
ARTICLE

Cortical structural differences in major depressive
disorder correlate with cell type-specific
transcriptional signatures
Jiao Li1,2, Jakob Seidlitz 3,4, John Suckling5, Feiyang Fan1,2, Gong-Jun Ji6, Yao Meng1,2, Siqi Yang1,2, Kai Wang6,

Jiang Qiu7, Huafu Chen1,2✉ & Wei Liao 1,2✉

Major depressive disorder (MDD) has been shown to be associated with structural

abnormalities in a variety of spatially diverse brain regions. However, the correlation between

brain structural changes in MDD and gene expression is unclear. Here, we examine the link

between brain-wide gene expression and morphometric changes in individuals with MDD,

using neuroimaging data from two independent cohorts and a publicly available tran-

scriptomic dataset. Morphometric similarity network (MSN) analysis shows replicable cor-

tical structural differences in individuals with MDD compared to control subjects. Using

human brain gene expression data, we observe that the expression of MDD-associated genes

spatially correlates with MSN differences. Analysis of cell type-specific signature genes

suggests that microglia and neuronal specific transcriptional changes account for most of the

observed correlation with MDD-specific MSN differences. Collectively, our findings link

molecular and structural changes relevant for MDD.
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Major depressive disorder (MDD) is a prevalent world-
wide psychiatric disease that often first occurs in
adolescence1. Despite significant efforts, our current

understanding of its pathophysiology is unclear with inconsistent
brain architectural changes2 and the variable effects of treatment3.
Although neuroimaging studies show some focal structural
alterations4, functionally MDD is increasingly recognized as a
disorder involving brain “disconnectivity”5.

Recent magnetic resonance imaging (MRI) studies indicate that
abnormal structural connectomes primarily involve frontal-
limbic regions, including the dorsolateral prefrontal cortex, the
anterior cingulate cortex, posterior cingulate cortex/precuneus,
and orbitofrontal cortex6,7. Investigating MDD brain structural
connectomes has primarily relied on two approaches: identifying
the white-matter networks by diffusion-weighted imaging (DWI)
tractography, and structural covariance networks of between-
subject correlations of morphological measures6,8–10. Although
some studies have reported reduced white-matter connectivity in
diverse subnetworks9, DWI tractography remains challenging,
especially in estimating the connectivity strength of long-distance
projections11. Structural covariance analysis has shown significant
changes associated with depression, particularly segregation12.
However, this technique relies for its accuracy on large sample
sizes, and generally cannot be used for individual analysis. Its
biological interpretation also remains controversial13.

Morphometric similarity network (MSN) analysis has been a
recent major step forward in revealing macroscale cortical
organization14. Rather than measuring the interregional correla-
tion of a single MRI feature across participants, MSNs capture the
interregional correlation of multiple morphometric features from
multiple modalities in a single individual. Methodologically,
MSNs can be constructed for individuals and potentially have
closer associations with cytoarchitectonic classes, distinguished by
cortical lamination patterns, compared with DWI tractography.
In addition, Seidlitz et al. reported three biological associations of
MSNs14. First, strongly connected cortical areas have high levels
of co-expressed genes. Second, strongly connected cortical areas
often belong to the same cytoarchitectonic class, supported by
histological evidence from nonhuman primates15,16. Third, cor-
tical regions that are more morphometrically similar are likely to
be axonally connected to each other17. Finally, clinical abnorm-
alities of the MSN in individuals with schizophrenia are highly
associated with brain expression of schizophrenia-related genes18,
and uncover transcriptomic and cellular profiles of regional brain
vulnerability to neurogenetic disorders19. Although MSNs are a
reliable and robust method, their use for uncovering morpho-
metric differences in MDD remains untried.

Genetic factors play important roles in brain connectomes20,21,
and brain-wide gene expression atlases bridge the gap between
connectomes and transcriptomes22. The Allen Human Brain Atlas
(AHBA) microarray dataset has been used to identify tran-
scriptomes associated with human neuroimaging23,24 with multi-
modal evidence suggesting a link between conserved gene expression
and functionally relevant circuitry25–28. Combining neuroimaging
and gene transcripts has provided insight into how disease-related
alterations at the microscale architecture drive macroscale brain
abnormalities in various mental disorders18,19,29–31. More recently,
Anderson et al. linked cortical thickness and functional correlations
in MDD to AHBA expression data, revealing dysregulation of
somatostatin interneurons and astrocytes32.

In this work, we link MDD-related MSN abnormalities and
transcriptional data to advance our understanding of the rela-
tionship of molecular mechanisms to structural changes in
depression. First, we describe the moderately replicable MDD-
related MSN abnormalities in two independent cohorts. Second,
we establish the relationship between MDD-related changes in

MSN and anatomically patterned gene expressions using the
AHBA to obtain MDD-related genes. Based on the postmortem
samples from individuals with MDD, differential gene expres-
sions (DGEs), closely linked to transcriptionally upregulated
genes, are spatially correlated with MDD-related MS differences.
Third, we perform a functional enrichment analysis to infer the
ontological pathways of MDD-related genes which converge with
synapse-related terms. Fourth, we link abnormal MSN-related
genes to cell types, specifying microglia and neurons as con-
tributing most to the transcriptomic relationship of MDD-related
changes in MSN. These observations help us understand how
brain-wide gene expression and cell types capture molecularly
validated anatomical differences in MDD.

Results
Experimental design. This study combined multimodal neuroi-
maging and transcriptomics data to determine links between gene
expression and changes in the MSN of individuals with MDD
relative to healthy controls (HC) (Fig. 1). We included two
independent cohorts: a discovery cohort and a replication cohort.
Specifically, the replication cohort was used to validate the case-
control changes in MSN and transcriptional enrichment path-
ways. Quality control of the images excluded 65 participants: 217
individuals with MDD and 208 HC in the discovery cohort, and
42 individuals with MDD and 35 HC in the replication cohort
were used for subsequent analyses (Table S1). We report the
results based on the discovery cohort, unless stated otherwise.
There were no significant (p > 0.05) between-group differences in
the means of image quality, age, and sex (Supplemental Result 1
and Fig. S1). Age and sex were used as covariates in linear models
of between-group differences to reduce model error.

MDD-related changes in MSN. We first calculated the MSN
[Desikan–Killiany (D–K)-308 regions × 308 regions] from inter-
regional Pearson’s correlation of seven features derived from T1
weighted (T1w) and DWI images acquired from each
participant14,18,19. We then calculated the regional MSN values as
the sum of correlation weights between a given region and all
other regions in matrix (without thresholding)18,19. Within-group
averaged summed weights created an anatomical distribution of
positive and negative MSN correlations in HC (Fig. 2a) that were
consistent with a previous report by Morgan et al.18 yielding a
correlation of mean regional values, Pearson’s r(306)= 0.91, pspin
< 0.0001 (Supplemental Result 2 and Fig. S2), which was sig-
nificant after correction for multiple comparisons by spatial
permutation testing (spin test)33. Threshold selection is a com-
plex issue in network construction. To validate the thresholding
effects14, we calculated the MSN at a range of connection den-
sities (10‒90% in 10% increments). At all connection densities,
the MSN maps demonstrated similar patterns with the mean HC
MSN map at 100% connection density (i.e., no thresholding)
(Supplemental Result 3 and Fig. S3).

Summing regional MSN weights across all regions for each
participant, individuals with MDD did not differ from HC
(Supplemental Result 4 and Fig. S4). Decomposed into regions, we
obtained the case-control (MDD-HC) t-map by conducting a
linear regression with age, sex, and education included as
covariates and then extracting the two-sided mean t-statistic value
comparing individuals with MDD and HC in each region. Positive
and negative t-values denote increased and decreased MSN in
individuals with MDD, respectively. MDD participants exhibited
decreased MSN weights in the left superior frontal, and increased
MSN weights in the left medial orbitofrontal (part2), isthmus
cingulate cortex (part2), lateral occipital cortex (part7), and the
right lateral occipital cortices (part 1, part 6, and part 8), when
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Fig. 1 Study overview. a Morphometric similarity network (MSN) analysis. Individual MSNs were constructed across multimodal MRI features (e.g.,
myelination, gray matter, and curvature) to produce a 308 × 308 matrix (depicted by a subdivision of the Desikan–Killiany atlas, D–K 308). Then, MDD-HC
(case-control) differences across regions were computed. b Gene expression profiles. Gene expression profiles from the Allen Human Brain Atlas in 152
regions (left hemisphere only) were averaged across six postmortem brains. Partial least squares (PLS) regression was then used to identify imaging-
transcriptomic associations. Finally, enrichment analysis was performed on the gene list associated with the first component of PLS (PLS1).

Fig. 2 Case-control differences of regional morphometric similarities. a Mean regional morphometric similarity network (MSN) pattern of control
subjects and individuals with MDD. The frontal and temporal lobes exhibited high MSN values, whereas the occipital and somatosensory cortices showed
low MSN values. b Case-control comparison (t-map) of regional MSN (first row, unthresholded). Seven cortical regions showed statistically significant
differences (bottom row, pFDR < 0.05). c A scatterplot of the mean regional MSN (x-axis) and case-control t-map (y-axis) (first row) (Pearson’s r(306)=
−0.71, pspin= 0.00). p value was not corrected for multiple comparisons, and was determined based on a one-sided test. Most cortical regions exhibited
dedifferentiation (34%) and decoupling (41%) in individuals with MDD (bottom row).
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compared with HC (all pFDR < 0.05; Fig. 2b; Supplemental Result 5
and Table S2). A decreased regional MSN in individuals with
MDD implies decreased morphometric similarity (or greater
morphometric differentiation) between these areas and the rest of
the cortex, which is interpreted as reduced anatomical connectivity
to and from the less similar, more differentiated cortical areas,
and conversely for increased regional MSN18. The MDD-HC
t-map was validated across a series of thresholded MSNs (10‒90%
in 10% increments), demonstrating a minimal effect of threshold
selection on MDD-related differences (Supplemental Result 6
and Fig. S5).

Because total intracranial volume (TIV) is an important factor
for volumetric analyses of brain regions34, we also validated the
effect of TIV on the MDD-HC t-map by including it as a
covariate in the linear regression model (LRM) in the discovery
cohort with minimal effect on MDD-related changes in MSN
(Supplemental Result 7 and Fig. S6). In addition, we divided the
individuals with MDD in the discovery cohort into two
subgroups: drug-naive and drug-experienced patients, to explore
the medication effects on MSNs. We found that irrespective of
medication status, similar patterns to the case-control t-map
(Fig. 2b) were observed (Supplemental Result 8 and Fig. S7).

Next, to make the findings generalizable to other levels of brain
organization; namely, at a systems-level of brain functional
networks composed of subnetworks that are observable during
rest and are known to support cognitive function, and at a
microstructural-level by characteristics that define the von
Economo classes, brain regions were also assigned to each of
the Yeo 7 functional networks (Supplemental Result 9 and Fig.
S8a)35, and each of the von Economo cytoarchitectonic classes
(Fig. S8b)36. Cross-sectionally, individuals with MDD exhibited
increased MSN in the Yeo visual network (pFDR= 0.007;
Supplemental Table S3 and Fig. S8c). For the von Economo
cytoarchitectonic classes, individuals with MDD had increased
MSN in secondary sensory cytoarchitectonic class (pFDR= 0.02;
Supplemental Table S4 and Fig. S8d).

The case-control t-map was significantly spatially correlated
with the mean control regional MSN: Pearson’s r(306)=−0.71,
pspin < 0.0001 (Fig. 2c), indicating that more connected regions
tend to show larger case-control differences18,19. Negative
regional t-values and positive mean MSN represents decoupling
in individuals with MDD relative to HC and was found in 34% of
regions, whereas 41% of regions had positive t-values and
negative mean MSN representing dedifferentiation in individuals
with MDD relative to HC.

We assessed the relationship between case-control changes in
MSN and symptoms using Pearson’s correlation analysis. We
included two clinical variables in this study: the 17-item Hamilton
Depression Rating Scale (HAMD), and 14-item Hamilton
Anxiety Rating Scale (HAMA). There were no significant
associations between clinical variables and regional MSN values
of each region where MSN increased/decreased significantly in
individuals with MDD compared to HC after FDR correction
(Supplemental Result 10 and Table S5). An exploratory correla-
tion analysis was also performed across all D–K 308 regions. We
found that dorsal lateral prefrontal cortex exhibited a significant
negative correlation with HAMD scores, whereas occipital
cortices, middle/posterior cingulate cortex, and precentral cortex
had positive correlations with HAMD scores (Fig. S9a). For
HAMA scores, right dorsal lateral prefrontal cortex was
negatively correlated, whereas left visual cortex and right
temporal cortex were positively correlated (Fig. S9b).

Cortical gene expression related to regional changes in MSN.
We used the AHBA (http://human.brain-map.org)37,38, a whole-

brain transcriptomic dataset, to obtain brain gene expressions
(Supplemental Result 11.1). Because the AHBA dataset includes
two right hemisphere data points alone (Table S6), only the left
hemisphere was considered in our analysis39. As a result, a matrix
(152 regions × 10,027 gene expression levels) of transcriptional
level values was obtained (Supplemental Result 11.2). We then
used partial least squares (PLS) regression40 to determine dif-
ferences between regional MSN in the left hemisphere (Fig. 3a)
and gene expressions (10,027 genes). The first component (PLS1)
is defined as the spatial map that captures the greatest fraction of
total gene expression variance across cortical areas. In the dis-
covery cohort, PLS1 explained 36% of the variance (pspin < 0.0001,
this permutation test randomly “spins” the MSN map to account
for spatial correlation). The distribution of the PLS1 weighted
map reflects an anterior-posterior gradient of gene expression
(Fig. 3b), which is interpreted as an areal variation in the tran-
scriptional architecture of human cortex that is also captured in
the MDD-related changes in the MSN map41. Notably, we found
that the PLS1 weighted gene expression map was spatially cor-
related with the case-control t-map (Pearson’s r(150)= 0.60, pspin
< 0.0001; Fig. 3c). We ranked the normalized weights of PLS1
based on univariate one-sample Z tests. We found 1747 PLS1+
(Z > 5) and 1237 PLS1− (Z <− 5) (all pFDR < 0.005; Fig. 3d)
positively (or negatively) weighted gene expressions were over-
expressed (or under-expressed) as increased (or decreased)
regional changes in MSN, respectively. In total, 2984 genes con-
stituted the regional change in MSN gene list in individuals with
MDD.

To further determine relationships between prior MDD-related
gene expressions and regional changes in MSN, we first identified
24 MDD-related genes by searching with the disease term
“depression” in the Category of the “Gene List” documentation
from in situ hybridization data in the AHBA (help.brain-map.
org/display/humanbrain/Documentation)42. Of these, we then
selected the 12 genes that overlapped with the 10,027 background
genes. Eight of twelve MDD-related genes exhibited significant
correlations with regional changes in MSN (all pFDR < 0.05;
Fig. 3e), including five negative correlations (i.e., CNR1, HTR1A,
PDE1A, SST, and TAC1) and three positive correlations (i.e.,
ARRA2A, CHRM2, and CUX2).

Transcriptional correlates of MDD-related changes in MSN
capturing patterns of gene upregulation. We found that 34
genes overlapped between the PLS1− gene list (Z <− 5) and the
genes that were significantly differentially expressed in post-
mortem brain tissue measurements of messenger RNA from case-
control studies of MDD reported by Gandal et al. as
upregulated43. Because of outliers in the gene set that can
potentially inflate or deflate associated correlations44, we per-
formed a Spearman’s correlation analysis to explore the associa-
tions. The PLS1− gene weights were correlated with MDD-related
DGE values reported by Gandal et al.43: Spearman’s rs(32)=
−0.33, adjusted pperm= 0.04, FDR-corrected (Fig. 4). Suggesting a
degree of specificity across diagnostic groups, this negative rela-
tionship was particular to data from individuals with MDD and
was not present in the other five disorders described in Gandal
et al.43: schizophrenia (SCZ, rs(151)= 0.24, adjusted pperm= 0.005,
FDR-corrected), bipolar disorder (BD, rs(89)= 0.24, adjusted
pperm=0.03, FDR-corrected), autism spectrum disorder (ASD,
rs(151)= 0.33, adjusted pperm= 0.001, FDR-corrected), alcoholism
(rs(158)=−0.07, adjusted pperm= 0.18, FDR-corrected), and
inflammatory bowel disease (IBD, rs(378)= 0.06, adjusted pperm=
0.15, FDR-corrected). Correlations for each disorder were calculated
using genes that were common across significantly upregulated
postmortem and PLS1− gene datasets. Of note, and similar to a

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21943-5

4 NATURE COMMUNICATIONS |         (2021) 12:1647 | https://doi.org/10.1038/s41467-021-21943-5 | www.nature.com/naturecommunications

http://human.brain-map.org
www.nature.com/naturecommunications


previous study32, postmortem data from common psychiatric dis-
orders including SCZ, BD, and ASD, showed effects in the opposite
direction, indicating that the upregulated genes in these psychiatric
disorders have higher gene expression than in MDD-related
changes in MSN. There was no significant correlation between
PSL1− gene weights and DGE values of downregulated genes in
MDD.

Enrichment pathways associated with changes in MSN. We
aligned the gene ontology (GO) biological processes and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways with the
PLS1− gene list using Metascape45. After correcting for enrich-
ment terms (pFDR < 0.05) and discarding discrete enrichment

clusters, there were top ten significant GO biological processes,
such as “synaptic signaling”, “regulated exocytosis”, and “reg-
ulation of ion transport”, and three KEGG pathways, including
“retrograde endocannabinoid signaling”, “neuroactive ligand-
receptor interaction”, and “Rap1 signaling pathway” (Fig. 5).
The PLS1+ genes were enriched for GO biological processes
(Supplemental Result 11.3), such as “signal release”, and “synaptic
vesicle priming”, but not for KEGG pathways (Fig. S10 and
Table S7). Genes that were downregulated postmortem in indi-
viduals with MDD were not correlated with weighted gene
expressions of PLS1+.

Using recent genome-wide meta-analysis studies (GWAS)46,47,
we examined whether there are shared enrichment pathways
between polygenic risk for MDD and the PLS1− gene list. We

Fig. 3 Gene expression profiles related to morphometric similarity differences. a Changes in regional morphometric similarity network (MSN) in the left
hemisphere (unthresholded). b A weighted gene expression map of regional PLS1 scores in the left hemisphere (unthresholded). c A scatterplot of regional
PLS1 scores (a weighted sum of 10,027 gene expression scores) and regional changes in MSN (Pearson’s r(150)= 0.60, pspin= 0.00). p value was not
corrected for multiple comparisons, and was determined based on a one-sided test. d Ranked PLS1 loadings. e MDD-related genes from in situ
hybridization in the adult human brain positively (i.e., ADRA2A: Pearson’s r(150)= 0.21, adjusted pspin= 0.04; CHRM2: Pearson’s r(150)= 0.40, adjusted
pspin= 0.003; CUX2: Pearson’s r(150)= 0.50, adjusted pspin= 0.001; HTR5A: Pearson’s r(150)= 0.19, adjusted pspin= 0.14) and negatively (i.e., CNR1:
Pearson’s r(150)=−0.43, adjusted pspin= 0.007; CRH: Pearson’s r(150)=−0.09, adjusted pspin= 0.28; GAD2: Pearson’s r(150)=−0.01, adjusted pspin=
0.43; HTR1A: Pearson’s r(150)=−0.38, adjusted pspin= 0.01; MAOA: Pearson’s r(150)=−0.11, adjusted pspin= 0.25; PDE1A: Pearson’s r(150)=−0.33,
adjusted pspin= 0.03; SST: Pearson’s r(150)=−0.38, adjusted pspin= 0.04; TAC1: Pearson’s r(150)=−0.53, adjusted pspin= 0.001) correlated with regional
changes in MSN. All p values were derived from spin tests and adjusted by FDR, and were determined based on one-sided tests. The asterisk represents
p values that survived after FDR-corrected with p < 0.05.
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performed a multi-gene-list meta-analysis45 between the PLS1−
gene list and genes that were significantly associated with the
MDD phenotypes. We found that enrichment pathways of the
PLS1− gene list contained six of seven pathways of genes from
GWAS studies. The enrichment pathways included “cognition”,
“Ras protein signal transduction”, “regulation of ion transport”,
“synaptic signaling”, “synapse organization”, and “cell–cell
adhesion via plasma membrane adhesion molecules” (Supple-
mental Result 11.4 and Fig. S11). These results indicate that
functional roles of PLS1− genes are not only consistent with
previous studies, but also provide additional complementary
functional information.

Transcriptional signatures for canonical cell types. To further
refine our analysis, and considering cellular diversity in the brain,
we took an indirect approach to assign PLS1− genes to seven
canonical cell classes19: excitatory neurons, inhibitory neurons,
microglia, endothelial cells, oligodendrocytes, astrocytes, and
oligodendrocyte precursors (OPCs), identifying specific cell types
enriched for MSN alterations in our analysis. We first visualized
the distribution of gene expression in each cell type (Fig. 6a). A
number of genes in the PLS1− gene list was significantly involved
in astrocytes (number= 138, adjusted pperm= 0.001, FDR-

corrected), excitatory neurons (number= 130, adjusted pperm=
0.004, FDR-corrected), and inhibitory neurons (number= 95,
adjusted pperm= 0.04, FDR-corrected) (Fig. 6b). Notably, con-
sistent with previous single-cell sequencing in MDD, we found
that the cell type of gene expression showed a similar cell type of
excitatory neurons48. Confirming our strategy, enrichment ana-
lysis using cell type-specific genes revealed that changes in MSN
in individuals with MDD were significantly enriched for biolo-
gical processes associated with inflammation in microglial and
neuronal cells (Fig. 6c). Changes in MSN identified in neuronal
cells were enriched for GO terms including “serotonergic
synapse”, “synapse organization”, and “chemical synaptic
transmission”. Together, our approach identified changes in
MSN-related gene expression to unique cell types, allowing us to
pinpoint specific cell types known to be associated with MDD
pathology.

Reproducibility of MDD-related changes in MSN and tran-
scriptomic profile. We validated the MDD-related pattern of
changes in MSN and MDD-related changes in MSN linked to
transcriptional profiles in an independent replication cohort.
There was no difference in image quality, age, and sex between
individuals with MDD and HC in the replication cohort

Fig. 4 PLS1−weighted gene expressions of MDD-related changes in MSN associated with histological measures of differential gene expression of
MDD and other disorders. The PLS1−weighted gene expression was associated with upregulated differential gene expression (DGE) postmortem in MDD
reported by Gandal et al. (Spearman’s rs(32)=−0.33, adjusted pperm= 0.04, FDR-corrected). Associations between PLS1−weights and DGE were also
evaluated for other brain disorders: autism spectrum disorder (Spearman’s rs(151)= 0.33, adjusted pperm= 0.001, FDR-corrected), schizophrenia
(Spearman’s rs(151)= 0.24, adjusted pperm= 0.005, FDR-corrected), bipolar disorder (Spearman’s rs(89)= 0.24, adjusted pperm= 0.03, FDR-corrected),
alcoholism (Spearman’s rs(158)=−0.07, adjusted pperm= 0.18, FDR-corrected), and inflammatory bowel disease (Spearman’s rs(378)= 0.06, adjusted
pperm= 0.15, FDR-corrected). All p values were derived from permutation tests adjusted by FDR, and were determined based on one-sided tests.
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(Supplemental Result 1 and Fig. S1). The identically derived
MDD-HC (case-control) t-map from the replication cohort was
spatially concordant to the discovery cohort (Pearson’s r(306)=
0.43, pspin= 0.0002; Fig. S12a, b). This moderate, but significant
relationship may be due to the limited size of replication cohort.
In addition, not all t-maps of changes in MSN yielded similar
sized correlations (Supplemental Result 12.1 and Fig. S12c).

To further investigate the validation of transcriptional enrich-
ments of changes in MSN, a multi-gene-list meta-analysis45 of
PLS1−was also performed between discovery and replication
cohorts. In the replication cohort, we found that 2150 PLS1+ (Z
> 5) genes, and 1503 PLS− (Z <− 5) genes were significantly
overexpressed in cortical regions, consisting of 3653 regional
MSN gene list differences. The gene lists in the discovery and
replication cohorts were highly overlapped: odds ratio (OR)=
109.5, p < 0.0001. In addition, we identified the overlapped
enrichment pathways between discovery and replication cohorts
where there was a significant overlap of PLS1− genes: OR=
174.6, p < 0.0001 (Fig. 7a). After correcting for enrichment
pathways, several ontological terms survived (Fig. 7b), which
were the same as those from the discovery enrichment analyses,
including “synaptic signaling”, and “Rap1 signaling pathway”.
The overlapping ontology terms between discovery and replica-
tion cohorts concentrated on “synaptic signaling”, “Glutamatergic
synapse”, “Rap1 signaling pathway”, “behavior”, “regulated
exocytosis”, “negative regulation of phosphate metabolic process”,
and “response to metal ion” (Fig. 7c). For visualization,
uncorrected overlapping ontology terms are shown in Fig. S13
(Supplemental Result 12.2). Significantly overlapping ontology

terms support the generalized relationship between gene expres-
sion and the MDD-related changes in MSN.

Discussion
Using structural MRI to define replicable maps of individuals
with MDD-related differences in anatomical organization, we
found that this cortical pattern of MDD effects was significantly
associated with normative gene expression gradients enriched for
MDD-related genes. Specifically, the changes in MSN-related
gene transcripts (PLS1− ): (i) were enriched for prior defined
MDD-related genes, and exhibited almost the same ontological
terms as those genes identified from GWAS studies; (ii) were
associated with genes that were significantly upregulated in prior
postmortem material from MDD; and (iii) were ontologically
enriched for synapse-related terms that were validated in a
replication cohort. In addition, we mapped MDD-related genes to
biological processes associated with microglial and neuronal cells.
These findings reveal MSN phenotypes in MDD, and bridge the
gap between transcriptome and neuroimaging promoting an
integrative understanding of MDD.

MDD-related changes in MSN. Rather than using single
anatomical and morphometric features, such as cortical thickness,
curvature, and volume, MSNs combine information across
multiple cortical features in a single participant14,17–19. DWI
indirectly characterizes myeloarchitecture of brain regions
while T1w assesses macroscopic morphology of the cortex.
According to previous studies12, high regional MSN represents

Fig. 5 Functional enrichment of gene transcripts. a Ontology terms for PLS1− genes (Z <− 5, pFDR < 0.05). The size of the circle represents the number of
genes involved in a given term. b Metascape enrichment network visualization showing the intra-cluster and inter-cluster similarities of enriched terms.
Each term is represented by a circle node, where its size is proportional to the number of input genes included in that term, and its color represents its
cluster identity (i.e., nodes of the same color belong to the same cluster).
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cytoarchitectonically similar networks that may be more likely to
be axonally connected to each other. However, this macroscale
brain organization cannot be evaluated with the limited spatial
resolution and cellular specificity of T1w MRI and current con-
nectomic analysis techniques (i.e., DWI-based tractography and
structural covariance analysis)49. Nevertheless, in this study we
have interpreted regions with altered MSN in individuals with
MDD as indicating that there may be corresponding architectonic
similarity or architectonic differentiation between these regions
and the rest of the cortex18. MDD shares common brain altera-
tions with other psychiatric and neurological disorders49,50, as
well as having diagnosis-specific features. Transdiagnostic pat-
terns of gray matter loss are located in the anterior insula and
dorsal anterior cingulate cortex51; whereas transdiagnostic pat-
terns of anatomical connectome are related to highly-connected
hubs52. However, diagnosis-specific effects volumetric changes
are found only in MDD and SCZ51. Our reliable MSN alterations
showed a general convergence of affected regions with other
psychiatric disorders in regions including the medial prefrontal
cortex, and isthmus cingulate.

The MDD-related changes in MSN appear to accumulate in
specific systems: the functionally defined visual network and the
cytoarchitectonically defined dysgranular secondary sensory class.
Both of these systems include visual areas. However, note the
differences in the anatomical distributions between the “Yeo
visual” and “von Economo secondary sensory” systems; results
with the Yeo visual network are focused on the lower and higher
visual areas, whereas with the von Economo secondary sensory
class they are mainly focused on the lower visual areas and
orbitofrontal cortices. The von Economo atlas has additional
heuristic value because it could be used to explore the cellular
underpinnings of MDD53.

MDD-risk genes related to changes in MSN. MDD-related
changes in MSN may be due to a host of factors such as genetic,
molecular, and neuronal alterations. Recently, human imaging
genetics has emerged as a powerful strategy for understanding the
molecular basis of brain connectome organization18,22,29,30.
Using the multivariate PLS method, we found cortical patterns of

Fig. 6 Cell type-specific expression to changes in MSN-related genes. a Regional gene expression maps of each cell type from overlapping genes
between PLS1− gene list and each cell type-specific genes. b The number of overlapping genes for each cell type (Astrocytes: number= 138, adjusted
pperm= 0.001; Excitatory neurons: number= 130, adjusted pperm= 0.004; Inhibitory neurons number= 95, adjusted pperm= 0.04; Microglia: number= 91,
adjusted pperm= 0.32; Endothelial: number= 68, adjusted pperm= 1.00; Oligodendrocyte precursors (OPCs): number= 17, adjusted pperm= 0.32;
Oligodendrocytes: number= 8, adjusted pperm= 1.00). All permutated pperm values were adjusted by FDR, and were determined based on one-sided tests.
An asterisk represents p values that survived after FDR-corrected with p < 0.05. c Gene ontology terms enriched for changes in MSN-related genes for the
cell types.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21943-5

8 NATURE COMMUNICATIONS |         (2021) 12:1647 | https://doi.org/10.1038/s41467-021-21943-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


weighted gene expression that were significantly co-localized with
changes in MSN, and further identified significantly weighted
genes in the first PLS component that may have roles in the
pathogenesis of MDD.

MDD-related gene analysis suggested that a substantial part (8/
12) was related to changes in MSN. The discovered gene SST
codes for a neuromodulatory peptide expressed in a subtype of
GABA neurons that inhibits the dendritic compartment of
excitatory pyramidal neurons54. Reduced SST gene expression has
frequently been observed postmortem in brains of individuals
with MDD55,56. SST was the third strongest negatively correlated
gene, with TAC1 showing a stronger inverse association, which is
a gene earlier noted to be involved in MDD and related to
depression-like behaviors57–60. Similar to SST, TAC1 is also a
gene related to neuron excitation and behavioral responses60. The
underlying pathogenetic mechanism of both positively versus
negatively correlated genes presently remains unclear. A potential
explanation may lie in the distinct types of cortical interneurons
between genes marked by neuropeptides (e.g., SST and TAC1)
and genes related to biological processes, such as genes involved
in protein coding42.

The PLS1− gene list was specifically associated with genes that
were significantly upregulated in postmortem individuals with
MDD. Large-scale GWAS has identified the shared significant
genetic commonalities across major psychiatric disorders61,62,
and MDD shows positive genetic correlations with most other
psychiatric disorders62,63. Consistent with potential disorder-
specific associations, negatively weighted gene expression profiles
in this study showed positive correlations with genes differentially
expressed in postmortem case-control studies of SCZ, BD, and
ASD suggestive of potential converging pathophysiological
mechanisms in these common psychiatric disorders61, which will
require future studies to validate this proposition in the context of
neuroimaging-transcriptomics. Additionally, there were signifi-
cantly more upregulated genes in the list of negatively weighted
genes with changes in MSN, indicating that genes with increased
brain postmortem transcription in MDD were overexpressed in

cortical areas with lower levels of changes in MSN. An important
future direction involves quantifying the degree to which genetic
influences of risk for MDD may be directly mediated by their
effects on MSN.

Weighted gene expressions enriched for functional annota-
tions. PLS1− identified a gene expression profile with high
expression in the frontal and temporal cortices. The subset of
1237 negatively weighted genes comprised a dense, topologically
clustered interaction network that was enriched for several GO
biological processes and KEGG pathways. The highly overlapping
PLS1− genes were associated with the same ontological terms in
both discovery and replication cohorts, suggesting a general-
ization of transcriptional signatures of changes in MSN.

The identified KEGG pathways (i.e., “retrograde endocanna-
binoid signaling” and “neuroactive ligand-receptor interaction”)
have been reported to modulate a wide variety of synaptic
neurotransmissions or neural functions, including cognition,
motor control, and pain64,65. Abnormalities or dysregulations of
these pathways have been implicated in MDD66. Moreover, the
endocannabinoid signaling system is a potential antidepressant
candidate67 as it may help reverse the acute and chronic stress
response, and produce antidepressant physiological changes. The
endocannabinoid signaling system deserves additional study as a
potential target for therapeutic intervention64,68.

Our identified GO biological processes were related to
responses to stimuli and synaptic transmission, indicating that
some negatively weighted genes had diverse molecular
functions65. In particular, the discovered pathway “synaptic
signaling”, which influences synaptic maturation and stability69,
was one of the replicable pathways between discovery and
replication cohorts, showing a high Metascape value out of all
other pathways. Loss of synapses has been reported to produce
depressive behavior in rodent models70. The cluster of interactive
proteins related to “G protein-coupled receptors” (GPCRs)
signaling pathways mediate most cellular responses to hormones

Fig. 7 Validation of transcriptional enrichments of changes in MSN. a Circos plot of genes overlapped between discovery and replication cohorts.
b A subset of representative terms from all clusters. c The same enrichment network with its nodes displayed as pie sections. Each pie sector is
proportional to the number of hits originating from a gene list.
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and neurotransmitters71. As suggested for the “synaptic signal-
ing” pathway, GPCRs signaling pathways are implicated in the
pathophysiology and pharmacology of MDD. These findings
highlight GPCRs as potential therapeutic targets for MDD, which
warrant follow-up analyses.

For validation, an additional enrichment analysis helped us
specify the gene ranks related to changes in MSN. Consistent with
GWAS in MDD, the same ontology terms, especially synapse-
related terms, support the reliability and sensitivity of genes
identified by PLS in this study46,47. In addition, the multi-gene-
list result exhibits several other enrichment pathways which are
found in genes related to changes in MSN, but not in genes of
GWAS, and thus the genes obtained by PLS might provide
additional enrichment information for MDD.

Cellular characterization of the MDD-related genes. We
showed that cellular organization of the human brain provides a
biological mechanism that can translate genes of MDD-related
brain alterations into MDD-related alterations of specific cell
types. The density and form of cell abnormalities (in astrocytes,
microglia, or oligodendrocytes) plays an important role in psy-
chiatric disorders, including ASD, BD, MDD, and SCZ63.
Alterations in cortical thickness for major psychiatric disorders
have been related to gene expression specific to astrocytes (except
for BD) and microglia (except for obsessive-compulsive
disorder)63. Astrocytes were the greatest proportion in gene
ranks obtained by PLS on changes in MSN in MDD, and
have also been considered as a promising target for mood dis-
order interventions72. The dysfunction of astrocytes influences
synaptic activity, and astrocytes can modulate neuronal circuits
and behavior. Similarly, astrocytes were found to be consistent
cell associates of depression using different neuroimaging
measurements32. Furthermore, leveraging multiple morphometric
features, we identified that the most enriched pathway was related
to microglia, aligning with prior reports73. Microglia play crucial
roles in the regulation of ongoing structural and functional pro-
cesses, from individual synapses to neural circuits and behavior74.
The disturbances of microglia activation could influence immune
functioning of the brain, synaptic plasticity and mood under
physiologically strained conditions. Finally, we found the dysre-
gulation of gene expression in MDD was related to excitatory and
inhibitory neurons, which was consistent with the single-nucleus
transcriptomics study in MDD48. In recent years, the target cell
types in MDD pathophysiology have expanded from excitatory
neurons to inhibitory interneurons75. The identified MDD-
related cell types verified the validity of the gene ranks obtained
from changes in MSN and enabled us to explore the biology
of human disorders using data from postmortem human
brain tissue.

Methodological considerations and future directions. Several
methodological issues have to be considered. First, considering
the MSN as a combination of multiple morphometric features
rather than a functional index, we used the D–K atlas to anato-
mically parcellate the human cerebral cortex14,18,19. The atlas is
useful for both morphometric and functional studies of the cer-
ebral cortex76 making it likely that this atlas encompasses mul-
tiple functional territories. Second, we considered connection
strength in MSN in line with previous studies18,19. It could be
meaningful to link MSN topological properties to transcriptomic
and cellular correlates of MDD in future work. Third, this study
collected limited clinical variables related to MDD symptoms.
Future studies should include a more comprehensive set of
metrics to characterize the clinical significance of MDD-related
differences. Similarly, given the evidence for an effect of body

mass index (BMI) on brain structure77, future studies should
include BMI as an important factor in their MSN analyses.
Fourth, the remarkable public AHBA gene data were measured
postmortem in six participants without psychiatric diagnoses,
which limited examination of transcriptome–neuroimaging
associations across groups, and possibly places individual effects
out of scope. In addition, the AHBA only included data for the
right hemisphere for two participants. Thus, the relationship
between genes and MDD-related changes in MSN does not
represent the condition of the entire brain. Finally, although the
identified cell types in this study have been used as biomarkers for
potential targets for therapeutic intervention, future work should
employ longitudinal data (e.g., pre-treatment vs. post-treatment)
to validate the findings.

This study linked MSN phenotypes to gene expression levels,
supporting the idea that synapse-related terms are implicated in
the pathophysiology and pharmacology of MDD. We further
showed that abnormalities of astrocytes, microglial, and neuronal
cells may link to MDD-related changes in MSN, which might
denote future treatments. Crucially, despite not requiring access
to any postmortem brain tissue from patients, we can screen the
MSN-related differences brain-wide gene expression and cell
types to capture molecularly validated anatomical differences in
psychiatric patients.

Methods
Participants. The discovery cohort included individuals with MDD (n= 242) and
age- and sex-matched HC (n= 231). Individuals were recruited from the First
Affiliated Hospital of Chongqing Medical University. The replication cohort
included individuals with MDD (n= 51) and age- and sex-matched HC (n= 43),
and individuals were acquired and scanned from the First Affiliated Hospital of
Anhui Medical University. Individuals with MDD were diagnosed as having cur-
rent depressive status using the Structural Clinical Interview for Diagnostic and
Statistical Manual of Mental Disorders-IV78 by experienced psychiatric physicians.
Depression severity was assessed by the 17-item HAMD. Anxiety severity was
assessed by 14-item HAMA. Individuals with MDD were excluded if they: (i) were
<18 years or >65 years; (ii) had HAMD <8; (iii) had major neurological or other
psychiatric disorders; and (iv) had MRI abnormalities, or had any metal or elec-
tronic implants. HC were recruited with the following eligibility criteria: (i) no
other axis I psychiatric disorders or neurological disorders, (ii) no axis II antisocial
or borderline personality disorders, and (iii) no history of psychiatric illness among
their first-degree relatives.

The discovery study was approved by the Ethics Committee of Southwest
University and First Affiliated Hospital of Chongqing Medical University. The
replication study was approved by the Medical Ethics Committee of Anhui Medical
University. All study protocols were performed according to the Helsinki
Declaration of 1975. All participants provided informed consent and understood
the purpose, benefits, and potential risks to participate in this study.

Multi-neuroimaging data acquisition
Discovery cohort. The T1w and DWI images were collected using a Siemens Trio
3.0 T scanner (Siemens Medical, Erlangen, Germany) at the Southwest University
Center for Brain imaging. The 3D T1w images were acquired as follows: repetition
time (TR)= 1900 ms, echo time (TE)= 2.52 ms, flip angle= 9°, field of view
(FOV)= 256 × 256 mm2, matrix size= 256 × 256, voxel size= 1 × 1 × 1mm3, and
slices= 176. Subsequently, the DWI images were acquired using a diffusion-
weighted, single shot, spin-echo, gradient-echo planar imaging sequence as follows:
TR= 11,000 ms, TE= 98 ms, FOV= 256 × 256 mm2, matrix size= 128 × 128,
voxel size= 2 × 2 × 2mm3, slices= 60, one volume without diffusion weighting
b= 0 s/mm2, 30 non-collinear directions b= 1000 s/mm2. To improve the signal to
noise ratio, the entire sequence was repeated three times.

Replication cohort. The structural and DWI images were collected using a GE 3.0 T
scanner (Discovery 750; GE Healthcare, Milwaukee, WI) at the University of
Science and Technology of China. The 3D T1w images were acquired as follows:
TR= 8.16 ms, TE= 3.18 ms, flip angle= 12°, FOV= 256 × 256mm2, matrix
size= 256 × 256, voxel size= 1 × 1 × 1mm3, and slices= 188. Subsequently, the
DWI data for each subject were acquired using a diffusion-weighted, single shot,
spin-echo, gradient-echo planar imaging sequence as follows: TR= 6900 ms, TE=
60.4 ms, FOV= 256 × 256 mm2, matrix size= 128 × 128, voxel size= 2 × 2 × 2
mm3, slices= 69, five volumes without diffusion weighting b= 0 s/mm2, 64 non-
collinear directions b= 1000 s/mm2.
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Data preprocessing. The three-dimensional T1w images were preprocessed in
surface-based space using FreeSurfer (v6.0, http://surfer.nmr.mgh.harvard.edu/).
Briefly, the cortical surface was reconstructed using skull stripping, segmentation of
brain tissue, separation of hemispheres and subcortical structures, and construction
of the gray/white interfaces and the pial surfaces14. The DWI images were pre-
processed on volumetric space using FMRIB Software Library (FSL, v6.0, https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki). Briefly, the DWI images were corrected for the eddy-
current-induced distortions and head movements. Diffusion tensor models were
then estimated using linear least squares fitting.

Participants were excluded if they had images with poor scan quality
(Supplemental Result 1). To further check for differences in motion and image
quality between groups, the Euler number was calculated for each T1w image79.

Construction of MSN. The cortical surfaces were divided into 308 spatially con-
tiguous regions14,18,80 derived from the 68 cortical regions in the D–K atlas76. This
parcellation produced approximately equal size (~500 mm2) for each region, using
a backtracking algorithm80, which minimizes the influence of the variability in
parcel sizes14,18,19,81. This parcellated D–K atlas was transformed to each partici-
pant’s surface to obtain an individual surface parcellation which was then inter-
polated and expanded to the participant’s DWI volumes14,18. For each region,
seven features from the T1w and DWI images were extracted18, including surface
area, cortical thickness, gray matter volume, Gaussian curvature, mean curvature,
fractional anisotropy, and mean diffusivity. For each participant, each morpho-
metric feature vector was z-normalized across regions to account for variation in
value distributions between the features14,18. Pearson’s correlation analysis was
then performed on the morphometric feature vector between each paired cortical
region, forming a 308 × 308 MSN (no thresholding) for each participant. Addi-
tional connection densities (10‒90% in 10% increments) were used to validate the
thresholding effect on construction of MSN14.

Case-control analysis of the MSN. The regional MSN was calculated by using the
sum of weighted correlation coefficients between a given region and its correlations
to all other regions. To estimate the spatial pattern, regional MSN was averaged
across all HC participants. To examine the case-control differences, a LRM was
conducted with regional MSN values as the dependent variable. Age, sex, and
education level were added as covariates. This model was fitted for each region, and
the two-sided t-statistic (contrast=MDD ‒HC) was extracted. For case-control
comparisons in MSN values of each region (MSNi), the following model was used:
MSNi= intercept+ β1 × (age)+ β2 × (sex)+ β3 × (education). Although there was
no difference of TIV between individuals with MDD and HC, we also reanalyzed
the case-control differences including TIV as a covariate in the LRM. Significance
was set at p < 0.05 with FDR correction for multiple comparisons across 308
regions to control type I error.

Estimation of regional gene expressions. The AHBA dataset (http://human.
brain-map.org) bridges the gap between regional changes in MSN and
transcriptomes37. Brain-wide gene expressions were measured in six postmortem
brains (age= 42.50 ± 13.38 years; male/female= 5/1) with 3702 spatially distinct
samples (Supplemental Result 11.1 and Table S6). The AHBA dataset was pro-
cessed according to Arnatkevic et al.39. The six steps of preprocessing were as
follows: (i) verifying probe-to-gene annotations using the Re-annotator toolkit82;
(ii) filtering of probes (intensity-based filtering) that do not exceed background
noise, excluding at least 50% of all samples across participants; (iii) probe selection,
selecting the highest correlation to RNA-seq data; (iv) samples assignment to the
D–K 308 atlas within 2 mm Euclidean distance of a parcel; (v) normalization of
expression measures using a scaled robust sigmoid for each participant; and (vi)
gene set filtering based on differential stability (Supplemental Result 11.2). Because
the AHBA dataset included only two right hemisphere data, only the left hemi-
sphere was considered in our analysis39. Thus, a mean of all samples in a region
was calculated to obtain the matrix (152 regions × 10,027 gene expression levels) of
transcriptional level values.

Regional changes in MSN and gene expression. PLS regression40 was used to
determine the relationship between regional changes in MSN (t-values from 152
cortical regions in the left hemisphere) and transcriptional activity for all 10,027
genes. Gene expression data were used as predictor variables of regional changes in
MSN in the PLS regression. The first component of the PLS (PLS1) was the linear
combination of gene expression values that was most strongly correlated with
regional changes in MSN. Permutation testing based on spherical rotations, to
account for spatial autocorrelation, of the MSN map (5000 times)33 was used to test
the null hypothesis that PLS1 explained no more covariance between the MSN map
and whole-genome expression than expected by chance29. Bootstrapping was used
to estimate the variability of each gene’s PLS1, and the ratio of the weight of each
gene to its bootstrap standard error was used to calculate the Z scores and rank the
genes according to their contributions to PLS118. The set of genes with an FDR of
5‰, either positive, PLS1+ , or negative, PLS1− , was the regional changes in MSN
gene list. This procedure was also conducted on the replication cohort.

Analysis of MDD-related genes from in situ hybridization (ISH) gene
expression. We selected prior defined MDD-related genes from the “Genes
characterized by ISH in 1000 gene survey in cortex” from the AHBA (help.brain-
map.org/display/humanbrain/Documentation) that integrates all available datasets.
The disease-related genes identified were based on published literature as being
relevant to depression (24 genes), and other diseases42: ADRA2A, AVPR1B,
CHRM2, CNR1, CREB1, CRH, CRHR1, CRHR2, CUX2, GAD2, GPR50, HTR1A,
HTR1B, HTR1D, HTR3A, HTR5A, MAOA, PDE1A, SLC6A2, SLC6A4, SST, TAC1,
TPH1, and TPH2. These genes are known to be involved in physiological pathways
implicated in the diseases.

To explore the contribution of the MDD-related genes in the PLS analysis, we
first obtained the overlapped genes from the 24 MDD-related gene list and 10,027
background genes. Then we estimated the associations between overlapped gene
expressions and case-control changes in MSN in the left hemisphere. Significance
was set at p < 0.05 with FDR correction for multiple comparisons.

Brain disorders’ differential expression analysis. We tested whether tran-
scriptionally MDD-related dysregulated genes in postmortem brain tissue measure-
ments of messenger RNA are expressed most in cortical regions that are
morphometrically correlated to MDD. The MDD-related dysregulated gene list
reported by Gandal et al.43 included 1992 upregulated and 2093 downregulated (p <
0.05) genes. Genes used for sequent correlation analyses were common across sig-
nificantly upregulated or downregulated postmortem and PLS1− gene datasets.
Spearman’s correlation analysis44 was used to determine relationships between
PLS1− gene weights and DGE values of up or downregulated genes. The above-
mentioned analysis was also applied for ASD, SCZ, BD, alcoholism, and IBD, with
diagnoses from Gandal et al.43. Significance was set at p < 0.05 with FDR correction.

Enrichment analysis. Metascape analysis (https://metascape.org/gp/index.html#/
main/step1) provides automated meta-analysis tools to understand either common
or unique pathways in 40 independent knowledge bases45. The PLS1+ (Z > 5) or
PLS1− (Z <− 5) was input into the Metascape website, and the obtained enrich-
ment pathways were thresholded for significance at 5%, corrected by the FDR.

We tested whether the PLS1− gene list shared enrichment pathways with
polygenic risk for MDD from recent GWAS46,47. A multi-gene-list meta-analysis45

was performed to facilitate the understanding of pathways (and pathway clusters)
that are shared between, or selectively ascribed to, specific gene lists. Routine
comparative approaches include the use of Venn diagrams to identify hits that are
common or unique to gene lists. However, when multiple gene lists are analysed,
the identification of consistent underlying pathways or networks are more
critical45, because previous studies have reported that an overlap between OMICs
datasets is more readily apparent at the level of pathways or protein complexes83,84.
Thus, the PLS1− gene list and genes from GWAS in individuals with MDD were
submitted to the Metascape website to compare an arbitrary number of gene lists
across both gene identities and ontologies. All obtained pathways were thresholded
for significance at 5%, corrected by the FDR.

Assigning MDD-related genes to cell types. To obtain gene sets from each cell
type, we compiled data from five different single-cell studies using postmortem cortical
samples of human postnatal participants. This approach avoids bias based on acqui-
sition methodology, analysis, or thresholding, and led to the initial inclusion of 58 cell
classes19, many of which were overlapping based on nomenclature and/or constituent
genes. Following the procedure in Seidlitz et al.19, we organized cell types into seven
canonical classes: microglia, endothelial cells, oligodendrocyte precursors, oligoden-
drocytes, astrocytes, excitatory, and inhibitory neurons. Two studies did not subdivide
neurons into excitatory and inhibitory sets, and thus these gene sets were excluded
from this cell-class assignment. Additionally, one study included the annotation of the
“Per” (pericyte) type, and thus this gene set was excluded.

To assign MDD-related genes obtained by PLS analysis to cell types, we
overlapped the gene set of each cell type with the PLS1− rank gene list. The p value
of the number of overlapped genes in each cell type was obtained by a permutation
test29, and corrected by FDR with p < 0.05. Then we calculated an average
expression for each cell-class gene set in each of the 152 regions of the AHBA
parcellation. To explore the enrichment pathways in genes involved in each cell
type, we performed enrichment analysis. All obtained pathways were thresholded
for significance at 5%, corrected by the FDR.

Null models. The p values in this study were tested against two categories of null
models. The first null model was based on the spin test. We used a “spin”-based
method to correct for potential confounding effects of spatial autocorrelation
(https://github.com/frantisekvasa/rotate_parcellation)33. The spin test is a spatial
permutation method based on angular permutations of spherical projections at the
cortical surface. Critically, the spin test preserves the spatial covariance structure of
the data and as such is far more conservative than randomly shuffling locations,
which destroys the spatial covariance structure and produces an unrealistically
unconservative null distribution. Specifically, we first generated 5000 random
spatial rotations (i.e., spins) of the cortical regions to generate a null distribution.
Then, the pspin values were obtained by comparison to the null models (<5th, or
>95th percentile).
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The second null model is based on a permutation test. In the “Transcriptional
correlates of MDD-related changes in MSN capturing patterns of gene
upregulation” section, we randomly relabeled the dysregulated sets43 5000 times
across all genes that were found to be differentially expressed to test the null
hypothesis that the PLS1−weights were not related to the DGE of MDD-related
genes other than by chance. A distribution of the test statistic was obtained. The
pperm were obtained by the occupied null models (<5th, or >95th centile), and
corrected by FDR. In the “Transcriptional signatures for canonical cell types”
section, we resampled the genes involved in cell types 5000 times to test the null
hypothesis that the PLS1− gene list was randomly assigned to different cell types.
The pperm values were obtained from the null models (<5th, or >95th centile), and
corrected by FDR with p < 0.05.

Validation analysis. The above case-control changes in MSN were validated in the
replication cohort. Leveraging the identical strategy used in discovery cohort, we
obtained the case-control t-map in the replication cohort using LRM regressing out
age, sex, and education level. To test the replicability of regional changes in MSN, a
spatial similarity analysis was conducted on t-value maps between discovery and
replication cohorts18,85.

For validating the MDD-related gene list obtained by MSN analysis, a multi-
gene-list meta-analysis was conducted between the PLS1− gene lists of the
discovery and replication cohorts. All obtained pathways were thresholded for
significance at 5%, corrected by the FDR. The degree of overlapped genes was
measured by the OR.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Human gene expression data that support the findings of this study are available in the
Allen Brain Atlas (“Complete normalized microarray datasets”, https://human.brain-
map.org/static/download). MDD-related genes from ISH can be obtained from http://
help.brain-map.org/download/attachments/2818165/HBA_ISH_GeneList.pdf?
version=1&modificationDate=1348783035873&api=v2. Dysregulated genes in
postmortem brain tissue measurements of messenger RNA is from the raw Gandal
et al.43 dataset (https://science.sciencemag.org/highwire/filestream/705756/
field_highwire_adjunct_files/1/aad6469_Gandal_SM_Data-Table-S1.xlsx). Compiled
cell-specific gene set list from all available large-scale single-cell studies of the adult
human cortex can be obtained from the raw Seidlitz et al.19 dataset (https://static-
content.springer.com/esm/art%3A10.1038%2Fs41467-020-17051-5/MediaObjects/
41467_2020_17051_MOESM8_ESM.xlsx). All data supporting the findings of this study
are provided within the paper and its supplementary information. All additional
information will be made available upon reasonable request to the authors. The PLS1‒
and PLS1+ gene lists and Z-score weights from the discovery cohort are provided in
Supplementary Data 1.

Code availability
The neuroimaging preprocessing software is freely available (FreeSurfer v6.0, http://
surfer.nmr.mgh.harvard.edu/, and FSL v6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The
codes for MSN analysis and PLS are openly available at https://github.com/
SarahMorgan/Morphometric_Similarity_SZ. The code for gene expression analysis can
be found at https://github.com/BMHLab/AHBAprocessing. The probe-to-gene
annotations were obtained by the Re-annotator toolkit (v1.0.0, https://sourceforge.net/
projects/reannotator/). Gene enrichments were analysed at https://metascape.org/gp/
index.html#/main/step1. The code for spatial permutation testing can be found at https://
github.com/frantisekvasa/rotate_parcellation. The brain maps were presented using Surf
Ice (v1.0.20190902, https://www.nitrc.org/projects/surfice/).
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