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Abstract
The objective of this study was to determine whether the linear regression (LR) 
method could be used to validate genomic threshold models. Statistics for the LR 
method were computed from estimated breeding values (EBVs) using the whole and 
truncated data sets with variances from the reference and validation populations. The 
method was tested using simulated and real chicken data sets. The simulated data set 
included 10 generations of 4,500 birds each; genotypes were available for the last 
three generations. Each animal was assigned a continuous trait, which was converted 
to a binary score assuming an incidence of failure of 7%. The real data set included 
the survival status of 186,596 broilers (mortality rate equal to 7.2%) and genotypes 
of 18,047 birds. Both data sets were analysed using best linear unbiased predictor 
(BLUP) or single-step GBLUP (ssGBLUP). The whole data set included all pheno-
types available, whereas in the partial data set, phenotypes of the most recent genera-
tion were removed. In the simulated data set, the accuracies based on the LR formulas 
were 0.45 for BLUP and 0.76 for ssGBLUP, whereas the correlations between true 
breeding values and EBVs (i.e. true accuracies) were 0.37 and 0.65, respectively. The 
gain in accuracy by adding genomic information was overestimated by 0.09 when 
using the LR method compared to the true increase in accuracy. However, when the 
estimated ratio between the additive variance computed based on pedigree only and 
on pedigree and genomic information was considered, the difference between true 
and estimated gain was <0.02. Accuracies of BLUP and ssGBLUP with the real 
data set were 0.41 and 0.47, respectively. This small improvement in accuracy when 
using ssGBLUP with the real data set was due to population structure and lower 
heritability. The LR method is a useful tool for estimating improvements in accuracy 
of EBVs due to the inclusion of genomic information when traditional validation 
methods as k-fold validation and predictive ability are not applicable.
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1 |  INTRODUCTION

Accuracy of estimation of genetic merit for livestock animals is 
a topic of concern in animal breeding. Usually, three measures 
are taken into account to evaluate the quality of genetic predic-
tions: accuracy, bias and dispersion. Accuracy is defined as the 
correlation between true (TBV) and estimated breeding values 
(EBV). Accuracy values near one indicate a strong association 
between TBVs and EBVs, and values near zero indicate weak 
associations. Weak associations possibly imply that animals are 
poorly ranked, and selection decisions will be suboptimal. Bias 
refers to the difference between the average prediction and the 
average true value, which has a desirable value of zero. Biased 
predictions lead to incorrect comparisons between animals of 
different generations and inaccurate estimates of genetic trends 
(Henderson, Kempthorne, Searle, & Krosigk, 1959). Finally, 
dispersion can be understood as the predicted bias (slope of 
the regression of TBV on EBV) and has an expected value of 
one. If the dispersion is lower than one, the mean prediction 
for the test animals is biased downwards. On the other hand, if 
the dispersion is greater than one, the mean is biased upwards 
(Mäntysaari, Liu, & VanRaden, 2010).

With the availability of genomic information for livestock 
animals, validation techniques became widely used in breeding 
and genetics, especially to validate genomic models (Gianola 
& Schön, 2016). The data set is usually divided into a training 
and a validation set. The training set is used to fit a model, and 
the validation set is used to test the model using an objective 
function like mean square error (MSE) or correlation between 
predictions and observations. Several types of validations are 
available, and the choice depends on the properties of the data 
set. A validation technique applied to small data sets is the k-fold 
validation which consists of randomly taking several data sub-
sets and correlating the predictions obtained for the k fold when 
phenotypes for this fold are excluded (Saatchi et  al.,  2011). 
However, this technique does not take into account population 
structure. Hence, it is possible to have old animals in fold k and 
young animals in fold k-1. In such cases, ancestors are predicted 
from progeny, which does not make sense in animal breeding 
(Thompson, 2001). For instance, if many animals are progeny of 
a small number of parents, then predictions will be close to that 
of parental averages and correlations between (G)EBVs among 
subsets may be very high. Additionally, these correlations are 
estimators of ratios of accuracies, as pointed out by Legarra and 
Reverter (2018). For dairy sires with a large number of prog-
eny, validation is done by regressing daughter yield deviations 
(DYD) or deregressed proofs (DRP) obtained with the whole 
data set on EBV or GEBV for young bulls with no daughter 
information in the partial data set (VanRaden et al., 2009). The 
disadvantages of this type of validation are that DYD are diffi-
cult to compute, and best linear unbiased predictor (BLUP) is 
biased if genomic information is not accounted for by the eval-
uation model. A convenient measure of accuracy for animals 

with phenotypes is predictivity, which is defined as the correla-
tion between GEBV or EBV computed with the partial data set 
and phenotypes adjusted for estimates of fixed effects (Legarra, 
Robert-Granié, Manfredi, & Elsen, 2008). Predictivity can be 
used as an estimator of the accuracy when divided by the square 
root of heritability (Legarra & Reverter, 2018). However, this 
method may be difficult to apply to complex models (e.g. mul-
tiple random effects) and may lead to values greater than 1 if 
heritabilities are low and changing under selection. Properties 
of many methods for validation can be ascertained by analysing 
the decomposition of (G)EBV (Lourenco et al., 2015).

None of the above methods is applicable to categorical 
traits such as mortality, litter size, calving ease and dis-
ease resistance. Most of the statistical models used to han-
dle categorical data, such as scoring models (Gianola & 
Foulley, 1983; Harville & Mee, 2006) or generalized linear 
models (Tempelman, 1997), link the categorical trait with an 
underlying continuous phenotype called liability. Hence, the 
observed phenotype can be interpreted as an expression of 
the liability. These models assign probabilities for each ani-
mal to express various possible phenotypes. Thus, a suitable 
validation approach for categorical data is to set cut-off points 
for these probabilities and assign each animal a phenotype. 
However, these cut-off points may be arbitrary and difficult 
to assign when probabilities are homogeneous among pheno-
types. Another approach to validate statistical models for cat-
egorical data is to calculate receiver operating characteristic 
(ROC) curve (Park, Goo, & Jo, 2004). Although it is a useful 
approach to classify different models, the results cannot be 
interpreted as accuracies (Toghiani et al., 2017).

Recently, Legarra and Reverter (2018) developed the lin-
ear regressions (LR) method, which is a validation method 
based on LR and the R method (Reverter, Golden, Bourdon, 
& Brinks, 1994). They used the method of moments to derive 
estimators for bias, dispersion, accuracy and increase in ac-
curacy when comparing “early” and “late” predictions. The 
method can be applied to virtually any statistical model pro-
vided that the assumptions of the model are fulfilled. The pri-
mary goal of this study was to apply and evaluate the method 
for a dichotomous trait with low incidence using simulated 
and commercial data sets. The secondary goal was to prove 
that the LR method yields consistent estimators of accuracy.

2 |  MATERIALS AND METHODS

2.1 | LR method

In this study, we used estimators of population bias, disper-
sion and accuracy to evaluate genetic and genomic models. 
Let u and û be the vectors of TBVs and EBVs, respectively, 
then the (true) bias is defined as u− û. The (true) dispersion, 
interpreted as the slope of the regression of u on û is equal to 
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cov(u,û)

var(û)
, where cov and var denote the sample covariance and 

variance, respectively. Finally, the accuracy is defined as the 
sample Pearson correlation coefficient between u and û, 
which is equal to cov(u,û)√

var(u)var(û)
.

The LR method uses two data sets and a set of focal in-
dividuals. The whole data set contains all phenotypes, and 
the partial data set contains phenotypes up to a given date. 
The focal individuals are usually defined as a group of young 
animals of interest such as animals that might be selected at 
a given point in time given early (partial) information. The 
partial data set can be interpreted as the evaluation at the time 
of selection decisions, and the whole data set as a posteriori 
confirmation of the goodness of these selection decisions. 
Hereafter, subscript w will denote that an object comes from 
the whole data set and subscript p from the partial data set.

Legarra and Reverter (2018) suggested the following statis-
tics for the three measurements in the LR method: (a) 
���= ûp− ûw for the bias, with an expected value of zero if the 

evaluation if unbiased; (b) bw,p =
cov(ûw,ûp)

var(ûp)
 for the slope of the 

regression of the EBVs computed with the whole data set on the 
EBVs estimated with the partial data set, with an expectation 
value of one if the evaluation is neither underdispersed nor 

overdispersed; and (c) �2
cov(w,p)

=
cov(ûw,ûp)

(1+F−2f)�2
u,∞

 for the reliability 

(square of accuracy), where F is the average inbreeding coeffi-
cient, 2f  is the average relationship between individuals, and 
�2

u,∞
 is the genetic variance of the validation individuals. 

Additional estimators proposed by Legarra and Reverter (2018) 
that were also used in this research are: �w,p = cor(ûw, ûp), 
which estimates the ratio between the accuracies obtained with 
partial and whole data sets (i.e. ���p∕���w), and 
�A,G = cor(ûA, ûG), which is an estimator of the ratio between 
accuracies obtained by pedigree-based and genomic-based 
evaluations in the partial data set (i.e. ���A∕���G). The former 
can be expressed as the relative increase in accuracy by adding 
phenotypic information (𝑖𝑛𝑐𝑃ℎ𝑒𝑛=𝜌−1

w,p
−1), and the latter can 

be expressed as the increase in accuracy by adding genomic 
information to the partial data set (���G =�−1

A,G
−1).

2.2 | Data simulation

A simulated data set, mimicking a chicken population, was 
generated with QMSim v 1.10 (Sargolzaei & Schenkel, 2009). 
The historical population began with 50,000 individuals 
and steadily decreased to 5,000 individuals after 1,000 gen-
erations. In this historical population, the generations were 

non-overlapping, there was no selection and migration, and 
matings were random. A recent population was created by 
selecting 10 males and 4,500 females from the last genera-
tion of the historical population. Based on Wright's formula 
(Wright,  1931), the effective population size (Ne) was ap-
proximately 40, which agrees with the Ne in real chicken 
populations (Pocrnic, Lourenco, Masuda, & Misztal, 2016). 
Matings between males and females were random; hence, 
each sire was mated with 450 females on average. The recent 
population underwent selection for 10 generations. In every 
generation, each female had 1 offspring. From these off-
spring, males and females were selected based on high EBV 
to replace 25% of the sires and dams with lowest EBV. This 
process generated a pedigree with 49,510 birds.

Genotypes were simulated for from generations eight 
to 10 (n  =  13,500). The simulated genome was composed 
of 38 chromosomes with length and number of QTL based 
on the Chicken QTL Database (www.anima lgeno me.org). 
Altogether, the number of simulated SNP and QTL was 
41,989 and 9,505, respectively. The QTL accounted for all 
the genetic variation and their effects were simulated from a 
Gamma distribution (shape = 0.40), which resulted in QTL 
with small effects. All SNP and QTL had 0.5 allele frequen-
cies in the first generation of the historical population. The 
recurrent mutation rate for QTL and SNP was assumed to be 
2.5 x 10–5 per locus per generation.

Continuous phenotypes for generations 0 to 10 were cal-
culated by combining a mean, the sum of QTL effects and 
the residual effect, for a heritability of 0.3. This continuous 
phenotype was transformed to a binary scale by setting the 
7% lowest phenotypes in each generation to 1 (i.e. failure) 
and the remainder to 2 (i.e. success), according to survival 
rate in the field data. Animals recorded as dead were not able 
to have progeny. Birds from generation 10 (n = 4,500) were 
assigned to the validation group and had their phenotypes re-
moved from the partial data set but included in the whole data 
set. The simulation was replicated five times.

2.3 | Field data

A real data set with phenotypes for mortality on 186,596 broiler 
chickens was provided by Cobb-Vantress Inc. The incidence 
of mortality was 7.2%, whereas the heritability on the underly-
ing scale was 0.14 (the estimation based on data is described 
in the next section). Genotypes from the 60k SNP panel were 
available for 18,047 birds, and pedigree information was avail-
able for 188,935 birds. In these chicken line, there are several 
selection days. Mortality was recorded from hatch through the 
first selection day, although the exact date of mortality for each 
animal was not recorded; therefore, birds received 1 if dead 
and 2 if alive at the first day of selection. Consequently, all 
parents were recorded as alive. Also, animals were genotyped 

http://www.animalgenome.org
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only if they were selected and, therefore, after the first selec-
tion date. Hence, all genotyped birds were recorded as alive. 
Quality control removed SNP with call rates lower than 0.9, 
minor allele frequencies lower than 0.05 and deviances from 
Hardy–Weinberg equilibrium >0.15 (Wiggans et  al.,  2009). 
Markers with unknown positions or located on sex chromo-
somes were also excluded from the analyses. After quality 
control, 39,102 SNP were kept for analysis. The set of focal 
individuals consisted of young animals from the last genera-
tion (n = 9,553) where 2,382 were genotyped. The incidence 
of mortality for the focal individuals was 10.0%.

2.4 | Model and analyses

Threshold models (Gianola & Foulley, 1983) were fitted to the 
simulated (S) and real (R) data sets. Two models were fitted to 
each data set. The first model used only phenotypes and pedigree 
information (threshold model with pedigree: TM), whereas the 
second model utilized phenotypes, pedigree and genomic infor-
mation (threshold model with pedigree and genomics: TMG). 
The acronyms for the two models were TMS and TMGS in the 
simulated data set and TMR and TMGR in the real data set. 
All models were single-trait and included the generation of the 
animal as a fixed effect to account for environmental factors 
(all animals were kept in the same farm), and animal and resid-
ual as random effects. Variance components and (G)EBVs for 
each model were estimated using THRGIBBS1F90 (Tsuruta & 
Misztal, 2006). A uniform prior was assumed for fixed effects, 
whereas the additive genetic effect was assumed to be normally 
distributed with mean zero and variance Aσ2

u
 when genomic in-

formation was not considered and Hσ2
u
 when genomic informa-

tion was considered, where H is the realized relationship matrix 
that combines pedigree- and genomic-based relationships 
(Aguilar et al., 2010). Forσ2

u
, a scaled inverted chi-squared was 

used as prior distribution. For variance components, the Gibbs 
sampling process comprised 100,000 rounds and 1 every 10th 
sample was stored. After discarding the first 10,000 samples as 
burn-in, posterior means were calculated. For (G)EBV, vari-
ance components were fixed to the posterior means and 10,000 
samples were drawn. Variance components were calculated 
with and without genomic information. Posterior means of (G)
EBV were used in the validation process. Under ssGBLUP, the 
inverse of H (H−1) was used in the mixed-model equations in-
stead of the inverse of A (A−1). The H−1 is defined as:

where G−1 is the inverse of the genomic relationship matrix 
(VanRaden, 2008), and A−1

22
 is the inverse of the pedigree-based 

relationship matrix for genotyped animals.

To compute accuracies using the LR method, the ge-
netic variance in the last generation, that is, �2

u,∞
, was ob-

tained via Gibbs sampling using the approach proposed by 
Sorensen (2001) utilizing 10,000 samples. Subsequently, 
the statistics for the LR method were computed for each 
replicate of the simulated and real data sets. In addition, 
all statistics in the simulated data set were computed using 
TBV as a benchmark.

3 |  RESULTS

3.1 | Analytical results
Appendix 1 shows the proof that �2

Cov(w,p)
 is a consistent esti-

mator of the expected value of the reliability. This means that 
when the number of focal individuals is large enough, the ex-
pectation of �2

Cov(w,p)
 tends to be equal to the expectation of the 

reliability. In order for this to hold, u and û must be normally 
distributed, and the matrix of the PEVs for the validation ani-
mals in the partial data set should not tend to the null matrix. 
By the continuous mapping theorem on convergence in prob-
ability (Mann & Wald, 1943), 

√
�2

Cov(w,p)
 is a consistent esti-

mator of the expected accuracy value. Hence, 
√

�2
Cov(w,p)

 can 

be interpreted as a consistent predictor of the accuracy.
Legarra and Reverter (2018) claimed that �A,G is a pre-

dictor of the ratio of accuracies ���A∕���G. In this paper, 
we suggest an improvement to this formula so that the 
ratio is better predicted. While the true genetic variance of 
the last generation is the same regardless of the model, the 
estimates may be different under genomic and non-ge-
nomic models. Appendix 2 shows that in scenarios with 

complete pedigree, 
(
�̂

2

A
∕�̂

2

G

)−1∕2

�A,G using estimates of 

the respective genetic variances is a better predictor of the 
ratio of accuracies. Assuming that the ratio of variances is 
constant among generations, even under selection, the or-
dinary estimates of the variances can be used in any situa-
tion. This statistic leads to a consistent prediction of 
���A∕���G.

3.2 | Results based on simulated and 
real data

Table  1 shows estimated versus real values for bias, dis-
persion, accuracy and increase in accuracy by adding phe-
notypes to the simulated data set. The estimated bias was 
smaller and less variable than the true bias among different 
replicates, regardless of whether genomic information was 
used or not. In both cases, the true bias was approximately 
three times greater than the estimated value. When using 

H
−1 =A

−1+

⎡⎢⎢⎣
0 0

0 G
−1−A

−1

22

⎤⎥⎥⎦
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either pedigree or pedigree and genomic information, the 
estimated and true dispersions were near one, although es-
timates were approximately 0.2 lower than the true values. 
However, when only pedigree information was used, the 
estimated dispersion was more variable. The true accuracy 
greatly increased (from 0.37 to 0.65) when genomic infor-
mation was added, and this was reflected in the estimated 
accuracies by the LR method, although the estimates were 
greater than the true values. For pedigree-based evaluation, 
the estimated accuracy was 0.08 greater than the true value, 
and this difference increased to 0.11 in the genomic-based 
evaluation. The ratio ���p∕���w, which measures the in-
crease in accuracy from the partial to the whole data set, 
was underestimated in both pedigree- and genomic-based 
approaches. The difference between the estimated and true 
values in the pedigree-based evaluation was 0.12 and with 
genomic information was 0.07. Consequently, the increase 
in accuracy (i.e. Incphen) by adding phenotypes was overes-
timated by both approaches.

Table  2 shows the increase in accuracy by adding ge-
nomic information to the simulated data set. The estimation 
of the increase in accuracy resulting from adding genomic 
information was inflated compared to the true value when it 
was unadjusted by estimates of variance components in either 
pedigree or genomic models. When the variance ratio was 
included, this difference was significantly reduced.

Table 3 shows various statistics as well as estimated in-
creases in accuracy by adding genomic information to the 
real data set. The estimated biases when using either only 
pedigree or pedigree and genomic information were close 
to zero. The dispersion was near 1 in both cases. This in-
dicates that there is little over and under dispersion in the 
analysed data set. The estimated accuracy for the real data 
set was 0.41 when using only pedigree and 0.47 when using 
pedigree and genomic information. These numbers are low, 
which may be explained by the fact that dead animals are 
not genotyped (Garcia et  al.,  2018), the incidence of the 
trait and completeness of pedigree information. These three 
facts result together in a small difference between A−1 and 

H−1, hence in a small difference in estimated accuracies. 
The ratio ���p∕���w was 0.03 greater for the genomic ap-
proach indicating that the increase in accuracy by adding 
phenotypes was similar to and without genomic informa-
tion. The increase in accuracy by adding genomic informa-
tion was 15% when the variance ratio was not considered. 
When the variance ratio was added, the increase in accu-
racy was 22%.

Figure 1 shows the distribution of the GEBVs from the 
partial data set against the GEBVs from the whole data set for 
both real and simulated data sets.

The graph for the simulated data set is slightly narrower 
(higher correlation), and it has visually few outliers.

4 |  DISCUSSION

In this study, we validated a threshold model for mortality 
in chickens using the LR method. Categorical traits can be 
handled with different models, like those from the Bayesian 
alphabet (Wang et al., 2013). LR method was derived based 
on mixed-model assumptions; hence, it can be applied to any 
model that follows those assumptions.

Although the bias and dispersion from the simulated data 
set were slightly underestimated relative to the true values, 
the statistics based on EBV with partial and whole data sets 
showed that pedigree and pedigree and genomic models were 
unbiased and had little over and under dispersion. Given that 
differences between estimated and true values were observed, 
it seems the LR statistics pointed in the right direction, but 
with different magnitudes.

Accuracies in the simulated data set were slightly overes-
timated relative to the true values both with and without ge-
nomic information. The LR method uses the frequentist 
distribution of predictands and predictors assuming that phe-
notypes have a continuous distribution. If this assumption is 
violated, the (G)EBVs of the focal individuals may not be 
normally distributed. In such case, the consistency of �2

Cov(w,p)
 

does not hold. Another source of variability for the prediction 

LR statistics

TMS TMGS

Estimateda Trueb Estimated True

Bias 0.07 (0.02) 0.28 (0.29) 0.07 (0.04) 0.26 (0.29)

Dispersion 0.96 (0.15) 1.17 (0.23) 0.95 (0.05) 1.12 (0.05)

Accuracy 0.45 (0.07) 0.37 (0.08) 0.76 (0.08) 0.65 (0.04)

accp/accw
c 0.83 (0.1) 0.95 (0.16) 0.91 (0.03) 0.98 (0.05)

Incphen
d  (%) 20.4 5.2 9.8 2

aThe benchmark was the breeding value estimated using the whole data set. 
bThe benchmark was the true breeding value. 
cRatio between the accuracies obtained with partial and whole data set. 
dIncrease in accuracy by adding phenotypes. 

T A B L E  1  Comparison between 
estimated and true values of bias, dispersion, 
accuracy, increase in accuracy by adding 
phenotypes and increase in accuracy 
by adding genomic information to the 
simulated data set with (TMGS) and without 
(TMS) genomic information; standard 
deviations reported in parenthesis
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of accuracy with �2
Cov(w,p)

 is the adjusted additive variance for 
set of focal individuals. Because �2

Cov(w,p)
 is inversely propor-

tional to �2
u,∞

, we can infer that the estimated adjusted vari-
ance is too small. In fact, the estimated accuracy was 0.45 
with �2

u,∞
 and 0.41 when using �2

u
 in a pedigree-based model. 

In our case, when no selection was assumed, the estimation 
of accuracy was closer to the true value (0.37). Since perfor-
mance of LR method depends on model specification 
(Macedo, Reverter, & Legarra,  2020), model misspecifica-
tion and population structure may also explain the obtained 
results. In their results, the consistency of �2

Cov(w,p)
 can be ob-

served when the model is correctly specified.
The gain in accuracy by adding genomic information is a 

topic of concern for genetic evaluations. Denoting a pedi-
gree-based evaluation with the subscript A and a genom-
ic-based evaluation with the subscript G, Legarra and 
Reverter (2018) claimed that the correlation between ρA,G is 
an estimator of the ratio of the accuracies of the two models. 
In this paper, we propose to improve this estimator by ac-
counting for differences in estimated values of variance com-
ponents based on pedigree and pedigree plus genomic 

information, that is, 
(
�̂

2

A
∕�̂

2

G

)−1∕2

�A,G. Usually, �2
A
 and �2

G
 

are assumed to be equal. This means that the pedigree-based 
relationship matrix (A) in BLUP and the realized relationship 
matrix (H) in the ssGBLUP approach are deemed to use the 
same variance components. However, their estimators can be 
different. The estimate of the variance using a pedigree-based 
approach was 0.21 compared to 0.23 when genomic informa-
tion was used in the simulated data set. Conversely, these val-
ues were 0.16 and 0.13 in the real data set, respectively. This 
shows that the assumption of equality of estimated variances 
is reasonable, and its impact on the estimation of breeding 
values is limited. Despite these small differences, the perfor-
mance of the estimation of the ratio ���A∕���G was improved 
by adding the estimators of the variance in the statistic. The 
true value of ���A∕���G was approximately 0.57 in the simu-
lated data set. This implies that the increase in accuracy due 
to addition of genomic information was equal to 75%. The 
estimated value of ���A∕���G was equal to 0.54 which rep-
resents an increase in accuracy of 85%. The estimator (
�̂

2

A
∕�̂

2

G

)−1∕2

�A,G was approximately equal to 0.56. This 

value denotes an increase in accuracy equal to 76%, indicat-
ing that adding the reciprocal of the square root of the vari-
ance ratio resulted in a more accurate prediction of ���A∕���G

. Consequently, the prediction of the increase in accuracy by 
adding genomic information was also improved from 85% to 
76%, while the true increase of accuracy was 75%.

The statistics from the real data set showed no signs of 
bias and dispersion. The increase in accuracy due to the uti-
lization of genotypes was small. This can be explained by a 
lower heritability in the real data set than in the simulated 
data set and no genotyping of dead animals.

Zhang et al. (2018) estimated average accuracies for mor-
tality and disorder traits in chickens using threshold models to 
be 0.47 without genomic information and 0.54 with genomic 
information; this resulted in an increase in accuracy of 0.07 
compared to 0.06 in this study. Their validation procedure was 
based on Ramirez-Valverde, Misztal, and Bertrand (2001), 
who proposed to randomly split the data set into halves, using 
one half for prediction and the other half for validation. In their 
research, the correlation between the predicted breeding val-
ues of the two subsets was the selected loss function (Gianola 
& Schön, 2016). As mentioned by Thompson (2001), this 
method of splitting a data set into halves can lead to problems. 
Also, the application of data splitting is more complex than the 
LR method especially for large data sets.

Legarra and Reverter (2018) emphasized that correlation 
between predictions obtained using whole and partial data 
sets is not a measure of accuracy, but an estimator of the 
ratio between accuracies. When the ratio of accuracies is 
equal to 0.55, the corresponding increase in accuracy from 
partial to whole data sets is 81%. Some studies have used 
this correlation as a pure measure of accuracy without em-
phasizing its proper meaning (Legarra & Reverter, 2018). 

T A B L E  2  Increase in accuracy by adding genomic information 
with and without the variance ratio to the simulated data set

LR statistics Estimated True

incG
a  without variance ratiob (%) 85 75

incG including variance ratio (%) 76 75

Note: aIncrease in accuracy by adding genomic information to the partial data 
set. 
bEstimated variance ratio 

(
�̂

2

A

�̂
2

G

)
 = 0.9 (0.15). 

T A B L E  3  Bias, dispersion, accuracy, increase in accuracy 
by adding phenotypes and increase in accuracy by adding genomic 
information to the real data set with pedigree information (TMR = real 
data set with pedigree information; TMGR = real data set with 
pedigree and genomic information)

LR statistics TMR TMGR

Bias 0.003 0.004

Dispersion 1.034 1.02

Accuracy 0.41 0.47

accp/accw
a 0.85 0.88

Incphen
b  (%) 17 14

incGwithout variance ratioc  (%) 15

incG including variance ratio (%) 22

Note: Estimated variance ratio 
(

�̂
2

A

�̂
2

G

)
 = 0.95.

aRatio between the accuracies obtained with partial and whole data sets. 
bIncrease in accuracy by adding phenotypes. 
cIncrease in accuracy by adding genomic information to the partial data set. 



10 |   BERMANN Et Al.

In our research, the estimated ratio of accuracies in the sim-
ulated data set was 0.83 for the pedigree-based evaluation 
and 0.91 for the genomic-based evaluation. This indicates 
an increase in accuracy of 20% for the pedigree-based eval-
uation and 9.8% for the genomic-based evaluation when 
using the whole data set. Because the focal individuals in 
our study included only animals from the last generation 
(10% of the data set), the increase in accuracy by adding 
phenotypes for these animals is likely to be smaller than that 
of Zhang et al. (2018).

5 |  CONCLUSION

The LR method is a useful tool for estimating the magnitude 
of bias, dispersion and accuracy for threshold models. This 
method is applicable to any model, single-step procedures, 
and it is easy to run. More accurate estimates are possible 
when estimates of variances in the final generation are known 
but at a cost of potentially expensive computing. When ap-
plied to analysis of mortality in broiler chickens using a 
threshold model, the LR method showed a moderate improve-
ment in accuracy due to the use of genomic information.
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APPENDIX 1
Proof  of  consistent  predictor of  the rel iabi l i ty

Here, we show that �2
Cov(w,p)

, defined as cov(ûw,ûp)

(1+F−2f)�2
u,∞

 in Legarra and Reverter (2018), is a consistent predictor of the reliability. We as-

sume that random effects are normally distributed, their means are homogeneous within each effect, and the covariance matrix for the 
joint distribution of u, û w and û p is

where G is the relationship matrix among individuals and C uu is the block corresponding to random effects of the inverse of the 
mixed-model equations (Henderson, 1982).

As a consistent estimator, �2
Cov(w,p)

 must fulfil the two following conditions:

1. The expected value of �2
Cov(w,p)

 must converge to the reliability; and
2. The variance of �2

Cov(w,p)
 must tend to zero when the number of focal individuals tends to infinity.

Let n be the number of focal individuals and N be the number of animals in the whole evaluation set. Let rel = X/Y be the 
reliability of the focal individuals, where X=

(
u�Sû

) (
u�Sû

)
 and Y=

(
u�Su

) (
û
�
Sû

)
. Then, as n→N→∞:

where S = I n −n−1J n and 
p
→ denotes convergence in probability.

To prove (2), note that by the Law of Large Numbers (Gnedenko, 1978 Ch. 6) the sample variances of u and û, and the sam-
ple covariance between u and û converge in probability, as n tends to infinity, to their expectations. Hence:

Then, using the properties of the limit, the sample correlation coefficient between u and û (i.e. the accuracy) converges in 
probability, to its expected value:

Since the square root is continuous and the domain of the accuracy is positive, the result in (2) follows from (4) by applying 
the continuous mapping theorem on convergence in probability (Mann & Wald, 1943). Noting that the expected value of 
�2

Cov(w,p)
 is asymptotically equal to rel with probability equal to one, the first condition is fulfilled.

To prove the second condition, first take the variance of �2
Cov(w,p)

:

(1)Var

⎡⎢⎢⎢⎢⎣

u

ûp

ûw

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

G G−C
��
p

G−C
��
w

G−C
��
p

G−C
��
p

symm G−C
��
w

⎤
⎥⎥⎥⎥⎦

(2)rel
p
→=

tr
[
S

(
G−C

��
p

)]

tr (SG)
=1−

��� −���(
1+F−2f

)
�2

u,∞

(3)

(n−1)−1
u
�
Sû

p
→E

[
(n−1)−1

u
�
Sû

]
=(n−1)−1 tr

[
S

(
G−C

��
p

)]

(n−1)−1
û
�
Sû

p
→E

[
(n−1)−1

û
�
Sû

]
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[
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(
G−C

��
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)]
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u
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Su

p
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Su
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u�Su û
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Sû
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Then, as in (3), the sample covariance between ̂up and ̂uw 
(
(n−1)−1

û
�

p
Sûw

)
 converges in probability to its expectation, which 

is a constant. Since n−1û
�

p
Sûw and (n−1)−1

û
�

p
Sûw converge to the same constant, both variances tend to zero with probability one, 

and as n→N→∞ we have that:

Since the expected value of �2
Cov(w,p)

 is is asymptotically equal to the reliability and the variance of �2
Cov(w,p)

 tends to zero with 

large n, �2
Cov(w,p)

 is a consistent predictor of the reliability.

APPENDIX 2
Impact  of  variance ratios  on accuracies

This appendix shows that 
(
�̂

2

A
∕�̂

2

G

)−1∕2

�A,G is an appropriate predictor of the ratio of accuracies.

Let Var
(
uG

)
=K, Var(ûG)=K−C

��
G

 and Cov(uG, ûG)=Var(ûG), where K is the relationship matrix based on genomic infor-
mation times a genetic variance and assume that Cov(ûG, ûA)=Var(ûA) (Legarra & Vitezica, 2015). Following the same steps 
as in Appendix 1, it can be shown that:

When pedigree information is complete, 
(

1+−F−2−f
)
≅
(

1+−K−2−k
)
, and (7) simplifies to:

Therefore:

The variance of the left-hand side of (9) tends to zero as n→N→∞ (Hotelling, 1953). Therefore,
(

�̂
2

A

�̂
2

G

)−1

�2
A,G

 is a consistent 

predictor of the ratio of reliabilities and 
(

�̂
2

A

�̂
2

G

)−1∕2

�A,G is a consistent predictor of the ratio of accuracies.
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�
�2

Cov(w,p)

�
=Var

⎛
⎜⎜⎜⎝

cov
�
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�

p
Sûw
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û
�

A
SûG
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SûG

) p
→

tr
[
S

(
G−C

��
p

)]

tr
(
S
(
K−C

��
G

)) =

(
1+F−2f

)
�2

A(
1+K−2k

)
�2

G

relA

relG
.

(8)�2

A,G

p
→

tr
[
S

(
G−C

��
p

)]

tr
(
S
(
K−C

��
G

)) =
�2

A

�2
G

���A
���G

.

(9)

(
�2

A

�2
G

)−1

�2

A,G

p
→

���A
���G

.


