα and
PPARγ show a common propensity for PPAR-independent
(off-target) effects, particularly relating to growth inhibition
(cytostasis) and cell death in a variety of cell types [36, 62,
97, 98]. The mechanisms for the nongenomic actions of
PPAR agonists are unknown, but may have parallels in, for
example, the nongenomic actions of steroid hormones [99].

We found that exposure of NHU cultures to ciglitazone
or troglitazone (PPARγ) or ragaglitazar (PPARα+γ) rapidly
induced apoptosis in NHU cells [61]. These effects were
independent of p38 or pERK activation and were not seen
with fenofibrate (PPARα), L165041 (PPARβ), or rosiglita-
zone (PPARγ). Proapoptotic agonists induced rapid, sus-
tained increases in intracellular calcium that were attenuated
by removal of extracellular calcium, indicating the involve-
ment of store-operated calcium entry. Proapoptotic agonists
also induced cell membrane disruption, loss of mito-
chondrial membrane potential, and activation of caspases-
9 and -3. PPAR agonist-induced apoptosis was partially
attenuated by store-operated calcium channel inhibitors, but
was unaffected by PPARγ antagonists. This demonstrates
that structurally different PPAR agonists activate intrinsic
apoptotic pathways in normal human urothelial cells in
a PPAR-independent manner. Interestingly, PPAR agonists
associated with hepatotoxicity and carcinogenicity in vivo
also exhibited the most severe cytotoxicity profile in vitro,
comprising apoptosis and sustained increases in intracellular
calcium [61]. Recently, sustained increases in intracellular
calcium were linked to transactivation of the EGF receptor
by nongenomic actions of PPARγ agonists [98].

Because the nongenomic cytotoxic actions of PPAR
agonists appear to be relatively cell type independent [62],
and because it is well known that cytotoxic effect in vitro
may positively correlate with a carcinogenic effect in vivo [63,
64], we currently favor incorporating the NHU cytotoxicity
findings [61] into a mode of action hypothesis for the
carcinogenic effect of dual-acting PPARα+γ agonist in the
rat urothelium (Figure 3). Interestingly, normal urothelial
cells are more sensitive to the nongenomic cytotoxic actions
of PPAR agonists than are transformed urothelial cells [41].
Thus, nongenomic cytotoxic actions could hypothetically
contribute not only to initiating the carcinogenic process
(detailed in Figure 3) but also to selecting transformed
urothelial cells.

Intriguingly, and further complicating matters, some
studies suggest that PPARγ agonists previously associated
with nongenomic cytotoxicity at high concentration can
at lower concentrations stimulate proliferation and prevent

apoptosis [6, 34, 100–103]. This stimulatory effect does
not occur for PPARγ agonists in NHU cultures [104], but
weak stimulatory effects and bell-shaped responses have been
observed with unsaturated fatty acids in NHU cultures [105].
In short, because bell-shaped responses from activation of
a specific PPAR may be related to agonist characteristics,
and because detection of weak mitogenic responses in cell
cultures (at low drug concentrations) may technically be
more difficult than detection of cytotoxicity in cell cultures
(at high drug concentrations), the phenomenon of bell-
shaped response curves encompassing mitogenic as well as
cytotoxic effects may be underreported in studies of PPAR
agonist effects in vitro.

7. RECEPTOR-MEDIATED CARCINOGENESIS
IN RAT UROTHELIUM BY DUAL-ACTING α+γ
AGONISTS SUCH AS RAGAGLITAZAR:
PPARadigm OR PPARadox

The dual-acting PPARα+γ agonist muraglitazar also caused
urothelial tumours in rats, but in this case it was concluded
that a urolithiasis-mediated mechanism was responsible [27,
29, 114, 115]. In contrast, uroliths were not involved in
the urothelial cancers seen in ragaglitazar or naveglitazar-
treated rats [29, 31]. Furthermore, tesaglitazar did not induce
bladder cancers in rats [13]. The reasons for the difference
in carcinogenic potential in the rat urothelium for the four
dual-acting PPARα+γ agonists muraglitazar, ragaglitazar,
naveglitazar, and tesaglitazar are unknown. It is tempting
to speculate that the differences in PPAR affinity and
selectivity between these three PPARα+γ agonists influence
carcinogenic potential in the rat urothelium [3, 5, 11].
PPARα and PPARγ activation profiles can be compiled for
muraglitazar, ragaglitazar, naveglitazar, and tesaglitazar from
different studies [3, 5]. However, in order to evaluate whether
PPAR affinity and selectivity correlates with carcinogenicity,
we believe it would be required to compare these dual-
acting PPARα+γ agonists in the same study, preferably using
urothelial cells and monitoring the activation of endogenous
PPARα and PPARγ which are coexpressed in this cell type.
Technically, this could, for example, be done by, in urothelial
cells, separately monitoring expression of genes known to
be activated by PPARα on one hand, and genes known
to be activated by PPARγ, on the other (PPAR-regulated
genes listed in [15]). Such data unfortunately do not exist.
Nevertheless, the findings in Table 1 suggest that while
agonists with a high degree of PPARγ selectivity (i.e., specific
PPARγ agonists) can cause bladder cancer in rats, they may
be less prone to do so than are agonists with a lower degree of
PPARγ selectivity (i.e., dual-acting PPARα+γ agonists). This
interpretation of the data in Table 1 is speculative (disregards,
e.g., dose level or PPAR agonist efficacy differences between
the animal trials with the listed agents), but is plausible given
the relatively unique coexpression of PPARα and PPARγ
by urothelial cells. Thus, the hypothesis deserves further
exploration, that combined PPARα+γ activation, by agents
with low PPARγ selectivity or high doses of agents with high
PPARγ selectivity, may predispose to urothelial cancer in rats
by receptor-mediated mechanisms (Figure 3).
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(a) (b) (c)

Figure 2: Lysis of the rat bladder urothelial cell layer in situ. (a), (b) On a fully anesthetized rat, the bladder is exposed through an abdominal
incision, a thin needle or catheter (27G) is introduced into the bladder at the bladder neck, and ligated in place with a silk suture. (c) The
bladder is emptied for urine, and filled with approximately 0.5 mL lysis solution (4 M guanidine isothiocynate, 0.5% sarcosine, 25 mM citrate,
pH 5.5), which is left in place for 2 minutes and withdrawn. The resulting urothelial lysates can be used for RNA isolation or protein analysis
by Western, as described in [28]. By infusing a trypsin solution into the bladder lumen, suspensions of urothelial cells for flow cytometric
analysis can be made [30].

It has been proposed that it is unlikely that any of
the urothelial cancers observed in rats treated with dual-
acting PPARα+γ agonists are due to receptor-mediated
effects (exaggerated pharmacology) [48]. We have a different
interpretation of the available data: it is clear that activation
of PPARα can cause tumours in rats and mice (Table 1) [9],
and while more controversial, activation of PPARγ can at
least in some cases cause cancer in rats and mice (Table 1)
[5, 6, 8, 34, 36]. Of special interest is the recent finding
that selective PPARγ agonists such as rosiglitazone can
promote hydroxybutyl(butyl)nitrosamine-induced bladder
cancer in rats [49] (Table 1). Thus, it is plausible that
the carcinogenic effect of dual-acting PPARα+γ agonists in
cells coexpressing PPARα and PPARγ (Table 1) may be due
to receptor-mediated mechanisms (exaggerated pharmacol-
ogy). Further, it has been described that PPARα and PPARγ
agonists may exhibit synergistic effects in cells coexpressing
PPARα and PPARγ [19, 28, 53–55]. Thus, the hypothesis
of receptor-mediated carcinogenicity (carcinogenicity due to
exaggerated pharmacology) would predict that in rat tissue
coexpressing PPARα and PPARγ, dual-acting PPARα+γ
agonists may have a higher propensity for carcinogenic effect
than selective PPARα and PPARγ agonists alone, which in
fact appears to be the case (Table 1). Endothelial cells also
coexpress PPARα and PPARγ [20], and synergy between
PPARα and PPARγ in the endothelium has been described
[19], but hemangiosarcoma frequencies appear comparable
between mice treated with dual-acting PPARα+γ agonists
and selective PPARγ agonists (Table 1). This may relate to
differences between mouse urothelium and endothelium in
PPARα and PPARγ expression, signalling, and/or cross-talk.

Specifically, we are not aware of any data that a priori
disqualifies a receptor-mediated carcinogenicity mechanism
for dual-acting PPARα+γ agonists in the rat urothelium
[48]. For example, (human) urothelium does not appear
to receive growth/differentiation cues from the urine [39]
and hence low urinary excretion of PPAR agonists does not
rule out receptor-mediated carcinogenic effects. Also, the
well known in vitro cytotoxic effects of PPAR agonists [5, 6,

36, 62], including ragaglitazar [61], are generally mediated
by nongenomic (off-target) mechanisms, that is, do not
rule out receptor-mediated carcinogenic effects in vivo. In
fact, our current working hypothesis for ragaglitazar is that
exaggerated pharmacology and nongenomic cytotoxicity
may occur simulaneously and together promote cancer
development in the rat urothelium (Figure 3). Finally, the
overrepresentation of bladder cancers in male rats seen with
some dual-acting PPARα+γ agonists is sometimes presented
as an argument against receptor-mediated carcinogenic
effects [48]. However, current data suggests that there are
gender differences in the expression of all PPAR isoforms, in
a variety of species and tissue, including the urinary bladder
[108–113]. Moreover, our hypothesis implies that the male
rat may represent an accelerated tumour model, as any
cytotoxicity/damage to the urothelium will provoke urothe-
lial regeneration and thus promote a receptor-mediated
carcinogenic effect (Figure 3).

A key issue for the future will be how to distinguish
between “receptor-mediated” and “nonreceptor-mediated”
urinary bladder carcinogenicity mechanisms in rat exper-
iments. Most simply, we suggest that receptor-mediated
(exaggerated pharmacology) carcinogenicity mechanisms
may be suspected for dual-acting agonists that induce
carcinogenicity-relevant biomarkers in the rat urothelium
with rapid kinetics (i.e., following a minimum of repeated
oral doses) and with equal distribution in the dorsal
and ventral bladder domes [28–30]. The maximal doses
in this type of study could logically be the same as
those used for 2-year rat carcinogenicity studies (heart
weight increases of approx. 25% at 13 weeks have been
suggested to identify the maximum tolerated dose for 2-
year rodent oncogenicity studies) [8], and lower doses
may allow evaluation of nongenomic (off-target) effects on
the biomarker endpoints [30]. Further refinement may be
accomplished by including PPARα and PPARγ antagonists
[15, 116, 117], inactive analogs [98], or, more speculatively,
modulation of PPAR expression in the bladder by siRNA
approaches [118].
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Figure 3: Current mode-of-action hypothesis for the carcinogenic effect of dual-acting PPARα+γ agonists in the rat urothelium. To explain
the carcinogenicity of dual-acting PPARα+γ agonists in the rat urothelium, we favor a multifactorial mode-of-action (MOA) hypothesis,
compatible with the observation that PPAR agonists can cause diametrally opposite biological effects (mitogenesis as well as cytotoxicity in
vitro, carcinogenicity as well as tumour inhibition in vivo) depending on context (species, PPAR activation profile of agonist, agonist dose,
cell type as well as PPAR expression, etc.) [2, 4–6, 8, 33–36, 62, 106, 107]. (The shown MOA hypothesis is based on previously published
ragaglitazar data [18, 28–30, 61], but may be applicable to other dual-acting agonists (Table 1) [8, 31]. The shown MOA hypothesis is
applicable to rats only due to the known profound species differences in PPAR function [26, 32]. Bladder cancer was seen in SD, Wistar, and
Fischer rats of both sexes [8, 29], but the shown MOA hypothesis may nevertheless be rat strain dependent due to rodent strain differences
in PPAR function [10]. The shown MOA hypothesis is compatible with gender differences, due to gender differences in PPAR expression
and function [108–113], and does not assume urinary excretion of the PPAR agonist [39].)

Adding 1% NH4Cl to rat feed induces systemic acidosis,
measurable directly by reduced blood pH, reduced blood
[HCO3

−], and increased blood [H+] as well as indirectly
by, for example, increased urinary Ca++ and phosphorus

excretion due to bone resorption [119]. As urine acidification
also occurs, adding 1% NH4Cl to rat feed is sometimes used
to evaluate whether rat bladder carcinogenesis is urolith-
mediated [29, 48, 114, 115]. However, urine acidification
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by feeding rats NH4Cl has also been reported to reduce
the occurence of bladder tumours, where the mechanism is
not thought to be urolith-mediated [120–122], and NH4Cl
feeding of rats can also influence the occurrence of tumours
outside of the urinary bladder [123]. In fact, systemic
acidosis induced by NH4Cl would be expected to have
profound effects on cellular and organ function in the whole
organism, including the bladder [123–129]. Therefore, while
some aspects of bladder function are unaffected by NH4Cl
feeding [130], the impact of systemic acidosis on bladder
cancer development may be unrelated to urolith formation.
Further, it is possible that induction of acidosis may directly
interfere with the action of some PPAR agonists [131–134].
In short, induction of systemic acidosis may not specifically
discriminate between mechanisms of PPAR carcinogenicity
in the rat urothelium (Figure 1).

8. CURRENT MECHANISM HYPOTHESIS FOR
UROTHELIAL CANCERS INDUCED BY
DUAL-ACTING PPAR AGONISTS IN THE RAT

We have attempted to integrate the urothelial changes
observed in ragaglitazar-treated rats [28–30], results from
ragaglitazar-treated urothelial cell cultures [61], knowledge
about PPARs in urothelial biology (see Figure 3), and new
data about PPAR isoform expression in rat and human
bladder [18] into a mode of action hypothesis for urothelial
carcinogenesis by dual-acting PPAR agonsts in rat urothe-
lium (Figure 3).

The hypothesis is completely speculative (Figure 3), but
to our knowledge, does not conflict with current knowledge
of PPAR biology (see Figure 3). The main predictions of the
hypothesis are that (i) coactivation of PPARα and PPARγ in
the rat urothelium can produce effects different from those
observed with specific activation of either PPARα or PPARγ,
(ii) the effects of dual-acting PPARα+γ agonists on early
biomarkers (e.g., Egr-1) depend on structural aspects such as
PPAR selectivity, affinity, and activating effect of the agonist,
and (iii) early biomarker changes (e.g., Egr-1 induction,
phosphorylation of c-jun and S6) are causally involved in
later urothelial cancer development.

For practical reasons, our focus is on early (precan-
cerous) changes in the rat bladder urothelium (Figure 3),
but involvement of PPARs in later stages of urothelial
cancer progression is also possible by paracrine [51] or
immunological mechanisms [35].

9. FUTURE DIRECTIONS

In practical experimental terms, based on the mode of action
hypothesis presented in Figure 3, we currently prioritize (i)
evaluating cross-talk between PPARα and PPARγ signalling
in urothelial cells, by treating rats orally with rosiglitazone
and fenofibrate either separately or in combination with
short-term studies [28], (ii) evaluating the causal role of Egr-
1 in urothelial cancer development by, for example, chro-
matin immunoprecipitation experiments from rat bladder,
and (iii) comparing the findings between rat urothelium in

vivo and finite cultures of normal rat and human urothelial
cell in vitro.

Specifically, we believe that establishing cause-effect
relationships between early biomarkers and later cancer
development is key to understand the mode of action
for carcinogenic effects of dual-acting PPARα+γ agonists
in the rat urothelium (Figure 3). Validating early carcino-
genicity biomarkers in rats should also allow developing
simple preclinical assays to rank the carcinogenic potential
of developmental PPAR agonists (Figure 3). Additionally,
understanding the mechanisms in rats (Figure 3) would aid
in assessing the human relevance of the rat bladder cancer
findings [135, 136].

Finally, a recent study showed that the specific PPARγ
agonist rosiglitazone is a strong promoter of hydroxybutyl-
(butyl)nitrosamine-induced bladder cancer in rats [49]. It
is tempting, but obviously highly speculative, to integrate
this obervation into the proposed mode of action hypothesis
for ragaglitazar-induced bladder cancers in rats (Figure 3).
The prediction would be that in the rat urothelium in vivo,
PPARα activation may provide cancer initiation and PPARγ
activation cancer promotion signals. A plausible cancer
initiation mechanism by PPARα activation is peroxisome
formation and free radical production. Thus, exploring the
effects of specific PPARα agonists in the rat urothelium
would seem a highly worthwhile undertaking.

NOMENCLATURE

Akt: Protein kinase B
EGFR: Epidermal growth factor receptor
Egr-1: Zif268, early growth response protein 1,

zinc finger transcription factor
FOXA1: Forkhead box A1
HNF-3 alpha: Hepatocyte nuclear factor-3 alpha, winged

helix transcription factor
IRF-1: Interferon regulatory factor 1
NHU: Finite normal human urothelial cell lines
PPAR: Peroxisome proliferator-activated receptor
PI3K: Phosphatidyl inositol 3 kinase
S6: Ribosomal protein.
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