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Abstract: Human sensation for sweet tastes and the thus resulting over-consumption of sugar in
recent decades has led to an increasing number of people suffering from caries, diabetes, and obesity.
Therefore, a demand for sugar substitutes has arisen, which increasingly has turned towards natural
sweeteners over the last 20 years. In the same period, thanks to advances in bioinformatics and
structural biology, understanding of the sweet taste receptor and its different binding sites has
made significant progress, thus explaining the various chemical structures found for sweet tasting
molecules. The present review summarizes the data on natural sweeteners and their most important
(semi-synthetic) derivatives until the end of 2019 and discusses their structure–activity relationships,
with an emphasis on small-molecule high-intensity sweeteners.

Keywords: natural product; plant origin; non-caloric sweeteners; mogrosides; stevia glycosides;
phyllodulcin

1. Introduction

Taste—or the gustatory system—is the essential evolutionary tool to evaluate the composition of
foods before ingestion [1,2]. The five taste qualities generally considered to be basic tastes are sweet,
sour, salty, bitter, and umami, the latter being typically elicited by L-glutamate [2,3]. Each of these
five taste qualities plays an important role, either indicating high electrolyte concentrations (salty),
spoiled food (sour), and poisonous plant metabolites (bitter), or giving nutritional information, such as
the abundance of carbohydrates (sweet) or proteins (umami) [3,4]. Sweet and umami are the main
attractive taste modalities and therefore called the two palatable tastes [5,6]. In particular, the sweet
taste has a great relevance, as most people respond positively to the sensation of sweetness [7]. The
propensity to sweet foods and the thus resulting over-consumption of sugar in industrial countries
has led to a significant number of people suffering from caries, diabetes, and hyperlipidemia [7–9].
Consequently, in the last four decades a market for non-caloric sweeteners and dietary products
has evolved, addressing the needs of more than a billion people [10]. Additionally, more and more
consumers express their interest for natural ingredients, leading to an increasing demand for natural
non-caloric sweeteners [10]. This demand is reflected by scientific publications, which show both
an increase in papers dealing with sugar substitutes and a significant rise in publications on natural
sweeteners (Figure 1).
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complementary pair of hydrogen bond donor and acceptor on the receptor, and that this feature 
would be the crucial interaction for binding [15]. Other models followed, applying either planar [16] 
or three-dimensional geometries, the latter deriving from newly found guanidine-based sweeteners 
[17]. However, due to the ongoing discovery of natural sweeteners with distinct chemical structures, 
the idea of a general model to predict and quantify the sweetness of compounds was abandoned, 
now assuming that different classes of sweet molecules might interact with different receptor types 
[18]. Still, the model of Schallenberger and Acree was furthermore used to describe the linkage 
between sweetness and structure, as demonstrated in recent rotational studies on sugars and artificial 
sweeteners combining laser ablation with Fourier-transform microwave spectroscopy [19–21]. 

 
Figure 1. Number of publications with the topic “sugar substitute” and “natural sweetener” according 
to the Web of Science citation indexing service (core collection) from 1945 to 2019. 

The identification of the taste 1 receptor family, comprising three taste receptors (TAS1R1–3), 
revealed that indeed only one receptor type is responsible for the sweet taste, which is a heterodimer 
of TAS1R2 and TAS1R3 [22,23]. Furthermore, the taste for umami was attributed to the 
TAS1R1/TAS1R3 heterodimer, thus showing that both taste receptors share a common subunit [5,23]. 
Same as other class C G Protein-coupled receptors (GPCRs), the sweet taste receptor is composed of 
a cytoplasmic region, a region constituted by seven transmembrane helices, and a large extracellular 
region [4,22]. In contrast to some other GPCRs, such as metobotropic glutamate receptors or γ-
aminobutyric acid type B receptors, which function as homo- and heterodimers, TAS1 receptors are 
obligatory heterodimers [2]. The extracellular domain contains a Venus fly trap domain (VFD) and a 
cysteine-rich domain (CRD), with nine cysteine residues forming four disulfide bonds and a fifth 
disulfide bond with the VFD. Even though several GPCRs have already been crystallized, a crystal 
structure for the sweet taste receptor is still missing [9,22]. However, the good sequence alignment 
with metabotropic glutamate receptors 1 and 5 allowed a homology 3D-model of the sweet taste 
receptor and a detailed discussion of the different binding sites [9]. The orthosteric binding pockets 
both have a volume of about 4900 Å³ in their open form and thus allow small as well as large 
sweeteners to bind to the receptor. Additionally, both cavities are hydrophilic, with 45% (TAS1R2) 
and 50% (TAS1R3) surface area being accessible to polar molecules. Furthermore, each subunit 
contains a transmembrane domain (TMD) binding pocket, with a volume of 210 Å³ for TAS1R2 and 
270 Å³ for TAS1R3, respectively. With the TAS1R3 TMD binding pocket also being present in the 
umami receptor, ligands such as the sweetener cyclamate or the sweetness inhibitor lactisol have also 
been found to enhance or inhibit the taste of glutamate [24]. Both binding sites allow allosteric 
modulation of small molecules, while another allosteric binding site is in the CRD and accessible for 
macromolecules, such as the sweet-tasting proteins brazzein, monellin or thaumatin [25]. The 
orthosteric binding sites in the VFD of both subunits can bind ligands, which is the case for e.g., 
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Over the years, numerous compounds have been identified with sweetening properties, either by
phytochemical approaches or organic synthesis [11–13]. In many cases, natural compounds or their
glucophore were taken as lead compound, such as the isovanillyl group of (+)-phyllodulcin, which is
the sweet principle of amacha (sweet tea), a regional specialty in Japan [14]. (+)-Phyllodulcin and its
analogs were furthermore studied to understand the structure–activity relationships of the sweetening
effect. The first successful model was established by Schallenberger and Acree, who hypothesized
that a hydrogen bond donor and a hydrogen bond acceptor were interacting with a complementary
pair of hydrogen bond donor and acceptor on the receptor, and that this feature would be the crucial
interaction for binding [15]. Other models followed, applying either planar [16] or three-dimensional
geometries, the latter deriving from newly found guanidine-based sweeteners [17]. However, due to
the ongoing discovery of natural sweeteners with distinct chemical structures, the idea of a general
model to predict and quantify the sweetness of compounds was abandoned, now assuming that
different classes of sweet molecules might interact with different receptor types [18]. Still, the model
of Schallenberger and Acree was furthermore used to describe the linkage between sweetness and
structure, as demonstrated in recent rotational studies on sugars and artificial sweeteners combining
laser ablation with Fourier-transform microwave spectroscopy [19–21].

The identification of the taste 1 receptor family, comprising three taste receptors (TAS1R1–3),
revealed that indeed only one receptor type is responsible for the sweet taste, which is a heterodimer of
TAS1R2 and TAS1R3 [22,23]. Furthermore, the taste for umami was attributed to the TAS1R1/TAS1R3
heterodimer, thus showing that both taste receptors share a common subunit [5,23]. Same as other
class C G Protein-coupled receptors (GPCRs), the sweet taste receptor is composed of a cytoplasmic
region, a region constituted by seven transmembrane helices, and a large extracellular region [4,22]. In
contrast to some other GPCRs, such as metobotropic glutamate receptors or γ-aminobutyric acid type B
receptors, which function as homo- and heterodimers, TAS1 receptors are obligatory heterodimers [2].
The extracellular domain contains a Venus fly trap domain (VFD) and a cysteine-rich domain (CRD),
with nine cysteine residues forming four disulfide bonds and a fifth disulfide bond with the VFD. Even
though several GPCRs have already been crystallized, a crystal structure for the sweet taste receptor is
still missing [9,22]. However, the good sequence alignment with metabotropic glutamate receptors
1 and 5 allowed a homology 3D-model of the sweet taste receptor and a detailed discussion of the
different binding sites [9]. The orthosteric binding pockets both have a volume of about 4900 Å3 in
their open form and thus allow small as well as large sweeteners to bind to the receptor. Additionally,
both cavities are hydrophilic, with 45% (TAS1R2) and 50% (TAS1R3) surface area being accessible to
polar molecules. Furthermore, each subunit contains a transmembrane domain (TMD) binding pocket,
with a volume of 210 Å3 for TAS1R2 and 270 Å3 for TAS1R3, respectively. With the TAS1R3 TMD
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binding pocket also being present in the umami receptor, ligands such as the sweetener cyclamate or
the sweetness inhibitor lactisol have also been found to enhance or inhibit the taste of glutamate [24].
Both binding sites allow allosteric modulation of small molecules, while another allosteric binding
site is in the CRD and accessible for macromolecules, such as the sweet-tasting proteins brazzein,
monellin or thaumatin [25]. The orthosteric binding sites in the VFD of both subunits can bind ligands,
which is the case for e.g., sucrose, but most sweeteners mainly interact with the binding site in the
VFD of TAS1R2 [18]. Recent findings, furthermore, suggest that the binding site in the VFD of TAS1R3
plays an auxiliary role, showing less discriminating recognition characterized by loosely bound amino
acids [6]. Interestingly, the signal transduction (G protein-coupling) is also carried out by the TMD of
the TAS1R3 subunit, after having been transmitted from the VFD of TAS1R2, via the VFD of TAS1R3
and the CRD of TAS1R3, respectively [26].

2. Method

Literature search was carried out using the Web of Science citation indexing service and the term
“sweetener” in combination with the words “natural product”, “naturally occurring” or “plant-derived”
resulting in 436 publications. Additionally, the terms “natural” and “sweeteners” were combined,
and the results were reduced to the field of plant science and multidisciplinary chemistry, giving
155 hits. The publications were reviewed by title, abstract, and text, and reduced. Additionally,
studies from other review articles were collected, which were not found by database search. Chemical
structures were divided into compound classes (carbohydrates, amino acids, phenols, and terpenes)
and, depending on the number compounds, into subclasses, thereby defining the structure of this
review. Compound names (mostly trivial names) and configurations were taken “as is” from the
original publications and species names of the natural sources used in the studies were checked using
“The Plant List” [27].

The data discussed in this review is additionally summarized in two tables, giving an overview
of natural high-intensity sweeteners (Table 1) and those which were chemically modified (Table 2).
Here, compound number, name, and source are given, as well as relative sweetness (RS) values and
the concentration of the sucrose solution used for comparison (if available). Furthermore, concomitant
bitter tastes (or aftertastes) of the compounds are indicated and divided into slightly bitter (+), bitter
(++) and very bitter (+++). (–) means that the compound was reported to exhibit no bitter taste,
whereas blank fields indicate the lack of respective data.

Table 1. Natural high-intensity sweeteners.

cpd. Name Source RS c (Sucrose) Bitterness

16 monatin Schlerochiton ilicifolius 1400 5 –
17 (+)-phyllodulcin Hydrangea macrophylla 400 3 +
18 (+)-phyllodulcin 8-O-glucoside Hydrangea macrophylla
19 (+)-diyhdroquercetin 3-acetate Pluchea dodoneifolia 80 2
20 (+)-diyhdro-6-methoxy-kaempferol 3-acetate Tetraneuris turneri 25 2
21 (+)-diyhdro-6-methoxy-luetolin 3-acetate Tetraneuris turneri 15 2
22 (+)-diyhdro-6-methoxy-luteolin Tetraneuris turneri 20 2
23 glycyphyllin Smilax leucophylla ++
24 phlorizin Symplocos lancifolia
25 trilobatin Symplocos microcalyx
26 naringin Citrus paradisi +++
27 neohesperidin Citrus x aurantium ++
28 (+)-haematoxylin Haematoxylum campechianum 120 3
29 selligueain A Selliguea feei 35 2 +
30 perillaldehyde Perilla frutescens
31 (+)-hernandulcin Phyla scaberrima 1000 ++
32 (+)-4β-hydroxyhernandulcin Phyla scaberrima n.d.
33 mukurozioside IIb Sapindus rarak 1
34 steviolbioside Stevia rebaudiana 100 10 +
35 stevioside Stevia rebaudiana 210 0.6 +
36 rebaudioside E Stevia rebaudiana 174 +
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Table 1. Cont.

cpd. Name Source RS c (Sucrose) Bitterness

37 rebaudioside B Stevia rebaudiana 150 10 +
38 rebaudioside A Stevia rebaudiana 242 +
39 rebaudioside D Stevia rebaudiana 221 +
40 rebaudioside C Stevia rebaudiana 30 +
41 rebaudioside F Stevia rebaudiana 200 +
42 dulcoside A Stevia rebaudiana 30 30 +
43 rubusoside Rubus chingii 114 +
44 suavioside B Rubus chingii
45 suavioside G Rubus chingii
46 suavioside H Rubus chingii
47 suavioside I Rubus chingii
48 suavioside J Rubus chingii
49 bayunoside Phlomoides betonicoides 500
50 gaudichaudioside A Baccharis gaudichaudiana 55 2 –
51 gaudichaudioside B Baccharis gaudichaudiana ++
52 gaudichaudioside E Baccharis gaudichaudiana ++

53 4β,10α-dimethyl-1,2,3,4,5,10-
hexahydrofluorene- 4α,6-dicarboxylic acid Pinus sp. 1600 +++

54 glycyrrhizic acid Glycyrrhiza glabra 93–170 ++
55 albiziasaponin A Albizia myriophylla 5
56 albiziasaponin B Albizia myriophylla 600
57 periandrin I Periandra mediterranea 93–170 +
58 periandrin III Periandra mediterranea 93–170 +
59 periandrin V Periandra mediterranea 200 +
60 periandrin II Periandra mediterranea 93–170 +
61 periandrin IV Periandra mediterranea 93–170
62 abrusoside A Abrus precatorius 30 –
63 abrusoside B Abrus precatorius 100 –
64 abrusoside C Abrus precatorius 50 –
65 abrusoside D Abrus precatorius 75 –
66 abrusoside E Abrus precatorius
67 cyclocarioside A Cyclocarya paliurus 200
68 cyclocarioside I Cyclocarya paliurus 250
69 pterocaryoside A Cyclocarya paliurus 50 2 +
70 pterocaryoside B Cyclocarya paliurus 100 2 +
71 mogroside III Siraitia grosvenorii –
72 mogroside IIIA1 Siraitia grosvenorii –
73 mogroside IIIA2 Siraitia grosvenorii –
74 mogroside IIIE Siraitia grosvenorii –
75 mogroside IVA Siraitia grosvenorii –
76 mogroside IVE Siraitia grosvenorii 392 1 –
77 siamenoside I Siraitia grosvenorii 563 1 –
78 grosmomoside Siraitia grosvenorii –
79 mogroside V Siraitia grosvenorii 425 1 –
80 isomogroside V Siraitia grosvenorii –
81 neomogroside Siraitia grosvenorii –
82 mogroside VI Siraitia grosvenorii –
83 mogroside VIA Siraitia grosvenorii –
84 mogroside VIB Siraitia grosvenorii –
85 7-oxomogroside IIIE Siraitia grosvenorii
86 7-oxomogroside IV Siraitia grosvenorii
87 7-oxomogroside V Siraitia grosvenorii
88 osladin Polypodium vulgare 500 +
89 polypodoside A Polypodium glycyrrhiza 600 6 +
90 polypodoside B Polypodium glycyrrhiza
91 extensumside C Myriopteron extensum 400 1
92 extensumside E Myriopteron extensum 200 1
93 extensumside F Myriopteron extensum 200 1
94 extensumside H Myriopteron extensum 200 1
95 extensumside D Myriopteron extensum 300 1
96 extensumside G Myriopteron extensum 100 1
97 extensumside I Myriopteron extensum 150 1
98 extensumside J Myriopteron extensum 100 1
99 extensumside K Myriopteron extensum 50 1

100 extensumside L Myriopteron extensum 50 1
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Table 2. Synthetic plant-derived high-intensity sweeteners.

cpd. Name Derived From RS c (Sucrose) Bitterness

5a sucralose sucrose
17a 2-(3-hydroxy-4-methoxypheyl)-1,3-benzodioxan phyllodulcin 3000
17b 2-(3-hydroxy-4-methoxypheyl)-1,4-benzodioxan phyllodulcin 450
17c (+)-2-(3-hydroxy-4-methoxypheyl)-1,3-benzoxathian phyllodulcin 18000
17d (+)-2-(3-hydroxy-4-methoxypheyl)-1,3-benzodithian phyllodulcin 20000

19a 4′-methyldihydro-quercetin 3-acetate (+)-diyhdroquercetin
3-acetate 400 2 –

26a naringin dihydrochalcone naringin 300 5
27a neohesperidin dihydrochalcone neohesperidin 1000 5 +
27b 3′carboxy-hesperetin neohesperidin 3400 6 +

28a (6aS,11aS)-8-methoxy-11a-methyl-6,11-
dihydroindeno[1,2-c]chromene-6a,9-diol (+)-haematoxylin 50 3

30a perillartine perillaldehyde 370 ++

30b 4-(methoxymethyl)-1,4-cyclohexadiene-1-
carboxaldehyde syn-oxime perillaldehyde 450

35a steviolbioside sulfopropyl ester sodium salt stevioside 160 +
35b steviolbioside sulfoprop-2-yl ester sodium salt stevioside 120 –
38a rebaudioside B sulfopropyl ester sodium salt rebaudioside A 170 –
43a 13-O-β-maltotriosyl-19-O-β-d-glucosylsteviol rubusoside 298 –
66a abrusoside E 6′’-O-methyl ester abrusoside E 150

3. Plant-Derived Sweeteners

3.1. Carbohydrates

3.1.1. Sugars

Carbohydrates are an important dietary source, with mono- and disaccharides providing fast
energy. However, not only their content on calories made this compounds valuable to humans, also
their sweet taste let them collect and culture different forms of this nutrients for thousands of years [11].
First historical records were found for honey, which consist largely of D-glucose (1) and D-fructose
(2), the two monomers of the sucrose disaccharide (5) (Figure 2) [11,28]. D-glucose (1) only has RS of
0.5 to 0.8 compared to sucrose (5), while the RS of D-fructose (2) is ranging from 1.1 to 1.7, making
it the sweetest naturally occurring sugar [11,29]. The mixture of the two monosaccharides, which is
called “invert sugar”, is about 0.8 times as sweet as sucrose (5), while honey itself is sweeter than sugar,
because of higher content of D-fructose (2) (32 to 38%) compared to D-glucose (1) (28 to 31%) [28,30].
Apart from 1 and 2, additional monosaccharides are known to exhibit a sweet taste, such as D-allulose
(3), which is also known as D-psicose, and D-tagatose (4) [31,32]. Showing RS values of 0.7 and 0.9,
respectively, and being generally recognized as safe (GRAS) by the Food and Drug Administration,
both compounds can be used as sugar substitutes.Molecules 2020, 25, x 6 of 23 
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Sucrose (5), also known as saccharose, or table sugar, has been used to flavor food for centuries;
being first harvested from sugarcane it is meanwhile also obtained from the sugar beet [11]. Despite
its many advantages, such as its easy availability from natural sources or its use as preservative,
consumption of high amounts of sucrose (5) can cause health problems, such as caries, obesity, or
diabetes, and therefore led to the search for alternative sweeteners, either from plant origin or by
(semi)synthetic synthesis [11,32,33]. One of the most used sweeteners is sucralose (5a), which is
obtained by chlorination of sucrose (5) and exhibits a similar taste, but with an about 600 times higher
intensity [32]. Though sucralose (5a) underwent extensive safety evaluations, there have been some
concerns that the compound leads to a decrease in beneficial gut bacteria and to thus provoke adverse
effect in the gastrointestinal tract [34,35]. Other sweet-tasting disaccharides used in food industry are
maltose (6) and trehalose (7), though both compounds show less than half of the sweetness of sucrose
(5) [27,36,37].

Regarding receptor interaction, glucose (1), sucrose (5), and sucralose (5a) in contrast to many
other sweeteners, are known to bind to the orthosteric binding sites of both subunits [38]. Due to the
structural similarities of the other saccharides, their relatively similar intensities, and the fact that the
orthosteric binding sites are accessible to polar molecules, it can be assumed that these molecules
show similar binding [9]. However, the reason for the much higher intensities of sucralose (5a) and
other chlorinated sucrose derivatives seems to derive from the much higher affinity to the TAS1R3
subunit than its counterpart sucrose (5), while at the same time showing comparable affinities to the
TAS1R2 binding site [38]. Another reason is that the orthosteric binding sites show only 45% and 50%
polar surface, respectively, meaning that additional lipophilic groups might enhance the sweetening
effect and contribute to the much higher intensities of sucralose (5a) and other chlorinated sucrose
derivatives [9,39]. Here, in particular the chlorine atom at the C1′ of the furanose moiety showed
favorable hydrophobic interactions [40].

A study on the conformational behavior of ketohexoses by new spectroscopic techniques and
laser ablation methods, found that the most abundant sweet-tasting conformers all show the same
intramolecular H-bond network, with the anomeric hydroxy-group always in axial orientation and
the primary hydroxy-group pointing towards the cyclically bound oxygen [19]. Apart from the
same conformational signature, these two hydrogen atoms were found to be exclusively responsible
for the sweet taste. Therefore, the primary hydroxy-group is acting as proton donor and the axial
hydroxy-group as proton acceptor, thus corroborating the theory of Schallenberger and Acree [15].

3.1.2. Sugar Alcohols

Apart from mono- and disaccharides, also their reduced forms, the so-called sugar alcohols or
polyols, can exhibit a sweet taste and are used as alternative sweeteners [10,11,32,33]. The smallest
polyol is glycerol (8), though the compound is not used because of its sweetening effect (Figure 3) [7].
Erythritol (9) instead, is widely used in food industry, because of its high stability, its clean sweet taste
and the lack of unpleasant aftertastes [10,33]. Its sweetness is reported to be about 0.6 to 0.7 times
that of sucrose (5), but combination with other sweeteners can increase its sweetness by up to 30%.
Other commonly used sugar alcohols are mannitol (10), sorbitol (11) and xylitol (12) [11,33]. While
mannitol (10) and sorbitol (11) show RS values of 0.5 to 0.7, xylitol has a sweetness equal to that of
sucrose (5) and thus is the sweetest sugar alcohol known. Maltitol (13) is a twelve-carbon sugar alcohol,
which is also occurring in nature but same as other sugar alcohols is usually obtained by catalytic
hydrogenation [11]. Its RS value is 0.9 and thus higher than that of most other sugar alcohols, but it
also has a considerably higher glycemic index (35) than its congeners [11,33].
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Sugar alcohols differ from their saccharidic counterparts by only two protons, which results from
hydrogenation of one carbonyl group. Therefore, these compounds can be expected to share the same
binding site, which is also reflected by their intensities. However, the use of sugar alcohols does
not so much result from their intense sweetness, but from their similar taste to sucrose (5) and their
additional values, e.g., protection of tooth decay in chewing gums [11]. However, when it comes to
their use as substitutes in dietary foods, their caloric values as well as their glycemic index must be
taken into consideration. Apart from that, most sugar alcohols show low absorption in the upper
gastrointestinal tract and are subsequently fermented by colon bacteria, leading to flatulence and
digestion problems [33].

Same as the abovementioned ketohexoses, sorbitol (11) and the linkage between its sweetness and
structure were investigated in a rotational study using laser ablation and Fourier-transform microwave
spectroscopy [20]. Interestingly, in all three observed conformers the hydroxy-groups at positions 2 to
6 were involved in a circular intramolecular hydrogen bond network, whereas the hydroxy-group at
position 1 showed no interaction with any part of the molecule. Regarding the model of Schallenberger
and Acree and the abovementioned study on sweet-tasting ketohexoses, the hydroxy-group at position
1 again fulfils the role of the proton donor, while the hydroxy-group at position 2 serves as proton
acceptor, the latter being accomplished by the intramolecular hydrogen bonds and the thus resulting
disposition of the oxygen atom [15,19,20].

3.2. Amino Acids

Most naturally occurring amino acids are tasteless or bitter, except alanine and glycine (14)
(Figure 4) [41]. In fact, the word glycine even derives from the Greek word of sweet [7]. Of the
bitter amino acids, interestingly, their unnatural D-forms show a sweet taste, such as d-phenylalanine,
d-tyrosine, or d-tryptophan (15) [41]. Additionally, there are several sweet synthetic or natural
peptides, such as the artificial sweetener aspartame or monatin (16), which is the first natural high
potency sweetener to be presented in this review [42–44]. Monatin (16) was isolated from the roots of
Schlerochiton ilicifolius, a South African species of the Acanthaceae family in 1992. Evaluation of the
compound sweetening effect with 5 and 10% (w/v) sucrose solutions gave RS values of 1400 and 1200,
respectively, and thus a promising new natural sweetener. Even more so, as in subsequent studies
three out of four diastereomers were found to be sweet and chemo-enzymatic approaches for the
synthesis of the more potent enantiomers were established [45,46].
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D-tryptophan (15) was found to bind to the same binding site as aspartame and thus exclusively
to the VFD of the TAS1R2 subunit [26,40]. Monatin (16) is a dipeptide consisting of tryptophan and
glycine, which is also part of the synthetic dipeptide aspartame, and therefore binding to the same
binding pocket must be assumed.

3.3. Phenols

3.3.1. Phyllodulcin and Derivatives

The next high potency sweetener to be discussed is (+)-phyllodulcin (17) (Figure 5), which is
the sweetening principle of amacha, a traditional Japanese preparation [14]. Amacha means “sweet
tea” and is obtained by fermenting leaves of Hydrangea macrophylla (Hydrangeaceae), which leads to
the enzymatic hydrolyses of (+)-phyllodulcin-8-O-β-d-glucoside (18) into the much sweeter aglycone
17. Having already been isolated in 1929, (+)-phyllodulcin (17) served as lead compound for the
development of new sweeteners and for models to describe their structure–activity relationships [47].
These studies focused on the isovanillyl group, which is responsible for the sweetening effect and
resulted in the synthesis of several derivatives [48]. First attempts revealed two dioxane derivatives
(17a and 17b), of which compound 17a showed an RS value of 3000 but low stability in aqueous
media [13]. Compound 17b instead remained stable, but the sweetening effect decreased to “only” 450
times that of glucose. However, subsequent synthesis of oxathiane (17c) and dithiane (17d) derivatives
with RS values of 18,000 and 20,000, for the sweet (R)-enantiomer.
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Neohesperidin dihydrochalcone, a commonly used semi-synthetic sweetener, was found to
interact with the TMD binding pocket in the TAS1R3 subunit and thus on the same site as cyclamate
and the sweetness inhibitor lactisol [49]. Because neohesperidin dihydrochalcone belongs to the class
of isovanillyl derivatives, also (+)-phyllodulcin (17) and its analogs are expected to bind to this site.
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The allosteric receptor modulation via this binding site furthermore explains the extremely high RS
values of some of the synthesized compounds.

3.3.2. Flavanonols

Another compound class which yielded sweet-tasting constituents is the class of flavanonols, also
referred to as diyhdroflavonols (Figure 6). Of this compound class so far, four natural sweet-tasting
molecules have been isolated. (+)-Dihydroquercetin acetate (19) was isolated from the young shoots
of Tessaria dodoneifolia (Asteraceae), which was meanwhile classified into the genus Pluchea [50]. The
compound showed an RS value of 80 compared to a 2% (w/v) sucrose solution. However, a synthetic
analog (19a) showing a 4′-methoxy-group and thus an isovanillyl moiety, exhibited a RS of 400. Because
only the racemic form was synthesized it can be assumed that the (+)-enantiomer shows twice the
intensity. Further flavanonols (20–22) have been isolated from Hymenoxys turneri (Asteraceae), which
now belongs to the genus Tetraneuris, but their RS values were only in the range of 15 to 25 [51].
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3.3.3. Dihydrochalcones

The class of dihydrochalcones contains three semi-synthetic high potent sweeteners (26a, 27a,
and 27b), though their precursor molecules are ranging from slightly sweet (23–25) to even bitter
molecules (26 and 27) (Figure 7). Compounds 23 to 25 are naturally occurring dihydrochalcones,
so-called phloretin derivatives. The first of these compounds, glycyphyllin (23) was isolated from
Smilax glycyphylla (Smilaccaceae), which is meanwhile named Smilax leucophylla, and was reported to
have a bittersweet taste, similar to that of licorice [11]. Phlorizin (24) was obtained from Symplocos
lancifolia (Symplocaceae), while trilobatin (25) was isolated form Symplocos microcalyx, a species with
an unresolved taxonomic status [52,53].
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The sweetening potential of naringenin dihydrochalcone (26a) and especially neohesperidin
dihydrochalcone (27a) was already detected in 1969, when the respective flavanones (26 and 27)
were treated with hot alkali [54]. While compound 26a shows an RS value of 300, neohesperidin
dihydrochalcone (27a) shows a relative sweetness of 1000 compared to a 5% (w/v) sucrose solution. The
higher intensity of compound 27a derives from the isovanillyl feature, which is missing in naringenin
dihydrochalcone (26a). Though neohesperidin dihydrochalcone is used as sweetener in a wide range
of foods and beverages it has some limitations, such as a slow onset and a lingering aftertaste [12,55,56].
To improve these temporal deficits different modification of neohesperidin have been carried out, with
one compound, 3′-carboxyhesperetin dihydrochalcone (27b), even showing a higher RS 3400 compared
to a 6% sucrose solution [57]. However, the characteristic lingering aftertaste was not improved.

Same as above, the isovanillyl feature of compounds 27a and 27b was responsible for the much
higher sweetening effect compared to compounds lacking this feature (23–26a). Compared to the
previously discussed phenolic compound classes, the dihydrochalcone type seems to stimulate the
allosteric binding pocket to a much higher extent than other plant-derived phenols.

3.3.4. Condensed Phenols

The last class of phenolic compounds to be discussed consists of two condensed phenols (28
and 29) and one synthetic analog (28a) (Figure 8). The first compound is (+)-haematoxylin (28), a
constituent of Haematoxylum campechianum (Fabaceae) and shows an RS value of 120 compared to a 3%
(w/v) sucrose solution [58]. To improve the sweetening effect a synthetic analog was prepared, which
displayed an isovanillyl feature on one of the two aromatic rings. However, the relative sweetness did
not alter significantly, now showing an RS value of 50 for the racemate.
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Figure 8. Chemical structures of sweet-tasting condensed phenols.

The second condensed phenol is a proanthocyanidine isolated from the Indonesian medicinal
plant Selliguea feei (Polypodiaceae) [59]. The bittersweet rhizomes, which are used for the treatment of
rheumatism and as tonic, yielded selligueain A (29), which showed a RS of 35, when compared to a 2%
(w/v) sucrose solution.

Structure–activity relationships of these three compounds are difficult. Due to their phenolic
nature and it must be assumed that they share the same binding pocket as the previously discussed
phenols. However, the fact that compound 28a did not show significantly higher RS values than its
congener as well as the size of compound 29 somehow contradict this theory. On the contrary, the
relatively low intensities observed for these molecules in comparison to e.g., diyhdrochalcones could
hint towards the same binding site but much lower efficacies.

3.4. Monoterpenes

The class of monoterpenes, so far, only yielded one natural sweetener, which is perillaldehyde (30)
(Figure 9). The compound is the sweet principle of perilla oil, which is obtained by distillation of Perilla
frutescens (Lamiaceae) [11]. The compound itself, same as the oil, only shows a slightly sweet taste, but
the respective syn-oxime, perillartine (30a) possesses a RS of about 370 to that of sucrose (5) [11,60,61].
However, perillartine (30a) has an appreciable bitterness and a low water solubility, thus restricting its
use for many applications [61]. Further studies focusing on perillartine analogs yielded compound
30b, which showed an improved RS of 450 times to that of sucrose (5) coupled with superior water
solubility [61].
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Apart from the TMD binding pocket of the TAS1R3 subunit, also the TAS1R2 subunit has an
allosteric binding site [9,26]. The latter is said to have a volume of about 210 Å3 and, moreover, has
a surface area of 38% accessible to polar molecules [9]. Thus, only very small and less hydrophilic
molecules are known to bind to this region, such as (+)-perillartin (30a) and its analogs.
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3.5. Sesquiterpenes

Another two sweet-tasting volatile oil constituents belong to the class of sesquiterpenes and
are named (+)-hernandulcin (31) and (+)-4β-hydroxyhernandulcin (32) (Figure 10) [62,63]. Having
been isolated from Lippia dulcis (Verbenaceae), which was later reclassified as Phyla scaberrima,
(+)-hernandulcin (31) was found to be about 1000 times as sweet as sucrose (5) [62]. Moreover, the
compound showed a bitter aftertaste, very low water solubility and was found to decompose upon
heating [62,64]. Its natural derivative (+)-4β-hernandulcin (31) also showed a sweet taste and better
water solubility, though a detailed characterization could not be performed due to low substance
quantities [63].
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Another very interesting sesquiterpenoid, mukurozioside IIb (33) was isolated from the fruit of
Sapindus rarak (Sapindaceae) [63]. Evaluation of the compound’s sweetening potential revealed that
its sweetness was comparable to that of sucrose (5) and that the effect derived from the high content
(6.3%) in the fruit pulp.

With regard to receptor binding, compounds 31 and 32 are likely to bind to the same site as the
monoterpenes, as both compounds are of small size and show rather pronounced lipophilicity. The
structure of compound 33, instead, indicates binding at the orthosteric site in the VFD of TAS1R2. As
the linkage of sugar moieties attached reminds of other specific TAS1R2 binders, such as steviosides, it
is likely that also compound 33 acts exclusively at this subunit [26].

3.6. Diterpenes

3.6.1. Kauran-Type Diterpenoids

Stevia glycosides belong to the most important natural sweeteners and currently are maybe
the most popular plant-derived sugar substitutes. These Kauran-type diterpenoids are present in
the leaves of Stevia rebaudiana (Asteraceae), which has been used for centuries by the indigenous
population of Paraguay [12]. After stevioside (35) was first isolated from the leaves of “Yerba dulce”
in 1931, additional glycosides were discovered since the 1970s, of which nine were studied for their
sweetening properties (34, 36–42) (Figure 11) [65–68]. Of the total amount of glycosides, which
can vary between 4 and 20% of dried leaves, stevioside (35) and rebaudioside A (38) are present in
the highest concentrations [67,69]. The latter compound has the GRAS status and is marketed as
rebiana [68,70]. It is also the sweetest among the glycosides and said to have the least, though still
considerable, bitter and lingering aftertaste [11]. To get rid of these drawbacks several derivatives were
prepared, of which compound 35a was still slightly bitter, while compounds 35b and 38a were devoid
of bitterness [71]. However, their sweetness was also somewhat decreased. Regarding the sweetening
potential of the natural glycosides the compounds showing branched sugar moieties (37–39) were
sweeter than each of their non-branched counterparts (34–36). Within each group, the component
with a monoglucosidic ester was the sweetest, which were stevioside (35) and rebaudioside A (38).
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Compounds containing an α-l-rhamnose moiety (40 and 42), showed significantly decreased RS values
of 30, while substitution with a β-d-xylose moiety only slightly altered relative sweetness (41). The
reported RS values of stevia glycosides are in line with a recent molecular docking study, which found
the lowest binding energy—and thus highest sweetness—for rebaudioside A (38) and the highest
binding energy for rebaudioside C (40) [72]. The authors, furthermore, suggested the rhamnose moiety
as a good discriminator between bitter and sweet tastes.
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Another series of kauran-type glycosides (43–48) was isolated from Rubus suavissimus (Rosaceae),
which is now classified as Rubus chingii var. suavissimus [73,74]. Rubusoside (43) was found to have a
RS of about 115 time that of sucrose (5), but a slightly bitter aftertaste. Semi-synthetic modification of
rubusoside with a maltotriosyl moiety (43a) increased the RS and at the same time reduced the bitter
taste [75]. Unfortunately, RS values of the other glycosides were not obtained. However, only those
compounds with glucose moieties in positions 13 and 19 were found sweet, namely suaviosides B (44),
G (45), I (46), H (47), and J (48) [74].

3.6.2. Lanostan- and Gibban-Type Diterpenoids

Also, lanostan-type triterpenoids have been found to potentially exhibit a sweet taste, though not
as many as reported for kauran-type diterpenoids. One of these diterpenoids, bayunoside (49) was
found to possess a RS of about 500 times of that of glucose (Figure 12) [11]. However, the compound,
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which was isolated from Salvia digitaloides (Lamiaceae), meanwhile named Phlomoides betonicoides,
furthermore showed a lingering aftertaste lasting for more than one hour and therefore restricting its
use for many applications.Molecules 2020, 25, x 14 of 23 
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Sweet-tasting gaudiachaudiosides A (50), B (51), and E (52) were isolated from Baccharis
gaudichaudiana (Asteraceae) [64]. Of these compounds, gaudichaudioside A (50) showed a pleasant
and sweet taste that was 55 times sweeter than a 2% (w/v) sucrose solution. Gaudichaudioside B (51)
and E (52), instead, showed a sweet-bitter taste, while additional compounds of this group were either
neutral or entirely bitter.

The sweet gibban derivative 53 was isolated from pine tree rosin and was found to exhibit a RS of
about 1600 times of that of glucose, but also a relative bitterness of 15 times of that of caffeine [76].
Because of the fact that only one of four possible isomers was found to be sweet and subsequent
reports on the hormone-like effect on plant growth, the research on this compound was not further
conducted [47].

3.7. Triterpenes

3.7.1. Oleanan-Type Triterpenoids

Glycyrrhzicic acid (54), is the sweet principle in the roots of Glycyrrhiza glabra (Fabaceae), where it
is contained in amounts of 6–14% as calcium, magnesium and potassium salt (Figure 13) [10,12]. The
mixture of the different salts is also referred to as glycyrrhizin, whereas the crude extract is known as
licorice [10]. The ammonium salt of glycyrrhizic acid (54) hast GRAS status for the use as flavoring
compound (but not as sweetener) in the US, while the Committee of Food in the EU suggests to
consume not more than 100 mg per day, due to the possibility of pseudoaldosteronism [12]. The
relative sweetness of glycyrrhizin compared to sucrose (5) is about 50, while for glycyrrhizic acid
(54) RS values of 93 to 170 have been reported [12,77]. Apart from its sweetness, glycyrrhizic acid
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(54) is characterized by a licorice aftertaste, and shows both a slow onset as well as long sweetness
lingering [10], thus making it an ideal candidate for studying receptor kinetics. Attempts to alter the
compound’s taste profile by modifying the saccharide units, have, so far, been unsuccessful [78,79].Molecules 2020, 25, x 15 of 23 
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Stems of Albizia myriophylla (Fabaceae) are used in traditional medicine in Thailand and Vietnam
and were found to contain sweet-tasting oleanan-type triterpenoids, namely albiziasaponin A and B
(55 and 56) [80]. While albiziasaponin A (55), which is bearing a lactone ring, only exhibited a relative
sweetness of 5 compared to sucrose (5), albiziasaponin B (56), which has a free carboxylic acid, showed
an RS value of 600. Other sweet-tasting oleanan-type triterpenoids were isolated from the rhizomes
of Periandra dulcis (Lamiaceae), which meanwhile was reclassified as Periandra mediterranea [64,81].
The plant, which is commonly known as Brazilian licorice afforded five sweet-tasting compounds,
periandrin I to V (57–61). While the sweetness of periandrins I to IV was comparable to glycyrrhizic
acid (54), periandrin V (59), which contains a terminal xylose moiety instead of glucuronic acid showed
a RS of 200 times compared to sucrose (5) [82].

Comparison of the eight oleanan-type triterpenoids (54–61) makes clear that the carboxylic acid is
crucial for the sweetening effect, as demonstrated by the low sweetness of the lactone albiziasaponin
A (55). In contrast, the keto-group in position 11 of glycyrrhizic acid (54) does not seem essential as
none of the periandrins (57–61) shows this feature, though being equally sweet. Within the group of
periandrins, the one compound showing a xylose moiety (59) turned out to be slightly sweeter. This
effect was already observed for xylose bearing rebaudioside F (41), which was much sweeter than its
rhamnose bearing analog rebaudioside C (40). Another effect observed with the stevia glycosides was
that branching trisaccharide moieties were sweeter than their disaccharidic analogs. If the branching
sugar moiety is also the reason for the significantly higher sweetness of albiziasaponin B (56) cannot
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be concluded, because additional features distinguish this compound, such as the hydroxy-group in
position 24.

3.7.2. Cycloartan- and Dammaran-Type Triterpenoids

Four sweet-tasting cycloartanoids, abrusosides A to D (62–65), were isolated from the leaves of
Abrus precatorius (Fabaceae), showing RS values of 30, 100, 50, and 75, respectively (Figure 14) [83,84].
Abrusoside B (63), which was the sweetest of the four compounds, is bearing a glucosylated glucuronic
acid methyl ester moiety. This is interesting, because abrusoside E, which was isolated in later study
and showed only slight sweetness, became about 150 times sweeter than sucrose upon semi-synthetic
esterification of its glucuronic acid moiety [85].
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Phytochemical investigations on Pterocarya paliurus (Juglandaceae), which was reclassified as
Cyclocarya paliurus, yielded dammaran-type triterpenoids cyclocaryoside A (67) and I (68) as well as
3,4-seco-dammaranes pterocaryosides A and B (69 and 70) [86–88]. While the seco-dammaranes 69 and
70 showed a relative sweetness of 50 and 100 compared to a 2% (w/v) sucrose solution, cyclocaryosides
A (67) and I (68) were reported with RS values of 200 and 250, respectively. Interestingly, compounds 68
and 69 were found to contain a β-d-quinovose moiety in position C-12, which is a rarely encountered
deoxyhexose in plants.

3.7.3. Cucurbitane-Type Triterpenoids

Mogrosides (71–87) belong to the most intense and most popular triterpenoid sweeteners
(Figure 15) [12,68]. These compounds are the sweetening principle of Siraitia grosvenorii (Cucurbitaceae)
fruit, also known as monk fruit or luo han guo [68]. The total amount of mogrosides in the dried
fruit was determined with 3.8%, while the amount of major triterpenoid mogroside V (79) was found
to vary between 0.5 and 1.4% [89]. Having been used for centuries in China as medicinal plant and
herbal sweetener, extracts containing mogroside V (79) are presently used in Japan and the United
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States, where they are classified with the GRAS status [12,68,89]. Of the more than 50 triterpenoids
isolated so far, only those bearing an α-hydroxy-group in position 11 and at least three sugar moieties
exhibit a sweet taste [89–93]. Compounds without a hydroxy-group or with a keto-group in position
11 lose their sweetness and become bitter instead [89,91–93]. Though RS values are only found for
the major components, at least some conclusions can be drawn. Mogroside V (79), which consists
of five sugar moieties (a disaccharide in position C-3 and a branched trisaccharide in position C-24)
has an RS value of 425 compared to a 1% (w/v) sucrose solution and is sweeter than mogrosides
IVe (76) and VI (82), which consist either of two disaccharides (76) or two branched trisaccharides,
respectively. Siamenoside I (77), which has only four sugar moieties has an RS value of 563 and is
considered the sweetest of the mogrosides. However, the four sugar moieties of siamenoside I (77)
are not equally divided into two disaccharides but split into a monoglucoside at position C-3 and a
branched trisaccharide at position C-24. Mogroside V (79) was also modeled against stevioside (35)
in a binding model of the VFD at the TAS1R2 subunit [26]. The authors found a strong linkage for
mogroside V (79) and an additional hydrophilic interaction of the 11-hydroxy-group, which could
explain the higher intensity compared to stevioside (35). Unfortunately, the authors confused the sugar
moieties of mogroside V (79), and therefore no conclusions for the glycosylation pattern can be made
from this study.
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3.7.4. Steroids

The last compound class to be discussed in this review are sweet-tasting steroids (88–100)
(Figure 16). Investigation of two fern species of the Polypodiaceae family, namely Polypodium vulgare
and Polypodium glycyrrhiza yielded compounds osladin (88) as well as polypodiosides A and B
(89–90) [94–96]. Osladin (88) and polypodioside A (89) were both found to be potent sweeteners,
with RS values of 500 and 600, respectively. However, their poor availability coupled with low water
solubility and a licorice aftertaste minimized their commercial potential [12].
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Ten pregnane glycosides (91–100) were isolated from the pericarps of Myriopteron extensum
(Apocynaceae) and named extensumsides C–L [97]. The compounds showed RS values of 50 to 400
compared to a 1% (w/v) sucrose solution and interesting substitution pattern with several methylated
deoxy hexoses. These unusual sugar moieties were only linked to the hydroxy-group at position 3,
whereas the saccharidic moiety at position 16 was assembled of glucose molecules. Of these moieties
the highest RS values were observed for compounds with a disaccharide (91 and 95). Apart from
that, the terminal sugar of the moiety at position 3 plays an important role, with significantly higher
intensities for compounds containing β-d-cymarose instead of β-d-olandrose.

4. Conclusions

A total of 115 plant-derived compounds with reported sweetness (including 17 synthetic derivatives
but not counting the two precursors naringin and neohesperidin) have been found in the literature
and were discussed in this review. Depending on the number of similar compounds, more or
fewer conclusions on their structure–activity relationships were possible. In particular, diterpenes
and triterpenes were found suitable, as for these two compound (sub)classes several sweet-tasting
constituents were reported. A key issue with regard to the development of new natural highly intense
sweeteners is certainly the bitter aftertaste observed for many compounds. This aftertaste seems to
occur independently from the respective binding site, which may be due to strong similarities with the
bitter taste receptors. Though also being part of the GPCRs, the TAS2R bitter taste-receptor family
encompassed around 25 members, and therefore detailed structure–activity relationships will be much
more complex [98].

Still, some conclusions can be derived from the taste profiles of the already known sweeteners.
One good example is the group of mogrosides, of which more than 50 members are known, both of
bitter and extremely sweet tasting properties. Here, a change of the functional group at position 11 of
the aglycone significantly alters the taste profile. Whereas mogrosides bearing an α-hydroxy-group
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are intensely sweet, compounds with a keto-function taste bitter, a fact also apparent for glycyrrhizic
acid (54). The keto-function of the latter compound was, furthermore, found not to be relevant for its
sweet flavor by comparison with other oleanan-type triterpenoids being devoid of this feature.

Moreover, an impact of the sugar moieties can be deduced from the current review. On the one
hand side it seems that branching of three sugar moieties at one end of the molecule is favorable for
a sweet taste, whereas at the other end a monosaccharide is superior, as observed for mogrosides
as well as stevia glycosides. However, for oleanan-type triterpenoids, the distal carboxylic acid
substitutes the missing second sugar moiety and was, furthermore, found crucial for the sweetening
effect. Interestingly, the sweetest of the eight investigated oleanan-type triterpenoids, albiziasaponin B
(56), was also the only one with a branched sugar moiety at position 3. However, not only does the
quantity and arrangement of sugar moieties affect the amount of sweetness. Xylose moieties in many
cases were found equally sweet as their glucose counterparts, whereas substitution with rhamnose in
most cases led to a decrease in sweetness, as observed for dulcoside A (42) and rebaudioside C (40).
Similarly, though more specifically, in the case of extensumsides a terminal cymarose moiety led to
much higher sweetness than the C-3 epimeric oleandrose.

A comparison of diterpenoids with triterpenoids revealed overall higher intensities for the
triterpene-type sweeteners, with some exceptions, such as e.g., bayunoside (49), which showed an RS
value 500. A dynamical modeling study of the TAS1R2/TAS1R3 sweet taste-receptor binding either
the diterpenoid stevioside (35) or the triterpenoid mogroside V (79) found that both the additional
sugar moieties as well as the 11-hydroxy-group of mogroside V (79) caused stronger hydrogen bonds
with adjacent hydrophilic residues [26]. The same results were obtained in a molecular docking study
comparing mogroside V (79) with stevioside (35) and ten other terpenoid sweeteners, resulting in the
lowest binding energy for mogroside V (79) among all investigated compounds [72].
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