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Abstract
Background: Our aim was to determine if pramipexole, a D3 preferring agonist, effectively reduced
dopamine neuron and fiber loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model
when given at intraperitoneal doses corresponding to clinical doses. We also determined whether
subchronic treatment with pramipexole regulates dopamine transporter function, thereby reducing
intracellular transport of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+).

Methods: Ten 12-month old C57BL/6 mice were treated with MPTP (or saline) twice per day at 20 mg/
kg s.c. (4 injections over 48 h). Mice were pretreated for 3 days and during the 2-day MPTP regimen with
pramipexole (0.1 mg/kg/day) or saline. Stereological quantification of dopamine neuron number and optical
density measurement of dopamine fiber loss were carried out at 1 week after treatment, using
immunostaining for dopamine transporter (DAT) and tyrosine hydroxylase (TH). Additional wild-type
(WT) and D3 receptor knockout (KO) mice were treated for 5 days with pramipexole (0.1 mg/kg/day) or
vehicle. The kinetics of [3H]MPP+ and [3H]DA uptake (Vmax and Km) were determined 24 h later; and at
24 h and 14 days dopamine transporter density was measured by quantitative autoradiography.

Results: Pramipexole treatment completely antagonized the neurotoxic effects of MPTP, as measured by
substantia nigra and ventral tegmental area TH-immunoreactive cell counts. MPTP- induced loss of striatal
innervation, as measured by DAT-immunoreactivity, was partially prevented by pramipexole, but not with
regard to TH-IR. Pramipexole also reduced DAT- immunoreactivity in non-MPTP treated mice.
Subchronic treatment with pramipexole lowered the Vmax for [3H]DA and [3H]MPP+ uptake into striatal
synaptosomes of WT mice. Pramipexole treatment lowered Vmax in WT but not D3 KO mice; however,
D3 KO mice had lower Vmax for [3H]DA uptake. There was no change in DAT number in WT with
pramipexole treatment or D3 KO mice at 24 h post-treatment, but there was a reduction in WT-
pramipexole treated and not in D3 KO mice at 14 days post-treatment.

Conclusion: These results suggest that protection occurs at clinically suitable doses of pramipexole.
Protection could be due to a reduced amount of MPP+ taken up into DA terminals via DAT. D3 receptor
plays an important role in this regulation of transporter uptake and availability.
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Background
An interesting development in the use of dopamine (DA)
agonists for treatment of Parkinson's disease (PD) is that
some of them have proven to be neuroprotective in ani-
mal models of PD. Antiparkinsonian agents that are direct
DA agonists, such as apomorphine [1], bromocriptine [2],
and pramipexole [3], are neuroprotective against 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
induced damage to the DA system in mice. Administra-
tion of MPTP, which is converted to 1-methyl-4-phe-
nylpyridinium (MPP+) and intracellularly transported
into DAergic neurons [4], provides a good model for stud-
ying neuroprotection in PD. MPTP produces Parkinson-
ism in humans and in subhuman species through
selective loss of DAergic neurons of the substantia nigra
(SN) [5,6], and a number of related compounds to MPTP
also produce nigral cell loss in primates [7]. MPTP causes
apoptosis associated with PD [8-10] ;MPTP produces pro-
gressive cell death in humans for decades after the initial
insult [11]. Hence, drugs that reduce the neurotoxicity of
compounds like MPTP may be neuroprotective in PD. In
fact, it is now hypothesized that direct DA agonists may
slow the loss of DAergic terminal function upon long-
term administration to PD patients [12-15].

Dopaminergic neurons are tonically inhibited by den-
dritic and terminal autoreceptors, operating in interaction
with DA transporters (DAT) and pharmacologically of the
D2 receptor subtype [16-19]. However, Zapata et al [20]
have reported that the D3 preferring agonist (+)-PD
128907 regulates extracellular DA levels via interactions
with D3 autoreceptors. If D3 preferring agonists are potent
autoreceptor agonists, then hypothetically long-term
changes in expression of DAT or the functional properties
of DAT might occur following subchronic treatment.
Since intracellular accumulation of MPP+ following sys-
temic injection of MPTP requires DAT [4], then when DAT
is downregulated by D3 preferring agonists, this could
result in lower intracellular accumulation of MPP+ and
reduced neurotoxicity to MPTP.

The D3 receptor preferring agonists, pramipexole and rop-
inirole, are the most potent of the DA agonists affording
neuroprotection at 1 mg/kg for pramipexole against
MPTP-induced neurodegeneration [3,21] and at 2 mg/kg
for ropinirole against 6-OHDA lesions in rats [22]. Doses
10–30 times higher of DA agonists with low D3 receptor
affinity such as apomorphine [1] and bromocriptine
[2,23] are needed against MPTP-induced neurodegenera-
tion. Because neuroprotection by pramipexole is most evi-
dent with concurrent treatment with MPTP and not with
post-MPTP treatment [24], i.e. when autoreceptor contri-
butions should be most pronounced, regulation of DAT
may be important. In addition, while the lowest effective
dose reported is 1.0 mg/kg for mice, this is significantly

greater than a clinically relevant dose in humans (1.5 mg
t.i.d., p.o.[25]). Based on information from Pharmacia
Corporation, equivalent plasma levels obtained with 1.5
mg t.i.d., p.o. in humans could be produced with 0.1 to
0.5 mg/kg in the mice. We tested whether 0.1 mg/kg
pramipexole would be neuroprotective in aging mice
against MPTP-induced neurodegeneration to the DA sys-
tem, and if this effect could be due to regulation of DAT
function.

Results
Neurohistopathology
Male C57BL/6 mice of 8–10 months of age were pre-
treated with saline or pramipexole (0.1 mg/kg/day) fol-
lowed by MPTP. At the end of the 7-day recovery period
following the last injection of MPTP or vehicle were
assessed for the degree of toxicity to the dopamine system
by MPTP. MPTP produced a marked loss of tyrosine
hydroxylase-immunoreactive (TH-IR) neurons in the sub-
stantia nigra (SN), but had less impact in the ventral teg-
mental area (VTA) (Figs 1 and 2), Unbiased stereological
quantification of the number of Nissl-stained and TH-IR
neurons in the SNpc and VTA was made in the midbrains
of the treated groups. MPTP produced a 31% loss of TH-
IR neurons in the SN and 17% loss in the VTA. Pramipex-
ole administered once a day for 5 days (i.e. 3 days prior to
and during the 2-day vehicle treatment) did not alter the
total number of TH-IR neurons in the SN or VTA. Prami-
pexole administered for 3 days prior to and during the 2-
day administration of MPTP completely prevented TH-IR
neuron loss in the SN and VTA of MPTP treated mice. To
confirm that TH-IR neurons were dead and not simply
exhibiting reduced TH-IR, neurons in Nissl stained sec-
tions were counted. The results confirmed the data that
D3-preferring agonists can protect against MPTP in vivo as
well as against MPP+ in vitro [26,27].

Visualization of DA fibers with dopamine transporter
immunoreactivity, DAT-IR (Fig 3), and TH-IR (Fig 4)
demonstrated uniform staining of the caudate-putamen
(CPu) and nucleus accumbens (Nac) in the saline/saline
cases. In saline pretreated mice, MPTP reduced DAT-IR by
52% in the CPu (Figs 3 and 5A) and had a smaller but sig-
nificant impact on DAT-IR labeling of DA fibers in the
Nac. DAT-IR in the CPu in the pramipexole plus vehicle
(PPX-SAL)-treated mice was reduced by 17%. Further-
more, in pramipexole and MPTP treated mice, a signifi-
cant attenuation of the impact of MPTP in the CPu (-27%
vs -52% loss) and Nac of MPTP treated mice was seen.

In contrast to DAT-IR, levels of TH-IR (Figs 4 and 5B) was
not significantly reduced (~11%) by pramipexole in PPX-
SAL group. MPTP produced a significant (34%) loss of
TH-IR labeling of DA fibers in the CPu of WT mice and to
a lesser degree in the Nac SAL-MPTP group. Pramipexole
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Impact of pramipexole on MPTP-induced loss of TH-IR neuronsFigure 1
Impact of pramipexole on MPTP-induced loss of TH-IR neurons. Low-power photomicrograph (20x) of the substan-
tia nigra and ventral tegmental area of tissue sections stained for TH-IR from individual cases of 4 groups of mice: (A) Veh-Veh, 
(B) pramipexole -Veh, (C) Veh-MPTP (25 mg/kg sc., 4 times in 2 days at 8 h intervals), (D) pramipexole-MPTP. Note the 
marked depletion of TH-IR from the substantia nigra and considerably lesser impact in the ventral tegmental area following 
MPTP. Pramipexole pretreatment regimen provided complete protection (see D) from MPTP. Abbreviations: SNpc, substantia 
nigra pars compacta; VTA, ventral tegmental area.
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did not significantly attenuate the effects of MPTP on TH-
IR labeling of DA fibers in the CPu of WT mice (Fig 5B).

[3H]MPP+ and [3H]dopamine uptake in mouse striatal 
postnuclear preparations
Since pramipexole treatment in non-MPTP treated mice
altered levels of DAT-IR, it was important to identify if
pramipexole treatment altered the kinetics of [3H]DA and
[3H]MPP+ uptake through the DAT. Kinetics of [3H]DA
uptake in mouse striata demonstrated a higher Vmax but a
similar Km to that reported for rat fresh striatal postnuclear
preparation [28]. Uptake was sodium dependent and the
Km was similar due to inclusion of COMT inhibitor in the
preparations [29]. C57BL/6 mice treated with pramipex-
ole once a day for 5 days exhibited significant differences
from saline treated mice (Fig 6). The Vmax (P = 0.0008)
and the Km (P = 0.016) for [3H]DA uptake was signifi-
cantly decreased in pramipexole treated mice. The Vmax (P
< 0.001) and the Km (P = 0.001) for [3H]MPP+ uptake were
also significantly decreased in pramipexole treated mice.

To determine if the reduction in Vmax and the Km for
[3H]DA uptake by subchronic treatment with pramipex-
ole was due to the D3 receptor, the values for Vmax and the
Km for [3H]DA uptake was measured in WT (C57BL/6)
and D3 KO littermate mice (bred according to our previ-

ous methods [30]), treated with vehicle or pramipexole
for 5 days. ANOVA showed that there were group differ-
ences for Vmax values (F = 72.41, P < 0.0001) and for Km
values (F = 9.78, P = 0.0007). Synaptosomes prepared
from D3 KO mice had significantly lower Vmax (P = 0.001,
by 59%) and Km (P = 0.01, by 69 %), values for [3H]DA
uptake than WT mice (Table 1). WT mice treated with
pramipexole significantly lowered Vmax (P = 0.001, by
65%) and Km (P = 0.05, by 50%) values for [3H]DA uptake
compared with WT mice treated with saline. D3 KO mice
treated with pramipexole had significantly lower Vmax (P =
0.001, by 57%) and Km (P = 0.051, by 77%) values for
[3H]DA uptake than WT mice treated with saline, but D3
KO mice treated with pramipexole were not different from
D3 KO mice treated with vehicle. WT mice treated with
pramipexole were also not different from D3 KO mice
treated with pramipexole.

Dopamine transporter (DAT) autoradiography
To determine if the reduction in Vmax and the Km for
[3H]DA uptake by subchronic treatment with pramipex-
ole at 24 h post-treatment was due to the D3 receptor reg-
ulation of the number of DAT sites, the density of DAT
sites was measured in WT and D3 KO mice treated with
vehicle or pramipexole for 5 days. ANOVA showed that
there were no group differences (Table 1) at 24 h post-
treatment, but by 14 days there was a significant reduction
of DAT sites in WT mice treated with pramipexole (P <
0.01), but not in D3 KO mice (Fig 7). WT mice treated with
pramipexole exhibited a 27% reduction in the CPu, a 31%
reduction of [125I]RTI binding to DAT in the Nac, and a
11% reduction in the Nas compared to WT mice treated
with vehicle.

Discussion
Antiparkinsonian agents that are direct DA agonists (e.g.
apomorphine[1], bromocriptine [2,23], and pramipexole
[3]) are almost completely neuroprotective against MPTP-
induced loss of striatal DA in mice. MPTP administration
to mice can produce varying degrees of effect on perma-
nent damage to the nigrostriatal DA system depending on
the schedule of MPTP administration and survival period
after MPTP [31-36]. In addition, under some conditions
dramatic recovery from the initial loss of striatal DA levels
can occur without any intervention [33,34]. Therefore,
studies employing measures of striatal DA levels as the
sole criteria for impact of MPTP and protection by DA
agonists do not offer convincing evidence of protection
[1-3,23,37]. Three studies have employed both unbiased
stereological counts of TH-IR neurons in the midbrain
along with estimate of striatal DA content of animals
administered MPTP [21,24] or intracerebroventricular 6-
hydroxoydopamine [38] to produce permanent damage
to the DA system with protection by pramipexole. In all 3
studies the impact of MPTP on striatal DA levels was

Histogram of pramipexole's neuroprotective effects against MPTP induced cell lossFigure 2
Histogram of pramipexole's neuroprotective effects 
against MPTP induced cell loss. Effects of subchronic 
treatment with pramipexole on total TH-IR cell counts in the 
substantia nigra and ventral tegmental area of mice treated 
with or without MPTP. Pramipexole were administered 3 
days prior to and during the 2-day treatment with MPTP. 
Animals survived for 7 days after the last MPTP injection. 
Data are mean ± standard error of the mean from 4–5 sam-
ples per group. * P < 0.05 vs all other groups
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Impact of pramipexole on MPTP-induced loss of DT-IR fibersFigure 3
Impact of pramipexole on MPTP-induced loss of DAT-IR fibers. Low-power photomicrograph (20x) of the caudate-
putamen and nucleus accumbens of tissue sections processed for DAT-IR from individual cases of 4 groups of mice: (A) Saline-
Saline, (B) pramipexole – Saline, (C) Saline -MPTP (20 mg/kg sc., 4 times in 2 days at 8 h intervals), (D) pramipexole-MPTP. 
Note the marked depletion of DAT-IR from the caudate-putamen (C) and apparent protection by pramipexole (D). Abbrevia-
tion: CPu, caudate-putamen; NAS, nucleus accumbens shell; NAC, nucleus accumbens core.
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Impact of pramipexole on MPTP-induced loss of TH-IR fibersFigure 4
Impact of pramipexole on MPTP-induced loss of TH-IR fibers. Low-power photomicrograph (20x) of the caudate-
putamen and nucleus accumbens of tissue sections processed for TH-IR from individual cases of 4 groups of mice: (A) Saline-
Saline, (B) pramipexole – Saline, (C) Saline -MPTP (20 mg/kg sc., 4 times in 2 days at 8 h intervals), (D) pramipexole-MPTP. 
Note the marked depletion of TH-IR from the caudate-putamen (C) and apparent protection by pramipexole (D). Abbrevia-
tion: PPX, pramipexole.
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reduced by 50% with pretreatment or concurrent plus
post-MPTP treatment with pramipexole (1 to 3 mg/kg).
Protection against midbrain TH-IR neurons was greater,
even at 12 to 14 days post MPTP/6-OHDA treatment than
against DA levels. In this study of a much lower dose of
pramipexole (10 to 30 times lower) given 3 days prior to
and during the 2-day MPTP treatment, at 1-week post-

MPTP pramipexole treatment completely spared the sub-
stantial MPTP-induced loss of TH-IR neurons from the
SNpc, but was less effective against the loss of DA fibers in
the CPu (TH-IR and DAT-IR measures). Measurements of
striatal DA [21,24] which show more protection by prami-
pexole than our estimates of DA fibers in the CPu (TH-IR
and DAT-IR measures) may reflect upregulation of DA
synthesis in the remaining fibers rather than protection
against fiber loss. In addition, pramipexole treatment by
itself reduced DAT-IR of DA fibers, suggesting that protec-

Histogram of pramipexole's neuroprotective effects against MPTP induced fiber lossFigure 5
Histogram of pramipexole's neuroprotective effects 
against MPTP induced fiber loss. Effects of subchronic 
treatment with pramipexole on DAT-IR (A) and TH-IR (B) 
optical density in the caudate-putamen, nucleus accumbens 
core and shell of mice treated with or without MPTP. Ani-
mals survived for 7 days after the last MPTP injection. Data 
are mean ± standard error of the mean from 4–5 samples 
per group. # for P < 0.01, all groups vs SAL + MPTP group; $ 
for P < 0.01, for SAL-PPX vs SAL-SAL. Abbreviations: CPU, 
caudate-putamen; Nac Core, nucleus accumbens core; Nac 
Shell, nucleus accumbens shell; PPX-MPTP, pramipexole + 
MPTP treated group; SAL-MPTP, saline + MPTP treated 
group; PPX-SAL, pramipexole + saline treated group; SAL-
SAL, saline + saline treated group.

Effects of pramipexole on the kinetics of [3H]DA and [3H]MPP+ uptakeFigure 6
Effects of pramipexole on the kinetics of [3H]DA and 
[3H]MPP+ uptake. Effects of subchronic treatment prami-
pexole or vehicle (saline) on [3H]DA uptake (A) and 
[3H]MPP+ uptake (B) in striatal synaptosomes from treated 
mice. Group data are plotted with the mean ± standard 
error of the mean from 6 samples per group. The dashed line 
for each of the means represents the calculated 95% confi-
dence interval. The Vmax and Km were calculated for each 
group and paired comparisons by t-test revealed significant 
differences.
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tion against MPTP might be greater than our immunocy-
tochemical measures indicate.

The interesting observation that pramipexole down-regu-
lated DAT-IR in saline treated mice suggests that DAT reg-
ulation plays a role in neuroprotective effects of
pramipexole. D3 receptors are most concentrated in the
brain on neurons in the nucleus accumbens, however
DAergic neurons do express both D2 and D3 receptors
[39,40], and both D2 and D3 receptors are functional

autoreceptors [16-20,41,42]. Dopaminergic neurons are
tonically inhibited by dendritic and terminal autorecep-
tors operating in interaction with DA transporters and
pharmacologically of the D2 receptor type [16-19]. Zapata
et al [20] have reported that the D3 preferring agonist (+)-
PD 128907 does interact with D3 autoreceptors to regulate
extracellular DA levels. Those data are consistent with
acute treatment with D2/D3 agonists leading to increased
Vmax [42,43], but less is known about subchronic
treatment.

We observed that subchronic treatment with pramipexole
reduced the Vmax, and Km, of [3H]DA and [3H]MPP+
uptake in mice at 24 h post-treatment. Interestingly, D3
receptor KO mice exhibited substantially lower Vmax and
Km values of [3H]DA uptake than WT mice, and
pramipexole did not further reduce Vmax and Km values in
D3 receptor KO mice. However, the actual density of sites
on the DA terminals was not reduced 24 h after pramipex-
ole treatment in WT mice (or in D3 receptor KO mice), as
determined by DAT autoradiography. The inability to
modulate the number of DAT binding sites 12 h after ter-
mination of subchronic treatment with D2/D3 receptor
agonists has previously been reported [44], suggesting
that the initial alteration of Vmax and Km with pramipexole
might be due to modification of the kinetics of DAT.
However, pramipexole treatment reduced DAT-IR of DA
fibers 7 days post-treatment, suggesting a reduction in
DAT sites. Consistent with this, there was a reduction of
[125I]RTI binding to DAT sites in pramipexole treated WT
mice 14 days after pramipexole treatment, but not in D3
receptor KO mice. Thus, there might be both rapid and
slower modifications in DAT function produced by D3/D2
agonist treatment, ultimately resulting in lower DAT
number, and mediated by the D3 receptor.

It is known that DAT half-life in the striatum is decreased
by D2/D3 receptor agonists, and increased by the
dopamine D2/D3 receptor antagonist, but not by D1

Table 1: Effects of genotype and drug on [3H]DA uptake and DAT density

[3H]DA uptake DAT density

Group N Vmax SD Km SD DAT SD

WT w Veh 4 516.1 ± 56.5 56.7 ± 18.6 10.6 ± 2.5
D3 KO w Veh 4 212.4 ± 18.2 10.8 ± 5.7 10.8 ± 1.5
WT w PPX 6 183.4 ± 34.3 28.4 ± 18.5 9.9 ± 3.0
D3 KO w PPX 6 223.6 ± 36.4 10.4 ± 10.9 9.4 ± 2.6

Wild-type and D3 KO mice were administered vehicle (0.9% saline) or pramipexole (PPX, 0.1 mg/kg I.P.) once a day for 5 days. Twenty-four hours 
after the last injection the brains were removed, the CPu dissected and fresh frozen ([3H]DA uptake) or brains frozen on dry-ice ([125I] RTI-55 
autoradiography).
[3H]DA uptake Vmax reported as pmol/mg P/5 min and Km reported as nM. [125I] RTI-55 autoradiography for DAT density reported as fmol/µg P.

Effects of pramipexole on DAT density at 14 days post-treat-mentFigure 7
Effects of pramipexole on DAT density at 14 days 
post-treatment. Effects of subchronic treatment with 
pramipexole on density of [125I] RTI-55 labeled sites by auto-
radiography. Animals survived for 14 days after the last 
pramipexole injection. Data are mean ± standard deviation of 
the mean from 4–5 samples per group. * for P < 0.01, PPX-
WT vs all groups. Abbreviations: CPU, caudate-putamen; 
Nac Core, nucleus accumbens core; Nac Shell, nucleus 
accumbens shell; PPX-KO, pramipexole treated D3 knockout 
mice; PPX-WT, pramipexole treated WT mice; SAL-KO, 
saline treated D3 knockout mice; SAL-WT, saline treated 
WT mice.
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agonists and antagonists [45]. Furthermore, the D2 ago-
nist-induced change in DAT kinetics iss inhibited by the
co-administration of an antagonist. The absence of DA
receptors can also influence DAT function, as shown by
dopamine D2 receptor-deficient mice, which exhibit
decreased striatal DA uptake [19]. The present results can
be compared with those reported by Saunders et al. [46]
using hDAT-FLAG expressed in human embryonic kidney
293-EM4 cells, who showed by confocal microscopy and
whole-cell current recordings that 2 µM d-amphetamine
increased internalization of surface DAT within 1 h. Treat-
ment with DA in HEK-hDAT cells also reduced Vmax, due
to a diminished presence of DAT at the surface of synap-
tosomes [47]. Subchronic pramipexole might lead to
redistribution DAT from the plasma membrane to
endosomal compartments, and regulated, in part, by the
D3 receptor. The initial change in Vmax, and Km, could be
related to a more rapid turnover of DAT, and the longer-
term reduction in Bmax to greater internalization and/or
reduced synthesis. Thus, D3 preferring agonists might be
potent autoreceptor agonists, and long-term changes in
expression of the DAT or the functional properties of DAT
could occur following subchronic treatment. This, in turn,
could lead to reduced MPP+ (and other neurotoxins)
uptake into DA neurons, and reduced toxicity in animal
models of PD. Ramirez and associates [37] reported that
the neuroprotective effects of pramipexole against MPTP-
induced DA loss in mice was attenuated by the selective
D3 antagonist A-437203. Furthermore, the neuroprotec-
tive effect of a low dose of pramipexole was attenuated in
D3 transgenic knockout mice and protection by pramipex-
ole was not further attenuated by treatment with a D3
antagonist. These in vivo data support an important role
for the D3 receptor in the neuroprotective effects of DA
agonists, and our data suggest that this, in part, is due to
reduced MPP+ uptake into DA neurons.

Conclusions
We have identified that subchronic treatment with a clin-
ically relevant dose of pramipexole beginning before ini-
tiation of MPTP treatment affords neuroprotection
against DA neuron loss and, to a lesser extent, DA fiber
loss. This might involve down-regulation of DAT and
reduced MPP+ uptake into DA fibers. Since intracellular
accumulation of MPP+ following systemic injection of
MPTP requires DAT [4], then if DAT function and/or
number are reduced by D3 preferring agonists this could
result in lower intracellular accumulation of MPP+ and
reduced neurotoxicity to MPTP. The importance of
knowing the targets of pramipexole, and other D3 prefer-
ring agonists, in neuroprotection in animal models of PD
cannot be understated, given the possibility that this pro-
tection could be extended to humans [12]. However, in
vivo imaging of DAT as a tool for analyzing the neuropro-
tective effects of DA agonists could be difficult to inter-

pret, since DAT might be regulated by DA agonists
[25,48]. Our data are consistent with this hypothesis and
suggest that multiple measures of DA fiber integrity are
required to assess neuroprotection by agents [49,50].

Methods
All animals were treated in accordance with a protocol
approved by the Sun Health Research Institute Animal
Care and Use Committee.

MPTP Treatment
We bred C57BL/6 mice from breeding pairs obtained
from Jackson Laboratories. Eighteen male C57BL/6 mice
8–10 months of age were used for the experiments and
were handled for 1 week prior to treatment. They had free
access to food and water, and were maintained in a 12 h
light/dark cycle prior to treatment. Mice were divided into
4 groups: the first received only vehicle (0.9% saline, 0.1
ml/10 mg body wt) (SAL-SAL), the second received
pramipexole plus vehicle (PPX-SAL), the third received
vehicle plus MPTP (RBI, MA) (SAL-MPTP), and the fourth
received pramipexole plus MPTP (PPX-MPT). For those
receiving pramipexole (Pharmacia Corporation, Kalama-
zoo, MI), the drug was dissolved in 0.9% sterile saline and
administered by i.p. injection (0.1 ml/10 mg body wt). A
single daily dose of 0.1 mg/kg body weight of pramipex-
ole was given for 5 days. Those not receiving pramipexole
were given identical injections of saline., Following
pramipexole or vehicle injections on days 4 and 5, mice
were given injections of either MPTP (20 mg/kg; s.c.) or
vehicle (saline) twice daily at 8 h intervals.

After 7-day recovery period following the last injection of
MPTP or vehicle, animals were euthanized by intracardiac
perfusion with 4% paraformaldehyde in 0.15 M phos-
phate buffer (pH 7.2) following overdose with pentobar-
bital 120 mg/kg body weight i.p. Brains were removed,
postfixed in the perfusion fixative for 24 h at 4°C and
transferred to 30% sucrose solution for additional 24 h
incubation at 4°C. The tissue was frozen on dry-ice and
sectioned in cryostat at 20 µm thickness. Sections were
placed in cryoprotectant solution for long-term storage at
-80°C.

Neurohistopathology
Every 10th section at the level of striatum was processed
for visualization of DAT and tyrosine hydroxylase (TH),
and every 5th that of the midbrain processed for the visu-
alization of TH-positive cell bodies using the avidin-
biotin procedure [26,51]. Immediately adjacent sections
from the midbrain were stained for cresyl violet for detec-
tion of cells. The sections were washed in phosphate
buffer to remove cryoprotectant, incubated with 5% goat
serum for 30 min to block background staining and
incubated with anti-DAT (Chemicon, CA) or anti-TH
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(Chemicon, CA) at 1:1000 dilution overnight at room
temperature. Control sections were treated with identical
solutions but with no primary antibody. Sections were
rinsed and incubated with biotinylated secondary anti-
rabbit antiserum at a 1:500 dilution (Vector, CA) for 90
min at room temperature. Sections were again rinsed,
incubated in streptavidin-peroxidase complex (Vector,
CA) at a 1:250 dilution for 2 h at room temperature. After
more thorough rinsing, sections were processed for DAB
with nickel enhancement. Sections were then rinsed in
phosphate buffer, mounted on gelatin-coated slides, air-
dried, dehydrated, and cleared in xylene and mounted
with Permount.

Unbiased stereological quantification of Nissl-stained and
TH-IR neurons in the SNpc and VTA was used to estimate
cell number in the midbrain. The general routine at low
magnification involved use of a sampling grid for the
SNpc and VTA. At high magnification the computer-based
imaging system randomly selected a region of the grid and
clearly definable neurons was counted within the 3-
dimensional block. This was repeated for every 10th region
of each section. Estimation of total neuron number was
based upon actual cell counts, tissue thickness, total area
of designated region, and the total number of sections
analyzed per animal. Group means and variances were
calculated.

Our routine quantitative measurement of the optical den-
sity of regions of the striatum stained for TH-IR and DAT-
IR [26,51] was employed. Using a Macintosh-based image
analysis system with CCD camera and imaging software
(BRAIN version 3.0, Drexel University) optical density
measurements calibrated to an external standard (Kodak
density step tablet) of the region of interest (ROI) and a
control region (corpus callosum) of each section were
made, the ratio of the ROI to control region was calcu-
lated, and the average for each animal determined. Group
means and variances were estimated. Statistical analysis of
group differences were assessed by ANOVA with pairwise
comparisons performed using post-hoc t-tests and the
Bonferroni correction.

Testing of whether pramipexole administration alters 
dopamine transporter function
Fourteen C57/Bl6 mice (25–30 g, 6 months) were divided
into 2 groups: one group received pramipexole (0.1 mg/
kg) once a day for 5 days and the other group received the
vehicle (saline). An additional 10 WT and 10 D3 receptor
knockout mice (25–30 g, 6 months), bred according to
our previous methods [30], were treated similarly.
Twenty-four hours after the last injection of pramipexole
or vehicle the mice were euthanized using CO2 narcosis
and the brains rapidly removed and snap-frozen in liquid
nitrogen. Km and Vmax values for [3H]1-methyl-4-phe-

nylpyridinium (MPP+) and [3H]DA uptake in synapto-
somes derived from the striatum were deterimined by the
method of Eshleman et al [28], with minor modifications.
Comparison of mean values for the Km and Vmax of
[3H]MPP+ and DA uptake were made by t-test (0.05 level
of significance).

[3H]MPP+ and [3H]dopamine uptake in mouse striatal 
postnuclear preparations
Mouse striata were dissected and homogenized with a
glass-Teflon homogenizer in ice-cold modified HEPES (1
ml). The sample was centrifuged at 1000 g, for 10 min at
4°C. The supernatant was collected and centrifuged at
14,000 g for 10 min at 4°C. The pellet was resuspended in
8 ml of HEPES buffer (HEPES 25 mM, NaCl 122 mM,
CaCl 2.5 mM, MgSO4 1.2 mM, pargyline 10 uM, glucose
0.2%, ascorbic acid 0.02%, pH7.4). To the 8 ml sample,
butaclamol was added at a final concentration of 100 nM,
4 ml of sample was than removed and placed in a separate
15 ml centrifuge tube (VWR, Pennsylvania) and Mazindol
(Sigma, Missouri) was added at a final concentration of
40 uM. 50µl of the samples were added to borosilicate
tubes (Fisher, Texas) and placed in a 25°C water bath with
the drugs for a 10 min preincubation. The assay was
initiated by adding 50µl concentrations of unlabeled
MPP+ or DA ranging from 0–300 nM with [3H]MPP+ or
[3H]DA at a final concentration of 20 nM. The samples
were incubated at 25°C for 10 min. Specific uptake was
defined as the difference in uptake observed in the
absence and presence of mazindol (40µM). Uptake was
terminated after 5 min by filtration through Whatman
GF/C filters presoaked in HEPES buffer. Scintillation fluid
was added to each filtered spot and radioactivity remain-
ing on the filters was determined using a Wallac β-scintil-
lation spectrometer. Each experiment involved triplicate
determinations, and 6 independent experiments for each
drug competition curve were performed.

Dopamine transporter (DAT) autoradiography
10 WT and 10 D3 receptor knockout mice (25–30 g, 6
months) were divided into 2 groups: one group received
pramipexole (0.1 mg/kg) once a day for 5 days and the
other group received the vehicle (0.9% saline). Twenty-
four h after the last injection of pramipexole or vehicle,
the mice were overdosed as above and the brains rapidly
removed and frozen on dry- ice. An additional group of 10
WT and 10 D3 receptor knockout mice (25–30 g, 6
months) were similarly treated but their brains were proc-
essed 14 days after the last treatment. Autoradiography of
DAT sites were quantified following labeling with
[125I]RTI-55 (3ß-(4-iodophenyl)tropan-2 ß-carboxylic
acid methyl ester) (Dupont, New England Nuclear, Bos-
ton, MA) in the presence of 100 nM paroxetine (Smith
Klein Beecham BRL 29060A) to block the serotonin
transporter, according to published methodology [30].
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Specific binding was defined with 40µM benztropine
(Sigma, St. Louis MO), and amounted to 95% of total
binding. Sections were apposed to 3H-Hyperfilm for 18 h
for DAT. Autoradiographs were analyzed using a compu-
ter-based image analysis system (AIS, Imaging Research
Inc., Ontario Canada) that converts transmitted optical
density to the amount of radioligand bound in pmol per
microgram of protein.
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