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ABSTRACT The oomycete pathogen Phytophthora infestans causes potato and to-
mato late blight, a disease that is a serious threat to agriculture. P. infestans is a
hemibiotrophic pathogen, and during infection, it scavenges nutrients from living
host cells for its own proliferation. To date, the nutrient flux from host to pathogen
during infection has hardly been studied, and the interlinked metabolisms of the
pathogen and host remain poorly understood. Here, we reconstructed an integrated
metabolic model of P. infestans and tomato (Solanum lycopersicum) by integrating
two previously published models for both species. We used this integrated model to
simulate metabolic fluxes from host to pathogen and explored the topology of the
model to study the dependencies of the metabolism of P. infestans on that of to-
mato. This showed, for example, that P. infestans, a thiamine auxotroph, depends on
certain metabolic reactions of the tomato thiamine biosynthesis. We also exploited
dual-transcriptome data of a time course of a full late blight infection cycle on to-
mato leaves and integrated the expression of metabolic enzymes in the model. This
revealed profound changes in pathogen-host metabolism during infection. As infec-
tion progresses, P. infestans performs less de novo synthesis of metabolites and scav-
enges more metabolites from tomato. This integrated metabolic model for the P. in-
festans-tomato interaction provides a framework to integrate data and generate
hypotheses about in planta nutrition of P. infestans throughout its infection cycle.

IMPORTANCE Late blight disease caused by the oomycete pathogen Phytophthora in-
festans leads to extensive yield losses in tomato and potato cultivation worldwide. To ef-
fectively control this pathogen, a thorough understanding of the mechanisms shaping
the interaction with its hosts is paramount. While considerable work has focused on ex-
ploring host defense mechanisms and identifying P. infestans proteins contributing to
virulence and pathogenicity, the nutritional strategies of the pathogen are mostly unre-
solved. Genome-scale metabolic models (GEMs) can be used to simulate metabolic
fluxes and help in unravelling the complex nature of metabolism. We integrated a GEM
of tomato with a GEM of P. infestans to simulate the metabolic fluxes that occur during
infection. This yields insights into the nutrients that P. infestans obtains during different
phases of the infection cycle and helps in generating hypotheses about nutrition in planta.

KEYWORDS Phytophthora infestans, metabolic modeling, metabolism, oomycetes,
tomato

Plants and pathogens maintain a complex relationship that generally involves the
secretion of effector proteins by the pathogen to manipulate plant cell processes

and the scavenging of nutrients from the host by the pathogen to support its growth
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and proliferation (1). While increasing knowledge has been gained on secreted effector
proteins that facilitate host colonization (2), the nature of pathogen nutrition remains
underexplored. A class of organisms comprising important plant and animal pathogens
is the oomycetes (3). These share morphological characteristics with fungi, yet belong
to the Stramenopiles, a eukaryotic lineage that besides oomycetes also includes
diatoms and brown algae (4). The most well-known oomycete is Phytophthora infestans,
the causal agent of late blight disease on tomato and potato, which leads to significant
yield losses worldwide (5). P. infestans is challenging to control. The pathogen has a
highly flexible genome facilitating rapid adaptation to control strategies, be it resistant
cultivars or chemical agents (6), and its profuse sporulation causes P. infestans to spread
extremely fast (7). Hence, there is a continuous quest for novel more durable control
strategies.

P. infestans sporangia are aerially dispersed, and after landing on a plant surface,
these can release flagellate zoospores (8). These encyst and germinate to form a germ
tube with an appressorium to penetrate epidermal cells of the plant. From there,
P. infestans colonizes the mesophyll; hyphae grow in the apoplast while forming
intracellular feeding structures called haustoria. Both the apoplastic hyphae and haus-
toria provide close contact with the plant, facilitating the exchange of effectors and
nutrients (9). Oomycetes are considered osmotrophs that extracellularly catabolize
complex host polymers, such as proteins, sugars, and fatty acids, using an arsenal of
secreted enzymes, followed by the import of degraded nutrients into the cell (10).
Moreover, P. infestans is a hemibiotrophic pathogen that requires viable host cells
during the initial stages of the infection cycle, the so-called biotrophic phase with
minimal symptoms. Typically, after 3 to 6 days, this biotrophic phase is followed by a
necrotrophic phase during which the lesion becomes necrotic and new sporangia
emerge (11, 12). This implies that the physiology of the host tissue changes throughout
the infection cycle, and consequently, also the nutrients available for the pathogen (13).
Conceivably, P. infestans fine-tunes its metabolism to available nutrients, for example,
by regulating the expression of enzyme-encoding genes through catabolite repression
and/or substrate induction (14, 15).

The P. infestans metabolism is remarkably dynamic. Transcriptome-based studies
revealed significant differences in the transcript abundances of enzyme-encoding
genes throughout the asexual and sexual lifecycles and during plant infection (16–19).
While these studies provide detailed insight into the potential dynamics of metabolic
enzymes, the insight gained into the overall characteristics of the cell metabolism is
very limited. Importantly, cell metabolism is not a static framework of reactions and
pathways but adapts to different environments to allow for the uptake of metabolites
or the production of required compounds. These dynamics are facilitated by regulation
of the rates of individual reactions within the pathways. However, as many intrinsic
(e.g., enzyme activity) or extrinsic (e.g., pH or temperature) factors influence these
reaction rates, studying cell metabolism remains challenging.

Genome-scale metabolic models (GEMs) can be used to help understand cell
metabolism. GEMs represent cell metabolism as a cell-scale network of biochemical
reactions, typically distributed over several cellular compartments, that connects the
uptake of nutrients to the production of biomass precursors (20, 21). Assuming me-
tabolism to be in steady state allows for the derivation of possible rates (called
metabolic fluxes) for each reaction in the network (see File S1 in the supplemental
material). A GEM can be used to predict putative nutrients and essential enzymes/
reactions in the cell, thereby generating hypotheses about the responses of the cell
metabolism to perturbations (22). Therefore, metabolic models have great potential to
aid in the development of novel control strategies against pathogens (23, 24). The
metabolism of a pathogen is tightly interconnected with that of its host and can be
regarded as a single system (25). Moreover, the relationship of a pathogen with its host
shapes its metabolism through evolution, leading to enzyme gene loss, which makes
the pathogen dependent on its host (26). An integrated host-pathogen metabolic
model can yield insights into the system-wide metabolic fluxes that shape an infection.
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Thus far, only a few models exist that describe the joint metabolism of beneficial or
pathogenic microbes and their hosts (27–33).

Recently, we published the first GEM for P. infestans (34). We used this model to
simulate the growth of P. infestans on minimal culture medium and predicted the
essential genes and corresponding reactions that are required to convert its nutrients
into biomass components (34). Here, we integrated the P. infestans GEM with a tomato
GEM (35). Using these models, we developed a host-pathogen interaction metabolic
model that allowed us to identify and study hallmarks of the P. infestans-tomato
interaction. Exploiting gene expression data of late blight infections on tomato enabled
us to dissect the changes in pathogen and host metabolism, providing novel insights
into this host-pathogen interaction.

RESULTS and DISCUSSION
A metabolic model for the tomato-P. infestans pathosystem. To reconstruct an

integrated tomato-P. infestans metabolic model, we exploited a recently constructed
tomato GEM (35). This tomato model comprised 2,143 reactions and 3,410 genes,
whereas the previously constructed P. infestans GEM comprised 2,394 reactions and
1,301 genes, suggesting that P. infestans has less genetic redundancy for metabolic
enzymes than does tomato (Table 1). Our original P. infestans GEM was based on a
framework reconstructed by the annotation of enzyme orthologs in the P. infestans
genome and linking those to the biochemical reactions in KEGG (34, 36). Based on the
literature, we added a minimal growth medium, a set of known biomass precursors, and
cellular compartments, and simulated in vitro growth (34). The tomato GEM was
originally used to simulate photorespiratory fluxes under different conditions and was
reconstructed from LycoCyc (35, 37). We manually improved the P. infestans and the
tomato GEMs (see Materials and Methods). For instance, according to recent insights
into the mitochondrial localization of glycolytic enzymes (17), we curated the gene-
reaction association of P. infestans in this pathway. In the tomato GEM, we curated the
thiamine biosynthesis, since P. infestans is a thiamine auxotroph (8). The two GEMs were
connected by so-called transport reactions, representing the nutrient flux from tomato
to P. infestans. Although the transporter repertoire of P. infestans has been predicted
(16), we could not attribute specific substrates to transporters. Most functional anno-
tations lack specificity, and even between oomycete species, transporter substrate
specificity can vary (38). Therefore, we chose an unbiased approach, connecting the
two GEMs by the addition of a hypothetical unidirectional transport reaction for
each of the 520 metabolites that were found to be shared between the cytosol
compartments, each one representing the flux of a single metabolite from the
tomato cytosol to the P. infestans cytosol (Fig. 1). We realized that for a pathogen
to maintain homeostasis during infection, fluxes may occur in both directions (i.e.,
from the host to the pathogen and vice versa). However, the lack of knowledge of
this process only allowed us to model host-to-pathogen nutrient fluxes. The 520
added transport reactions predominantly concern metabolites taking part in pri-

TABLE 1 Properties of the genome-scale metabolic models of P. infestans and tomato and
of the integrated metabolic model

System

Data for model:

P. infestansa

S. lycopersicum
(tomato)b

P. infestans �
S. lycopersicumc

Model name iSR1301 iHY3410 iSR4578
No. of reactions 2,394 2,143 4,695
No. of metabolites 2,685 1,998 4,303
No. of genes 1,301 3,240 4,578
No. of compartments 7 5 12
aRodenburg et al. (34).
bYuan et al. (35).
cThis study. The numbers in this column are not the exact sum of the two independent models, since
several adaptations were made (see Materials and Methods).
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mary metabolic subsystems (from KEGG). These include amino acid biosynthesis
(n � 75), carbon metabolism (n � 61), purine and pyrimidine biosynthesis (n � 51
and 37, respectively), and ABC transporters (n � 42), which indicates that at least 42
metabolites are known ABC transporter substrates. Of the 520 introduced transport
reactions, 179 could carry a flux, meaning that the respective metabolites can both
be produced by the tomato plant and assimilated by P. infestans. The integration of
the two GEMs resulted in an integrated metabolic model of P. infestans-tomato
interaction, comprising a total of 4,695 reactions, 4,303 metabolites, and 4,578
genes (Table 1).

Flux simulations pinpoint nutrients utilized by P. infestans. Given a metabolic
model and a metabolic objective for the cell, optimal values for the fluxes through all
reactions can be calculated to simulate the production of P. infestans biomass precur-
sors through the import of nutrients from the tomato cytosol (39). An objective could
be, for instance, to maximize the production of biomass or to produce biomass at
minimal enzyme expense. To study the versatility of the model, we composed four
scenarios based on different cellular objectives (Table S2). In scenario I, we calculated
the minimal set of nutrients P. infestans needs to import from tomato to form all its
biomass precursors. This was already possible by importing three compounds, thia-
mine, L-gamma-glutamyl phosphate, and cysteine. While this scenario is unlikely to
occur in planta, it does illustrate that P. infestans has a comprehensive enzyme
repertoire, enabling it to form its biomass precursors based on a very small pool of
nutrients. In scenario II, we calculated P. infestans biomass production using the
minimum number of P. infestans reactions possible, to simulate growth with minimal
enzyme cost for P. infestans. In this scenario, 48 nutrients were used, including ammo-
nium, a known growth substrate (40). However, ammonium is an unfavored nitrogen
source compared to amino acids (16). Among other imported nutrients in this scenario
are the tricarboxylic acid (TCA) cycle intermediates malic acid and succinic acid, for
which P. infestans has an experimentally verified transporter (38). Organic acids, such as
succinic and malic acids, strongly promote P. infestans growth in vitro, especially in
combination with ammonium as a source of nitrogen (41). Notably, 29 of the nutrients
in this scenario are direct biomass precursors for P. infestans, including 19 amino acids
(aspartate being the sole exception) (Fig. S1). In scenario III, we maximized the usage
of P. infestans reactions to simulate a scenario in which the pathogen maximally
exploits its metabolism. This simulation predicted a pool of 29 nutrients, including the
inorganic compounds nitrite and hydrogen sulfide. Interestingly, Phytophthora spp.
retained the complete assimilation pathways for these compounds (16), in contrast to
multiple obligate biotrophic oomycetes which lost multiple genes throughout evolu-
tion (8). In scenario IV, we combined scenarios I and II, in which we calculated the
minimal nutrient uptake combined with minimal usage of P. infestans reactions to
produce biomass. Since both nutrient import and assimilation into biomass require
energy, these processes likely require a trade-off; hence, we anticipate that this is a
more realistic scenario. Here, 38 nutrients were used, 16 of which were amino acids.

The four scenarios described above have opposite objectives (minimize/maximize
the fluxes of P. infestans) and simulate extreme circumstances not likely found in nature.

FIG 1 Integrated P. infestans-tomato model. (A) Schematic illustration. Dots are metabolites, arrows are
reactions, and dotted lines represent the host-pathogen transport reactions. (B) Numbers of unique and
shared cytosol metabolites.
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The true pool of imported nutrients will likely be a combination of the pools predicted
in each individual scenario. A comparison of the nutrients imported in all four scenarios
revealed sets of nutrients in common between scenarios. There are 14 nutrients found
in three out of four scenarios, i.e., II, III, and IV (Fig. S1), including several amino acids,
nucleotide precursors, and glycerol 3-phosphate as a lipid precursor. Surprisingly,
aspartate is not imported in any of the scenarios, even though it is a biomass precursor
of P. infestans and serves as a precursor to a variety of other amino acids (42, 43). An
oomycete-specific form of aspartate aminotransferase (EC 2.6.1.1) was found that seems
to play a key role in pathogenicity in Phytophthora sojae, possibly by balancing nitrogen
and carbon metabolism and facilitating the interconversion between amino acids (44).
The presence of this enzyme in our model explains why aspartic acid import may not
be necessary. Interestingly, thiamine is only imported in scenario III (maximizing the
P. infestans fluxes), while thiamine pyrophosphate (TPP) is imported in scenarios II and
IV (minimizing fluxes). It is assumed that many oomycetes import thiamine to form TPP
(8), an essential cofactor in carbohydrate metabolism (45) and in TPP-responsive
riboswitches (46). However, related Stramenopiles were found to also grow on thiamine
alternatives (47), and possibly, P. infestans can import up- or downstream compounds
instead. Taken together, these simulations suggest a range of nutrients from tomato
that can be effectively assimilated by P. infestans. Nutrients in common between the
simulated scenarios suggest that these are likely more versatile than others and hence
most useful for P. infestans to import.

Network analysis identifies dependencies of P. infestans on tomato metabo-
lism. To identify dependencies of P. infestans on tomato, we investigated the topology
of the integrated model by looking for essential reactions (i.e., reactions that are
indispensable in the model to form all biomass precursors) and (inter)dependencies of
reactions (i.e., the flux of a particular reaction relies on the flux of another), also known
as coupled reactions. Coupled reactions within a metabolic model can be identified
using a method called flux coupling analysis (FCA; File S1) (48). FCA of the model
identified 77 coupled P. infestans-tomato reaction pairs (Fig. 2) involving 53 unique
P. infestans reactions and 49 unique tomato reactions (Table S3). One of these P. in-
festans-tomato reaction couplings comprises the biomass reaction of TPP in P. infestans,
which is coupled to 17 tomato reactions, illustrating that P. infestans TPP is dependent
on the thiamine biosynthesis pathway in tomatoes. In addition, of the 4,695 reactions
in the model, 112 P. infestans reactions and 35 tomato reactions were found to be
essential for P. infestans (Fig. 2A). Some reactions are essential and coupled to many
other reactions at the same time (appearing as hubs in Fig. 2A), implying that these play
a central role in the model, with potentially large biological implications. For instance,
there is a tomato transport reaction of aspartate into the plastid compartment, sup-
plying aspartate as an amino group donor for the synthesis of a thiamine precursor
(aminoimidazole ribotide) (49, 50), thus indirectly making this tomato reaction essential
for P. infestans. Similarly, ATP and phosphate transport between P. infestans cytosol and
mitochondria is essential and seems to play an important role in the model. Phosphate
and sulfate uptake by the tomato plant are part of the defined growth medium, hence
coupled to reactions in both species. FCA also revealed several clusters of tightly
interconnected coupled essential reactions (Fig. 2A). One of these represents P. infestans
fatty acid biosynthesis. In the model, this comprises a mostly linear pathway, and conse-
quently, most reactions are coupled (interdependent). Fatty acid biosynthesis in oomycetes
is associated with fungicide resistance (51) and energy storage for sporangia (8).

Couplings to the host-pathogen transport reactions in particular can provide infor-
mation about the importance of transported metabolites; the more P. infestans reac-
tions that are coupled to a transport reaction, the more likely that the associated
substrate is important for P. infestans. We selected the most frequently coupled
transport reactions from the model and assessed their couplings to other tomato and
P. infestans reactions (Fig. 2B). The substrates of these transport reactions were asso-
ciated with a diverse range of metabolic processes in P. infestans, i.e., pantothenate/
coenzyme A (CoA) biosynthesis (2-dehydropantoate), de novo pyrimidine biosynthesis

Integrated P. infestans-Tomato Metabolic Model ®

July/August 2019 Volume 10 Issue 4 e00454-19 mbio.asm.org 5

https://mbio.asm.org


(S-dihydroorotate) (52), riboflavin metabolism [2,5-diamino-4-hydroxy-6-(5-phospho-
ribosylamino)pyrimidine], and inositol phosphate metabolism (myo-inositol 3-phos-
phate). Notably, three transporter substrates were associated with glycerophospholipid
metabolism (phosphodimethylethanolamine N�methylethanolamine phosphate and
choline). It is conceivable that P. infestans can take up glycerophospholipid precursors
to facilitate the formation of membrane lipids (53). Seven P. infestans reactions were
coupled to the reaction importing fructose, an efficient growth substrate (40). Among
the most frequently coupled host-pathogen transport reactions are also those trans-

FIG 2 Flux coupling between reactions in the P. infestans-tomato model. (A) Graph showing the coupled reactions in the model. Nodes represent
reactions in tomato (red) or P. infestans (blue) and host-pathogen transport (green), and edges represent coupling between those reactions. Node
size reflects essentiality for P. infestans biomass production. Stars represent transport reactions listed in panel B. Highly connected nodes (1 to
5) and clusters (I to V) are indicated and listed in the boxes on the right (see also main text). (B) Nutrients associated with the 12 most frequently
coupled host-pathogen transport reactions. The bars are stacked and indicate the number of coupled reactions per species.
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porting dTTP, histidine, and leucine. Since these are mainly coupled to tomato reac-
tions, the import of these nutrients seems to depend on their biosynthesis pathways in
tomato. FCA can identify coupled reactions in metabolic models that are not necessarily
directly connected in the network and can thus derive functionally related modules of
(pathogen-host) metabolism that may otherwise be overlooked.

Transcriptome-based submodels provide insight into the dynamics of P. infes-
tans-tomato metabolism. To obtain insight into the metabolism at subsequent de-
velopmental stages of the P. infestans-tomato interaction, we integrated the model
with dual-transcriptome data obtained from RNA, isolated from tomato leaves inocu-
lated with P. infestans strain 1306 (2 to 6 days postinoculation, sampled every 4 h). The
infections showed profuse sporulation at around 4 days postinoculation (dpi). In pre-
vious studies, it was found that in infections by this P. infestans strain, marker genes for
biotrophic growth peak at 2 to 3 dpi, and those for necrotrophic growth peak at 4 to
5 dpi (16), while marker genes for sporulation are increasingly expressed from 3 dpi on
and peak at 4 dpi. Expectedly, as the proportion of reads of each sample mapping to
the P. infestans genome steadily increased over time (from 7% to 84%), the amount of
reads mapping to the tomato genome decreased accordingly (from 87% to 8%)
(Fig. S2). The transcriptome data were used to generate time point-specific submodels,
which are subsets of the full model according to the expression of the genes in the
model. Since gene expression and metabolic activity are not directly related, we used
the Integrative Network Inference for Tissues (INIT) algorithm (54) that calculates a
submodel with maximal agreement to the expression of genes in the model such that
biomass can be produced (see Materials and Methods). This resulted in 25 submodels
containing 32 to 44% of the reactions of the full model (Fig. 3), indicating that only a
subset of reactions is required to form all defined biomass precursors. Over time, the
total number of reactions per submodel decreases (Fig. 3), mostly due to a reduction
in the number of P. infestans reactions. The number of tomato reactions is relatively
stable across the submodels, while the number of transport reactions increases slightly

FIG 3 Submodels based on dual-transcriptome data from a time course covering a full infection cycle of P. infestans on
tomato leaf. Submodels are representative for the sampling time postinoculation shown in days (d) and hours on the y axis
(middle) and x axis (left). Left, stacked bar graph indicating the number of reactions per species and number of
host-pathogen transport reactions (not part of either species). Right, Jaccard similarity (intersection divided by union)
between the reaction content of the submodels.
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over time. These results suggest that as the infection progresses, P. infestans relies less
on its own metabolism but increasingly imports metabolites from the necrotic tomato
lesion. Conceivably, once P. infestans switches to its necrotrophic lifestyle, nutrients can
be more easily obtained from the decaying leaf tissue (15). To obtain an impression of
the metabolic changes in the infection over time, we calculated all pairwise distances
of the reaction content of the submodels (Fig. 3). This revealed a gradient of similarity
scores, clearly reflecting metabolic changes over time, possibly as a response to
changing nutrient availability in the tomato leaf tissue. A relatively large distance can
be observed between groups of submodels, suggesting two more profound switches
in metabolism at roughly 3 days and 8 h (3d/8h) and 4 days and 12 h (4d/12h), possibly
reflecting a transition from the pathogens’ biotrophic growth to necrotrophic growth
and sporulation (11, 12, 16, 55).

To obtain more insight into the metabolic processes of each submodel, we per-
formed Fisher’s exact tests on the KEGG pathways in the submodels. A variety of
metabolic pathways were overrepresented in submodels compared to the full model
(Fig. 4). Consistent with the previously observed gradient of similarity scores (Fig. 3),
groups of overrepresented pathways can be distinguished before and after 3d/8h.
Notably, in the early submodels prior to the first transition, P. infestans reactions are
enriched for several primary metabolic pathways, such as amino acid biosynthesis,
glycolysis, and the TCA cycle. This could be a response to sugars in the apoplast that

FIG 4 Enriched KEGG pathways in transcriptome-based submodels from a time course covering a full infection
cycle of P. infestans on tomato. Submodels are representative for the sampling time postinoculation shown on the
x axis in days (d) and hours. Enrichment is calculated based on the reaction content of each of the submodels
compared to the full model. Colors scale to the adjusted P value. metab, metabolism; biosyn, biosynthesis; syn,
synthesis; deg, degradation.
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are still produced by photosynthesizing tomato leaf cells during the biotrophic phase
of infection (56, 57). In contrast, late submodels, and in particular after the second
transition (4d/12h), show that in tomato, several amino acid biosynthesis pathways are
enriched, suggesting that during early infection, amino acids are mostly synthesized de
novo by P. infestans but are later scavenged from tomato. This corroborates with a
transcriptome study of P. infestans infecting potatoes, in which a diverse but generally
higher expression of amino acid transporter genes at late infection time points was
observed (16). In addition, early submodels are enriched in folate-related pathways on
both sides, suggesting that folate plays an important role in early infection. This is in
line with the finding that P. infestans has an unusually large repertoire of putative
folate-biopterin transporter genes (18), although a divergent expression pattern was
observed for these genes throughout infection (16). Arachidonic acid metabolism is
enriched in midinfection submodels, which is a characteristic fatty acid in P. infestans
known to elicit plant defense and to act as a signaling molecule in plants (58, 59). In
summary, our analyses reveal profound changes in metabolic processes during infec-
tion of tomato by P. infestans and suggest that P. infestans reduces its metabolism at
the expense of its host.

Import of specific nutrients becomes increasingly essential to P. infestans. The
ability of a model to maintain its functionality (biomass production) under perturba-
tions (e.g., simulated reaction deletions) is often referred to as robustness (60). We can
express the robustness of each submodel as the fraction of reaction deletions that do
not disturb P. infestans biomass production (60). This revealed that early infection
submodels have higher robustness to reaction deletions than late infection submodels
(Fig. 5). This suggests that as the infection progresses, P. infestans largely shuts down
accessory/alternative pathways to synthesize its biomass precursors, rendering the
remaining reactions essential. The number of essential genes for P. infestans remained
stable over time, with an average of 84 � 5 essential genes (Table S1).

To evaluate the importance of nutrient transport for P. infestans while colonizing
tomato, we assessed the essentiality of the host-pathogen transport reactions in
each submodel (61). A host-pathogen transport reaction is essential when its
deletion disables biomass production and is partially essential when deletion in
combination with deletions of other reactions disables biomass production. We
found no essential nutrients for P. infestans when considering the full model, yet the
submodels display various patterns of nutrient essentiality (Fig. S3). Early infection
submodels have just a few essential nutrients, while mid- and late-infection sub-
models, after the first transition point, show various essential amino acid transport
reactions. This corroborates our previous observations (Fig. 4) where the first
transition point marks the switch from de novo synthesis of amino acids in P. in-
festans to an increased uptake from tomato.

Metabolomics can be used to refine transcriptome-based submodels. To assess
to what extent the transcriptome-based submodels are coherent with metabolome
data, we utilized untargeted metabolome data of tomato leaves colonized by

FIG 5 Robustness of transcriptome-based submodels from a time course covering a full infection cycle
of P. infestans on tomato. The y axis shows the robustness as the fraction of single reaction deletions that
do not disable the biomass flux for P. infestans. Submodels are representative of the sampling time
postinoculation shown on the x axis in days and hours.
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P. infestans at 2 days and 12 h (2d/12h) and 5 days and 12 h (5d/12h) postinocu-
lation. To relate the detected metabolites to metabolic fluxes, we hypothesized that
metabolites strongly decreasing in abundance (log2 fold change ��2) between
these two time points are produced in the submodel of 2d/12h, and metabolites
that increase (log2 fold change �2) are produced in the submodel of 5d/12h
(Fig. S4). Subsequently, we generated two additional submodels using INIT (54)
based on the transcriptome data at 2d/12h and 5d/12h postinoculation, while
enforcing the presence of the detected metabolites in the respective submodels.
The submodels of the transcriptome-only (T) and the metabolome-guided (T�M)
submodels differed in 4% (2d/12h) and 11% (5d/12h) of the reactions and in 3% and
7% of the metabolites, respectively (Fig. 6). Overall, the addition of metabolomics
data leads to a net increase of reactions and metabolites in particular at the late
submodels, suggesting that the T submodels are slightly too conservative; there
may be a more active metabolism than suggested by mRNA levels of enzyme-
encoding genes. It should be emphasized that both GEMs and metabolomics data
only provide a partial description of the cell metabolism at the different infection
time points. Discrepancies may arise since transcriptome-based submodels do not
take into account any posttranscriptional regulation or posttranslational modifica-
tion of enzymes, and misannotations and missing/blocked reactions potentially
increase uncertainty in submodels. Moreover, since detected metabolites are not
necessarily continuously metabolized, steady-state fluxes are not directly linked to
measured metabolite abundances (62). Vice versa, metabolic fluxes do not necessarily
yield detectable metabolites, for example, when reaction products are immediately con-
sumed in downstream reactions. To predict metabolic fluxes more reliably, higher-
resolution metabolome data and sufficient data points over time are prerequisites which
could provide sufficient data points in time to calculate metabolite coefficients (63).
Nonetheless, our initial results suggest that the integration of high-resolution metabolome
data of tomato infection has the potential to refine stage-specific patterns that are
embedded in the joint metabolism of the P. infestans-tomato interaction.

Conclusions. Pathogens scavenge metabolites from their hosts to support their growth
and proliferation. Here, we took a systems biology approach and modeled the joint
metabolism of tomato and P. infestans to generate hypotheses about their relationship. Our
metabolic model of the P. infestans-tomato interaction represents one of the few integrated
pathogen-host metabolic models published to date (23). Regarding pathogen and host as
one entity can yield hypotheses about the combined metabolism at a single metabolic
equilibrium. The modeling allowed us to infer a conceivable pool of nutrients, mainly
consisting of amino acids, lipid precursors, and a TPP precursor that is likely exploited by
P. infestans while infecting the tomato. The model also helped us further characterize
host-pathogen dependencies, such as the long-known thiamine dependency of Phytoph-
thora spp. (64). Modification of the thiamine biosynthesis pathway in tomato might be an
interesting strategy for controlling late blight. Similarly, P. infestans lipid metabolism might

FIG 6 Overlap of reaction and metabolite content of submodels, based on transcriptome data only (T)
or transcriptome data and metabolome data (T�M). Data used to generate these submodels were
obtained from P. infestans-infected tomato leaves at 2d/12h and 5d/12h postinoculation.
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be an interesting pathway for pathogen intervention, as our model predicts that P. infestans
takes up lipids as a membrane precursor, coherent with previous experiments (53). Alter-
natively, fatty acid biosynthesis likely has an important role in synthesizing fuel reserves for
spores (8). Our analyses showed that fatty acid biosynthesis is a largely linear pathway with
high interdependency of the participating reactions (34).

Clearly, many parameters that can further improve this model are still unknown, for
example, the biomass composition of P. infestans growing in planta and different
metabolic processes in different zones of a lesion and during the infection cycle (65).
As such, the model would benefit from more extensive and in-depth metabolomics
analyses (66). There is also a need to extend our knowledge on the potential role of
transporters in this system, as these play a key role in infection and are potential control
targets (67, 68). This could be done, for example, by 13C-flux spectral analyses to
monitor nutrient fluxes and to validate transporter functions in the pathogen (38, 69).
Altogether, this model provides insights into P. infestans-tomato metabolism and serves
as a stepping stone for the design of novel control strategies for this devastating
pathogen.

MATERIALS AND METHODS
Model reconstruction. To improve the predictive capabilities of the previously constructed P. in-

festans iSR1301 GEM (34), we performed several literature- and protocol-based curations (70). As a
starting point, we used our published genome-scale metabolic model (GEM) of P. infestans iSR1301 (34).
We removed the sink- and gap-filling reactions that were previously added (34). The sink reactions of the
generic metabolites fatty acid, holo-acyl-carrier protein, and apoprotein have no mass or formula but are
needed to calculate fatty acid biosynthesis fluxes and were therefore retained. Recently, it was confirmed
that some metabolic enzymes of glycolysis and serine biosynthesis in P. infestans reside in mitochondria
(17). We manually corrected the gene-reaction associations accordingly to assign these enzymes to the
appropriate compartment. The KEGG reaction identifiers of the P. infestans GEM were matched to
MetaNetX identifiers (71), and the associated reaction formula was retrieved. MetaNetX indicates for each
reaction whether it is mass balanced or not; all reactions that were not mass balanced were removed
from the model. The conversion of arachidonic acid to eicosapentaenoic acid (EPA) was manually added
according to the literature, whereafter EPA was added to the biomass precursors (59, 72). Thiamine
diphosphate was added to the set of P. infestans biomass precursors to represent the thiamine
auxotrophy of P. infestans. Water and proton metabolites were removed from the model, as they do not
fulfill a meaningful function in the P. infestans GEM but do have a function in the tomato GEM, where
they simulate proton pumps (35). The thermodynamic constraints (directionality) were by default
inferred from KEGG maps and manually adjusted according to standard model reconstruction protocols
(70), such that ATP/GTP-consuming reactions were unidirectional, except for ATP synthase (EC 3.6.3.14),
nucleotide diphosphate kinase (EC 2.7.4.6), and succinate coenzyme A synthase (EC 6.2.1.4).

To identify possible missing enzymes for P. infestans in the model, we annotated KEGG enzyme
orthologs (KOs) in 19 oomycete proteomes which were downloaded from FungiDB (2 June 2018) (73)
(Table S1), as previously described (34). We selected enzymes present in at least two oomycetes and not
yet in the model. The encoding protein sequences were aligned to the P. infestans T30-4 genome
sequence (74), masked for its annotated open reading frames, using tblastn (v2.2.31�). Sequences with
an E value of �1e�50 and query coverage of �90% were submitted to the LocTree3 Web server (75) to
predict their subcellular localization, and the associated reactions were added to the model. Additionally,
P. infestans gene models were manually corrected and reannotated for enzyme orthologs (34). To avoid
spurious addition of reactions, any of the added reactions described above were removed if they were
eventually found to be unable to carry flux in the model.

The tomato GEM was inferred from supplemental files of the associated publication (35). Since the
tomato GEM iHY3510 was built by a different lab using a different reconstruction methodology, we tried
to keep adaptations to a minimal level. As was done for the P. infestans model identifiers, the reaction
identifiers of the tomato model were matched to MetaNetX reaction identifiers for which the associated
formula was retrieved. According to knowledge of thiamine biosynthesis in plants (50), the thiamine
biosynthesis was manually curated, such that thiamine is formed in the tomato cytosol from a plastidial
thiazole and pyrimidine precursor (76). The P. infestans and tomato GEMs were connected by unidirec-
tional transport reactions for all metabolites shared between the tomato cytosol and the P. infestans
cytosol compartments (Table S1).

Constraint-based modeling and optimization. Modeling was performed in MATLAB (R2017B)
using the RAVEN (v2) (77) and COBRA (v3) toolboxes (78). Flux coupling analysis (FCA) was performed
using F2C2 (v0.91) (79). Optimization was performed using Gurobi (v8.0) for flux balance analysis (FBA)
and the Integrative Network Inference for Tissues (INIT) (54). GLPK (v2.8) was used for FCA. Essential
genes/reactions and essentiality scores of the transport reactions were calculated using ESS (61), which
implements Fast-SL (80), constraining the total flux of P. infestans biomass production to �5%. The global
robustness statistic was calculated according to Peyraud et al. (60), defined as the fraction of reaction
deletions that did not render the biomass flux of P. infestans �5%.
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RNA sequencing and mass spectrometry. RNA and metabolites were isolated from tomato leaflets
(cv. New Yorker) inoculated with P. infestans isolate 1306. For the plant infection assays, a zoospore
suspension was prepared as described previously (18) and adjusted to a concentration of 5 � 104 per ml,
applied to detached leaves placed on 1.5% water agar. The zoospores were sprayed on the leaves with
a hand sprayer until run-off. The leaves were then incubated at 18°C under high humidity in plastic bags
containing wet paper towels with a 12-h light/dark cycle. Between 2 and 6 days postinoculation, leaves
were harvested every 4 h and flash-frozen until further use. After library construction, single-end
75-nucleotide (nt) sequence reads were obtained using an Illumina NextSeq 500 platform, and quality
was assessed using FastQC (v0.11.8) (Fig. S2) (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). The reads were independently mapped to the P. infestans T30-4 (74) and tomato
ITAG2.3 (81) genomes using HISAT2 (v2.1.0) (82), and mapping efficiencies were retrieved using SAMtools
flagstat (v0.1.19) (83). Transcript abundance was quantified and normalized using cuffnorm (v2.2.1) (84)
that implements the DESeq2 normalization procedure (85), which divides the read counts by a factor
calculated from the median of geometric means across samples, accounting for differences in sequenc-
ing depth and RNA composition.

For the metabolome analyses, the flash-frozen leaves were lyophilized, weighed, and provided to
Metabolon, Inc. for further handling. After tissue grinding, proteins were removed by methanol precip-
itation. After eliminating the solvent, the samples were analyzed by reverse-phase (RP) ultraperformance
liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS) using positive-ion mode electrospray
ionization (ESI), RP-UPLC-MS/MS with negative-ion mode ESI, and hydrophilic interaction-UPLC-MS/MS
with negative-ion mode ESI. The area under the curve method was used to quantify peaks. For each time
point, four biological replicates were analyzed. Differential abundance of metabolites was determined
using t tests, selecting metabolites with a log2 fold change of �2 or ��2 with a Benjamini-Hochberg-
adjusted P value of �0.05 (86). We imputed missing values among replicates using the minimal value
across other replicates.

Submodel generation. The transcriptome-based submodels were generated using the INIT algo-
rithm (54), which poses a mixed-integer linear optimization problem (MILP) that aims to optimize a
global score based on reaction weights in the model. Reaction weights were calculated according to an
adapted version of the formula described by Agren et al. (54):

wij � 5log� Eij

x�i � 1�,

where wij is a weight for each reaction i and condition j in the full model, Eij is the transcript abundance
value summarized per reaction (i.e., the maximum expression value of the genes associated with each
reaction), and x� i is the mean expression of that reaction across samples. An inflation factor (�1) was
added in the denominator to prevent inflated weights for extremely low expression values. According to
Agren et al. (54), we maintained the same minimum and maximum cutoffs for w of � 5 � wij � 10.
Reactions with an expression lower than the average (thus negative weight) will be less likely to be
included in the submodels, and reactions expressed above average (thus a positive weight) will be more
likely to be included. Transport reactions were assigned a weight of �0.1, based on the hypothesis that
these should not be “free” to include (i.e., weight 0) but should only have a minimal influence on the
submodel solution. Reactions without associated genes were given a weight of 0. For the MILP
optimization, the flux of all biomass precursors of both tomato and P. infestans was constrained to be �1.

Data availability. Transcriptome data were deposited in the NCBI Sequence Read Archive under
BioProject number PRJNA516028.
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