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Abstract

Bears are omnivores particularly well-adapted to variations in the nutritional composition,

quality and availability of food resources. Artificial feeding practices have been shown to

strongly influence diet composition and seasonality, as well as to cause alterations in winter-

ing and movement in brown bears (Ursus arctos). In this study, we investigated seasonal dif-

ferences (hypophagia vs hyperphagia) in food quality of two brown bear subpopulations in

the Polish Carpathians using faecal nitrogen (FN) and carbon (FC) estimates. The subpopu-

lations inhabit areas that differ in artificial feeding practices: no artificial feeding occurs in the

western subpopulation (Tatra Mountains), while artificial food targeted to ungulates is pro-

vided and used year-round in the eastern subpopulation (Bieszczady Mountains). We also

compared these results with faecal cortisol metabolites (FCM) to explore how FN and FC

correlate with the hypothalamic-pituitary-adrenal axis activity and if the seasonal patterns

are apparent. We found that in Tatra Mts bears fed on significantly higher quality diet, as

shown by FN and FC values, and had significantly higher FC levels in hyperphagia, when

they accumulate fat reserves for wintering. The pattern in FCM levels for Tatra subpopula-

tion followed the changes in energy intake during the seasons of hypo- and hyperphagia,

while in Bieszczady Mts, the area with intensive feeding, no seasonal patterns could be

observed. Artificial feeding practices may disrupt nutrient phenology and seasonality, rela-

tive to subpopulations with natural diets. We showed that the availability of human-provided

foods may alter not only the overall dietary quality, but also hormonal patterns linked to sea-

sonal nutritional requirements. Combining FN, FC and FCM proved to be a useful tool for

reconstructing diet quality and related physiological patterns.
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Introduction

An explicit evaluation of the nutritional parameters of an animal’s diet is essential to compre-

hend foraging patterns in different habitats and ecosystems [1,2]. Faeces are the most accessi-

ble biological product from wildlife in nature, and their analysis is one of the most commonly

used techniques for assessing food habits and dietary quality in mammals [3–6]. These studies

are no longer limited to the identification of undigested food remains. A strong understanding

has been developed on the relationship between elemental composition of mammal faeces and

their diet, and nitrogen and carbon faecal concentrations have become proxies of diet quality

[7,8]. The protein content of forage and its digestibility are directly related, and a high correla-

tion between the chemical composition of forages and nitrogen excreted in faeces (faecal nitro-

gen, FN) has been experimentally proved [9]. Seasonal and spatial variations of FN are found

in wild large herbivore populations, with values peaking in spring in response to higher digest-

ibility and protein content in growing vegetation [10–12]. A similar pattern has been observed

in primates [13,14] and rodents [15,16], and several free-ranging omnivore species [17]. The

percentage of nitrogen content in faeces represents the protein content of the food consumed,

and, thus, it is considered as a biomarker for diet quality and shifts in diet composition

[7,8,13,18], while faecal carbon (FC) indicates changes in energy consumption and shifts in

energy intake from digested food items [7].

Both energy intake and storage are regulated by glucocorticoids, which have an additional

role in the physiological stress response [19,20]. The urge to eat is a complex process regulated

at many levels [21], but glucocorticoids are key players stimulating the appetite and influenc-

ing the type of food to seek for [22]. Cortisol, a primary glucocorticoid in most mammal spe-

cies, is also involved in maintaining the balance between fat storage and fat depletion [23]. As

glucocorticoids mediate redistribution of energy into different types of fat and regulate glucose

levels in synergy with insulin [24,25], it has been hypothesized that they play a major role in

regulating hyperphagia and autumn fat storage required in hibernating species. Seasonal pat-

tern of glucocorticoids would, then, show an increase during hyperphagia to promote foraging

behavior and, thus, increase the energy input and storage [24]. Romero et al. [26] tested this

hypothesis on few rodent species and found that glucocorticoid concentrations were lower in

the fall in species relying upon endogenous fat reserves during hibernation, but higher in spe-

cies that cache food to survive winter. Nevertheless, most studies provide clear evidence that,

although following different patterns, a majority of reptilian, amphibian, avian, and mamma-

lian species seasonally modulate glucocorticoid concentrations [27].

Brown bears (Ursus arctos) are hibernating omnivores whose diet varies geographically and

seasonally across its range [3,4,6]. Bears consume mostly plants [e.g. 28–30] and their diets

largely reflect changes in plant phenology [e.g. 31,32]. They also track seasonal or inter-annual

pulses of high-calorie resources, e.g. hard and soft mast in interior populations [5,31] or

salmon in coastal ecosystems [28,33,34]. The availability of foods with high content in lipids or

carbohydrates, necessary to maintain a balanced energy intake, co-occurs with the prehiberna-

tion hyperphagic period in bears during late summer and autumn [35]. The increased provi-

sion of human foods (in ecosystems), both intentionally and unintentionally, is changing these

patterns and is of increasing concern [36]. Artificial feeding alters the spatio-temporal avail-

ability of natural foods and recent studies have evidenced changes in brown bear diet composi-

tion and seasonality due to this practice [37–39], as well as alterations of energy-related

activities such as wintering [40], and movement [41]. Diet quality is an essential driver of indi-

vidual performance, and therefore, drives population dynamics and has important effects on

density, dynamic and life history of populations [42,43]. On the top of it, human provisioning

of food can cause changes in the nutritional ecology and physiology of wildlife, which are
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typically negative and largely impact foraging behavior and food availability [44]. The extent

to which changes in food availability affect the fitness of organisms is not clearly understood

and requires different approaches. The presence of areas where food provision to wildlife is

prohibited and where such practice is common, constitute natural experiments that should

contribute to improve our understanding of the role of food supply in a range of ecophysiolog-

ical processes related to nutrition and stress in wildlife. Artificial feeding is associated to nega-

tive ecological effects [see 45 for review], in addition to the alteration in diet composition,

wintering and movements reported for bears mentioned above. Anthropogenic food of low

quality may also compromise wildlife condition and immune function [46]. As provisioning

occurs in many different contexts around the world [36] it may have important consequences

for species of conservation concern.

The digestive efficiency of bears is similar to those of obligate carnivores, meaning they can

process only highly digestible nutrients [47,48]. FN levels have been shown to vary directly

with dietary nitrogen intake in black bears (Ursus americanus) [47,49]. Although some studies

indicate strong correlation of glucocorticoids and dietary indices of excreta in other mammal

species [7], to our knowledge no study has used the combined approach of FN and FC and

hormonal analysis of faeces (faecal cortisol metabolites, FCM) to investigate seasonal patterns

in food quality in bear populations. Using the brown bear as a model species of a seasonal

mammal, we investigated whether the association between diet quality proxies (FN, FC) and

glucocorticoids levels (FCM) and their seasonal patterns are affected by artificial feeding prac-

tices. We examined seasonal variation in FN, FC and FCM in the two core areas of the brown

bear population in the Polish Carpathians, which differ in the management practices regarding

artificial feeding. We hypothesized that if a link exists between diet quality (assessed with FN

and FC) and cortisol, then differences in cortisol metabolite concentrations in faeces would be

associated with dietary differences between the study areas. It could be expected that the sub-

population foraging on human-provided food should have lower FCM values because con-

sumption of abundant and year-round available resources should confer nutritional benefits

(higher FC and FN) resulting in lower nutritional stress. However, if nutritional requirements

are met in both core subpopulations, then we would expect no differences in FCM associated

with dietary differences. Additionally, we tested the hypothesis that the use of year-round

available resources of artificial foods provided by humans with constant nutritional gain

would disrupt natural seasonal patterns in diet quality and glucocorticoids levels. We also

explore whether faecal nutritional biomarkers combined with FCM data might be a worth-

while approach to gain insight into the dietary and related hormonal patterns.

Materials and methods

Study areas

The study was conducted in the Polish Carpathians, in the western and eastern core areas

inhabited by brown bears, Tatra and Bieszczady Mts, respectively. The Polish part of the Tatra

Mts (Fig 1), with altitudes ranging from 790 to 2499 m a.s.l., is entirely included within the

Tatra National Park (19,95˚E; 49,25˚N). Snow cover lasts for about 100 days in lower parts and

up to 290 days on the tops. The landscape is of alpine type with mean annual temperatures 2.4

and 5.4˚C at the timberline (i.e. 1500 m a.s.l.) and the lowest elevations, respectively. Precipita-

tion increases with elevation and averages 1100 mm for the lowest elevations and 1700 mm for

the timberline. Typical vegetation includes Norway spruce (Picea abies), the dominant tree

species in the area. Up to 1250 m a.s.l., it grows in mixtures with European beech (Fagus sylva-
tica) and silver fir (Abies alba). Meadows are scattered throughout the forest. The number of

visitors is very high (approx. three million per year), but human activities are restricted to
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designated areas and trails, and no artificial feeding is conducted [50]. The habitat of Tatra

Mts supports brown bear occurrence, reproduction and movement and the number of bears

inhabiting the area has been estimated in 45–79 individuals [51,52].

The second study area, located in the Bieszczady Mts (SE Poland, Fig 1), is characterized by

gentle slopes (maximum altitude 1350 m a.s.l.) and dominated by beech and fir [53]. The

annual average air temperatures range between 3–8˚C, depending on the latitude and climatic

zone, with the annual average precipitation of 900–1,300 mm [54]. At altitudes within 500–800

m a.s.l., the snow cover persists for 90–140 days [55]. The forest is intertwined with meadows,

particularly in the lower parts of the mountains, and represents a suitable habitat for brown

bear occurrence, reproduction and movement [53,56]. Most of this study area is commercially

managed by the Polish State Forest Holding for timber extraction and game hunting, except

the Bieszczady National Park. The number of visitors is significantly lower than in Tatra,

about 500 thousand people a year (in the Bieszczady National Park; [57]). Artificial food (corn,

beetroots, fodder, grain) targeting at ungulates, mostly red deer (Cervus elaphus), bison (Bison
bonasus) and wild boar (Sus scrofa), is regularly provided, usually at the same locations (feed-

ing sites) and practically year-round, with an increase at the end of summer throughout early

spring. Numerous target and non-target species use this human-provided food intended for

ungulates [58], and brown bear movement in the area is significantly affected by feeding prac-

tices [41]. Brown bears inhabiting the area are estimated at 46–61 individuals and belong to

the eastern Carpathian subpopulation [51].

Faecal sample collection

We used a set of 142 faecal samples from the two brown bear subpopulations inhabiting the

two core areas from 2008 through 2011 during the bear activity period. Only fresh bear scats,

i.e. less than 48 hours old, were collected [59]. We assessed scat freshness based on the smell,

Fig 1. Study areas in Tatra and Bieszczady Mts with current bear distribution shown on 10x10 km grid.

https://doi.org/10.1371/journal.pone.0242341.g001
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color and appearance of the scat, bear signs, weather conditions and our field experience with

inspections of GPS fixes of collared bears. Samples were put directly into sterile tubes, labeled,

transported in an insulated bag with frozen gel packs and stored at -20˚C until laboratory anal-

ysis. We noted the date and hour of collection, GPS location, and used blind observation meth-

ods by encoding collected samples before laboratory analysis of FN, FC and FCM

concentrations.

Ethics statement

The field work was conducted in accordance with legal requirements in Poland. Apart of the

restricted access area of the Tatra National Park, where the samples were collected by National

Park staff (TZK) under routine conservation and monitoring tasks, sample collection was con-

ducted in the public forest lands, managed by the Polish State Forest Administration. Collec-

tion of faecal samples in public state forest, being non-invasive, does not require any permit.

Analysis of nutritional biomarkers: FN and FC

Faecal samples were unfrozen and dried in a heater (24 h at 90˚C) to eliminate water content.

Faeces were manually homogenized and subsamples were collected from each scat to deter-

mine FN and FC. Dried faeces were mixed with 10ml of liquid nitrogen to completely pulver-

ize the sample with a mortar and a pestle. Later, ca. 1g of each pulverized sample was stored in

a properly labeled tube and sent to the Research Support Central Services (SCAI) laboratory at

the University of Málaga (Spain) for analysis. Quantification of FN and FC was carried out by

means of the elementary chemical analysis following the classical Pregl-Dumas method

[60,61]. The technique was performed on a PERKIN-ELMER 2400 CHN elemental analyzer.

Samples were measured and processed taking into account the weight of the sample as well as

the data provided by a standard sample, thus obtaining the content of each element (i.e. N and

C) in the sample. The results of FN and FC are presented as percentage (%) of dry matter.

Extraction and quantification of FCM

Faecal samples were unfrozen and dried in the heater until constant weight (24 h at 90˚C).

Rapid defrosting by heating is proved to keep FCM stable and concentrations measured in

dried faeces are comparable to those obtained from wet faecal samples [62,63]. Later, 0.5 g of

dry faeces were weighted and placed in assay tubes with 2.5mL of phosphate buffer and 2.5mL

of pure methanol. Tubes were vortexed and then shaken for 16 h. Afterwards, supernatants

were centrifuged (4000 g 30 min) and the resulting faecal extracts were stored at -20˚C until

analysis.

Quantification of FCM was carried out using a commercially available cortisol enzyme

immunoassay kit (Cortisol ELISA DE1887; Demeditec Diagnostics GmbH,Kiel, Germany).

Validation of the EIA used was performed by carrying out parallelism, accuracy and precision

tests [64]. Parallelism was performed with serial dilutions of faecal extracts (1:32, 1:16, 1:8, 1:4,

1:2, 1:1) resulting in a curve parallel to the curve built with the standards provided in the kit.

Accuracy (recovery) was 89.3 ± 8.9%. Precision was tested by means of intra- (8.6%) and inter-

(10.5%) assay coefficients of variation. According to the manufacturer, sensitivity (detection

limit) of the assay was 2.5 ng/ml. Cross-reactivity values of this assay for cortisol, corticoste-

rone, progesterone, deoxycortisol and dexamethasone are 100, 45,<9, <2 and<2%, respec-

tively, and<0.01% with estriol, estrone and testosterone. FCM concentrations are expressed

as ng/g of dry faeces.
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Statistical analyses

To properly interpret the quality of food patterns and the seasonal variations, we considered

two foraging periods (hypophagia and hyperphagia), typical in the brown bear annual cycle,

and assumed that foraging starts when bears leave their winter dens in early spring. This first

period is characterized by lower food intake (hypophagia) [65]. In the Bieszczady Mts bear

activity is observed in winter and food intake also occurs then, particularly at ungulate feeding

sites [38,41,66]. As we were interested in the effects of food intake, we treated winter, spring

and early summer within the hypophagic period (January-July). With summer progressing,

the food intake increases markedly (hyperphagia; [67]) until the bears gain enough body mass

before denning [25]. Denning takes place mostly from November to April in Tatra mountains

[51], whereas in Bieszczady, some bears are active during winter, partly due to artificial feeding

[66]. Thus, samples span the active period, which allow us to examine temporal patterns in the

nutritional quality of bear diets. We did not consider inter-annual variations.

We used generalized linear models (GLMs) with gaussian (FN, FCM) and gamma (FC) dis-

tribution errors to explain the variation in the response variables (FN, FC and FCM). FCM

and FN data were log- transformed to achieve better model fit. We used as explanatory vari-

ables the season (hypo- and hyperphagia), area (Bieszczady and Tatra Mts) and the interaction

between them. We combined hypothesis testing and information theory approaches to maxi-

mize the understanding of our system [68]. We also investigated how FCM levels (log-trans-

formed) were affected by food quality (FN, FC) using GLMs with a gaussian error distribution

and identity link function. Relationship between diet quality indices was investigated with

Pearson’s correlation test. The analyses were performed in R 3.6.0 [69].

Results

In total, 142 samples were analyzed, including 57 and 85 samples for subpopulations in Tatra

and Bieszczady Mts, respectively. FN and FC were obtained for 98 samples. The values of FN,

FC and FCM are summarized separately for the two study areas in Table 1.

Diet quality and FCM levels in study areas

Area was a significant explanatory variable for diet quality (Table 2). Both FN and FC were sig-

nificantly higher in Tatra than in Bieszczady Mts (Tables 1 and 2, Fig 2). Regarding FCM, sig-

nificantly higher levels were also found in Tatra Mts (Tables 1 and 2, Fig 2).

There was a significant positive correlation between FN and FC (r = 0.270, df = 96,

P = 0.007) indicating that higher protein food was accompanied by higher carbon food. Con-

centrations of FCM significantly increased with higher FN and FC values (Table 3). Food qual-

ity, expressed as FC and FN, explained 26% of the deviance in FCM.

Seasonal patterns in FN, FC and FCM levels

In Tatra Mts, FN showed higher values than in Bieszczady in both seasons and the interaction

between area and season was not significant. When the interaction term was removed from

Table 1. Values of faecal nitrogen (FN, in % of faecal dry matter), faecal carbon (FC, in % of faecal dry matter)

and faecal cortisol metabolites (FCM, in ng/g of faecal dry matter) in brown bear faeces, collected in Tatra and

Bieszczady Mts in Poland in 2008–2011.

Tatra Mts Bieszczady Mts

FN (%, mean ± SD) 2.475 (±0.532) 1.826 (±0.567)

FC (%, mean ± SD) 48.255 (±5.235) 43.887 (± 5.776)

FCM (ng/g, mean ± SD) 2568.346 (±3127.153) 616.092 (±328.166)

https://doi.org/10.1371/journal.pone.0242341.t001
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the FN model, season became marginally significant, and FN levels tended to be higher during

hypophagia in both areas (Table 2). For FC, the interaction was significant, and the model that

included the interaction term was the best ranked (Table 2). The effect of season on FC was

different between areas. While in Tatra FC values significantly varied between hypo and hyper-

phagia, no variation was observed in Bieszczady (Table 2, Fig 2). In the case of FCM, the inter-

action between area and season was close to significance and the full model was the best

ranked. Variation in FCM levels between seasons was observed only in Tatra, but not in

Bieszczady (Table 2, Fig 2). In Tatra Mts, minimum FCM value was 319,5 and maximum

reached 6744,0 ng/g in hypophagia, and in range from 515,0 to 12411,3 ng/g in hyperphagia.

In Bieszczady Mts, minimum and maximum FCM values were 136,0 and 1543,2 ng/g in hypo-

phagia, and between 240,0 and 1461 ng/g in hyperphagia.

Table 2. Summary of model selection explaining the variation in faecal nitrogen (FN, %), faecal carbon (FC, %) and faecal cortisol metabolites (FCM, ng/g) in rela-

tion to the study area (reference category: Bieszczady Mts) and season (reference category: hyperphagia). We also provide the percentage of deviance explained by

each model and the p-values of the predictors. Models were fitted using identity link and gaussian distribution (FN(%), FCM(ng/g)) and log link and gamma (FC(%))

error distributions. FN and FCM values were log-transformed.

Models df Explanatory variables Estimate ± S.E. P Deviance explained (%) AIC Delta AIC weight

FN ~ Area + Season 4 (Intercept) 0.481 ± 0.056 1.39e-13 26.9 23.6 0.00 0.502

Area 0.383 ± 0.066 8.68e-08

Season 0.106 ± 0.062 0.0895

FN ~ Area 3 (Intercept) 0.558 ± 0.033 < 2e-16 24.6 24.6 0.99 0.306

Area 0.329 ± 0.059 2.04e-07

FN ~ Area � Season 5 (Intercept) 0.488 ± 0.063 1.12e-11 26.9 25.5 1.93 0.191

Area 0.370 ± 0.084 2.92e-05

Season 0.096 ± 0.074 0.196

Area�Season 0.035 ± 0.137 0.800

FN ~ Season 3 (Intercept) 0.695 ± 0.048 <2e-16 0.0 51.3 27.70 0.000

Season -0.062 ± 0.063 0.328

FC ~ Area � Season 5 (Intercept) 3.758 ± 0.029 2 e-16 17.7% 636.5 0.00 0.916

Area 0.158 ± 0.038 8.27 e-5

Season 0.032 ± 0.033 0.334

Area�Season -0.210 ± 0.062 0.00107

FC ~ Area 3 (Intercept) 3.782 ± 0.015 < 2e-16 9.1 642.3 5.76 0.051

Area 0.095 ± 0.027 0.000805

FC ~ Area + Season 4 (Intercept) 3.802 ± 0.026 <2e-16 9.8 643.6 7.08 0.027

Area 0.080 ± 0.031 0.0111

Season -0.027 ± 0.029 0.3523

FC ~ Season 3 (Intercept) 3.849 ± 0.020 <2e-16 4.9 646.7 10.22 0.006

Season -0.065 ± 0.026 0.0137

FCM ~ Area � Season 5 (Intercept) 6.386 ± 0.138 < 2e-16 37.0 315.2 0.00 0.665

Area 1.052 ± 0.172 9.83e-09

Season -0.148 ± 0.168 0.3798

Area�Season -0.622 ± 0.321 0.0549

FCM ~ Area + Season 4 (Intercept) 6.501 ± 0.126 < 2e-16 35.2 317.0 1.81 0.270

Area 0.873 ± 0.147 2.13e-08

Season -0.317 ± 0.144 0.0299

FCM ~ Area 3 (Intercept) 6.285 ± 0.080 < 2e-16 32.9 319.8 4.64 0.065

Area 1.045 ± 0.126 8.24e-14

FCM ~ Season 3 (Intercept) 7.064 ± 0.093 < 2e-16 18.7 347.2 31.97 0.000

Season -0.774 ± 0.136 7.65e-08

https://doi.org/10.1371/journal.pone.0242341.t002

PLOS ONE Patterns in diet quality and physiological stress in brown bears

PLOS ONE | https://doi.org/10.1371/journal.pone.0242341 November 12, 2020 7 / 16

https://doi.org/10.1371/journal.pone.0242341.t002
https://doi.org/10.1371/journal.pone.0242341


Fig 2. Faecal nitrogen (FN, %), carbon (FC, %) and cortisol metabolite (FCM, ng/g) values in the study areas.

https://doi.org/10.1371/journal.pone.0242341.g002
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Discussion

Our study shows that FC and FN can be useful nutritional indicators also for non-herbivorous

species and provide useful insights into diet quality patterns. Their levels clearly showed that

diet quality of brown bears differed between study areas. Significantly higher indices, both

nitrogen and carbon, were observed in Tatra Mts, suggesting that bears forage on richer foods.

A study on bear diet there showed graminoids and herbaceous plants are the most prevalent

food source, and ants are the most important source of proteins (ca. 49, 29 and 22% frequency

of occurrence, respectively). More importantly, no anthropogenic food items were found [70].

However, in Bieszczady Mts, where food quality markers showed lower levels, human-pro-

vided foods represent currently an important part of the bear diet, up to 80% in the winter

months, and are used by bears year-round [41,71]. Earlier studies already identified corn

(main food provided to ungulates) as the second most frequent food in spring (30.4% of the

faeces) and the third in autumn (26.1%, [72]). Therefore, lower quality of the bear diet in

Bieszczady Mts, as suggested by FN and FC levels, may be related to bears’ lifestyle being sig-

nificantly affected by the artificial feeding practices in the area. These practices seem to be

increasing in the amount of artificial food provided, number of feeding sites and duration of

the feeding periods, not only in Poland, but generally in Europe and in particular, in the Car-

pathians [41,73,74].

Seasonally, FN values tended to be higher in hypophagia in both areas, but larger temporal

variation was found in Tatra Mts. In Bieszczady, there were no apparent seasonal patterns in

any of the diet quality indices, suggesting that bears were able to achieve relatively constant

nutritional levels in their diet, but the overall diet quality was significantly lower than in Tatras.

The difference in diet quality between study areas reflects variability in protein intake and food

quality. Bears switch their diets towards protein and lipid-rich food, when available [3], and in

general, they prioritize a protein intake target over carbohydrate or lipid, with a secondary

preference of lipids over carbohydrates. In the absence of lipids, bears are able to utilize carbo-

hydrates with equal efficiency–lipid and carbohydrate may serve as interchangeable non-pro-

tein-energy source when optimizing protein intake [29,35,75]. In the berry-rich areas, like the

Tatra Mts, bears fatten in autumn by consuming large quantities of berries rich in carbohy-

drates [3] and optimize their macronutrient intake by mixing those high-energy fruits with all

other foods (insects, ungulates, roots and green vegetation). In the absence of fruits, the diet

becomes similar in macronutrient composition to the pregreen-up period [35,76]. In the study

by Baldwin and Bender [47], although the diet of bears varied through seasons with an overall

Table 3. Summary of model selection explaining the relationship between faecal cortisol metabolites (FCM, ng/g) and food quality (faecal carbon FC and faecal

nitrogen FN, %). Generalized linear models were fitted using identity link and gaussian error distributions. FCM values were log transformed.

Models df Explanatory variables Estimate ± S.E. P Deviance explained (%) AIC Delta AIC weight

FCM ~FC+FN 4 (Intercept) 3.140 ± 0.623 2.23e-6 25.9 236.9 0.00 0.559

FC 0.065 ± 0.014 1.20e-5

FN 0.273 ± 0.132 0.0414

FCM ~FC�FN 5 (Intercept) 4.222 ± 1.670 0.0131 26.3 238.4 1.49 0.265

FC 0.041 ± 0.037 0.7035

FN -0.338 ± 0.885 0.2672

FC�FN 0.013 ± 0.019 0.4865

FCM ~FC 3 (Intercept) 3.339 ± 0.626 6.40e-07 22.6 239.2 2.31 0.176

FC 0.073 ± 0.014 7.62e-07

FCM ~FN 3 (Intercept) 5.735 ± 0.297 < 2e-16 9.3 254.8 17.88 0.000

FN 0.439 ± 0.140 0.00232

https://doi.org/10.1371/journal.pone.0242341.t003
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high quality, seasonal differences in FN were not recognized, which was accounted for a con-

stant high protein level. Consistently, in the omnivorous chacma baboons (Papio ursinus) food

of greater nutritional value (in terms of crude protein content) than the food of other savanna

mammals was consumed throughout a year, optimizing nutritional uptake, resulting in higher

FN values than in other mammal species in the same ecosystem and showing no apparent sea-

sonal pattern [13]. In the Bieszczady Mts study area, although seasonal patterns were not

observed, the FN levels indicate lower quality food sources (many of them human-provided)

when compared to Tatra Mts. The effect of constant supplementary, low protein/high carbo-

hydrates sources of food was addressed in the study by Landers et al. [77], which concludes

that the diet must contain about 15% of crude protein for healthy growth of omnivores, includ-

ing bears. However, Robbins et al. [29] demonstrated that protein content is not a minimum

constraint on diet selection by brown bears. Corn contains about 9% of crude protein but is a

rich source of nitrogen-free extract (concentrated energy) contributing to the overall nutrition.

Fat, important for bears for survival while hibernating during winter, may be accumulated by

the conversion of protein or carbohydrates to fat when the physiologically less expensive direct

conversion of lipid from lipid is not possible due to shortages or seasonal unavailability of cer-

tain foods [3].

Glucocorticoids may be involved in the increased feeding and/or fat deposition characteris-

tic of pregnancy and the pre-hibernation period in hibernating species [78]. We found overall

FCM levels higher for the bears in Tatra study area, with lower values during hypophagia.

However, it should be noted that a large portion of bear habitat in Tatra is within the area of

influence of the dense touristic trail network, and that the high number of visitors might have

additionally influenced FCM levels, as found for chamois (Rupicapra rupicapra) in Tatra [79].

This study showed that stress levels were significantly higher during the period with highest

number of visitors, a result also found in other carnivore species living in protected areas [79–

81]. Similar effects of tourism were found in other animal groups, including tetraonids, lago-

morphs and elephants [82–84]. Nevertheless, the cortisol values still follow a seasonal pattern

in Tatra, and the observed differences between study areas might be as well related to diet. In

the study by von der Ohe et al. [85], FCM levels in brown bear samples containing flesh were

lower than in samples made up of grass in months in which both were available (July and

August). Samples from the berry diet type had lower FCM concentrations than those from the

grass and flesh type. Overall, the high-fiber diet was demonstrated to result in higher faecal

glucocorticoid levels in bears. Similarly, Stetz et al. [86] found that the main effects explaining

variation in FCM concentrations in very fresh scats were food contents (vegetation vs. berries

or meat), Julian date and aspect. Essentially, FCM were highest for scats containing primarily

vegetation (presumably indicating relatively poor nutrition and/or high stress). Dietary fiber

content might affect steroid excretion rates due to changes in gut transit time or faecal mass.

Therefore, we dried samples prior to extraction, what has proved effective in hormonal analy-

sis of faeces in other omnivores [87]. Fruits and vegetation contain high amounts of dietary

fiber, but only faeces containing vegetation had elevated FCM in the mentioned studies. Gut

transit time is faster in bears fed with vegetation diets compared to meat diets [88]. This would

tend to cause a decrease in FCM, yet an increase is observed in faeces with vegetation. There-

fore, the patterns found in our study probably reflect nutritional impacts on glucocorticoids,

rather than effects of only gut retention time or fiber content.

We found a positive correlation between FCM levels and food quality, mostly with FC val-

ues (Table 3). Carbohydrate-rich berries are fruiting and abundant when bears are fattening

with pre-hibernation hyperphagia, thus adaptive higher levels of corticoids responsible for reg-

ulating energy input and storage, help maximizing energy intake. When the glucocorticoids

levels rise, it leads to the mobilization of energy reserves. The excreted breakdown products of
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the stored energy reserves lead to the observed changes in elements and thereby to a correla-

tion with glucocorticoid excretion patterns [7]. Cortisol might also play a role in bone resorp-

tion during periods of nutritional stress or affect the amount and type of foods consumed. Its

values were found higher in bears eating less salmon in British Columbia, Canada [89] and

explained as an adaptive response to food shortage to mobilize fat. Elevated cortisol in hypo-

phagia after denning (in spring) might play a role in minimizing further weight loss by maxi-

mizing energy intake from low-fat, herbaceous foods, which are available in spring. Generally,

lower levels of FCM in the study area with year-round access to artificial food could be linked

to lower diet quality.

The use of faecal constituents is debated and sometimes criticized, especially with respect to

unstable ones such as nitrogen [90–92]. Field exposure time appeared to significantly and neg-

atively affect the faecal content of nitrogen in the study by Steyaert et al. [90]. Other studies

show that the duration of environmental exposure of faeces in the wild does not seem to affect

FN, and so its storage [93]. In diets with secondary plant compounds such as tannins, higher

FN values occur because tannins make dietary N partly indigestible. However, in the absence

of secondary plant compounds, it should be possible to observe a decrease in FN with a diet

rich in N if that diet is at the same time less digestible due to high fibre content. FN should be

used with the understanding that it is also a proxy for digestibility but might not be directly

related to diet protein content [12,92]. Nevertheless, we used FN, combined with FC as a diet

quality proxy, supported by the fact that bears consume highly digestible foods and they tend

to avoid tannins in their diet [47]. In addition, artificially provided food items, e.g. wheat and

maize, are free of tannins [12]. Thus, FN might be still a useful index to recognize patterns in

the diet quality of brown bears, if FN would be stable in field exposure. Any index may have

shortcomings; therefore, we advise caution with the interpretation of results when the condi-

tions for the application of FN are not met. As mentioned earlier, there are studies proving

both, the environmental instability [e.g. 90] and stability of faecal nitrogen [e.g. 93].

Accurate characterization of diet quality at the population level requires sampling at rela-

tively fine spatial and temporal resolution; infrequent sampling may fail to capture pulses in diet

quality that drive population dynamics [94,95], and geographically sparse sampling may fail to

include localized hotspots of high forage quality. We believe that, even with opportunistic sam-

pling, our study indicates patterns of food quality and hormonal concentration in areas with

and without provision of artificial food. The subpopulation that relies to a great extent on artifi-

cial food had lower FN and FC, reflecting lower protein and carbohydrate content in annual

diets, and, in general, lower food quality than the one relying exclusively on natural foods. The

subpopulation without artificial feeding showed seasonal patterns and the nutritional switch

between hypo- and hyperphagia, something that is fundamental to bear´s life and was not

observed in the artificially fed subpopulation. Natural seasonal changes in FCM, which are

adaptive in species with marked seasonality, were not observed in the area with human-pro-

vided subsidies, showing the potential for another possible negative effect of artificial feeding

practices. Finally, we showed that faecal indices are a useful tool to gain insights into patterns of

diet quality and to assess relationships between food quality and hormonal status accommodat-

ing nutritional requirements. Together, this combined approach might enable a better under-

standing of the physiological adaptations and the nutritional value of brown bear habitats.

Supporting information

S1 Dataset. Faecal cortisol metabolite (FCM; ng/g), faecal nitrogen (FN; %) and faecal car-

bon (FC; %) values.

(XLS)

PLOS ONE Patterns in diet quality and physiological stress in brown bears

PLOS ONE | https://doi.org/10.1371/journal.pone.0242341 November 12, 2020 11 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242341.s001
https://doi.org/10.1371/journal.pone.0242341


Acknowledgments

We thank Teresa Berezowska-Cnota, Katarzyna Bojarska, Isabel Elguero-Claramunt, Ignacio

Luque-Márquez, and students and volunteers of the Carpathian Brown Bear Project for their

help with sample collection in Bieszczady. Two anonymous referees are thanked for useful

comments that improved the paper.

Author Contributions

Conceptualization: Agnieszka Sergiel, Isabel Barja, Nuria Selva.

Data curation: Agnieszka Sergiel, Tomasz Zwijacz-Kozica.

Formal analysis: Isabel Barja, Álvaro Navarro-Castilla, Nuria Selva.

Funding acquisition: Agnieszka Sergiel, Isabel Barja, Nuria Selva.

Investigation: Agnieszka Sergiel, Tomasz Zwijacz-Kozica, Nuria Selva.

Methodology: Agnieszka Sergiel, Isabel Barja, Nuria Selva.

Resources: Agnieszka Sergiel, Tomasz Zwijacz-Kozica, Nuria Selva.

Validation: Isabel Barja, Álvaro Navarro-Castilla.
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2. López-Alfaro C, Coogan SCP, Robbins CT, Fortin JK, Nielsen SE. Assessing nutritional parameters of

brown bear diets among ecosystems gives insight into differences among populations. PLoS ONE.

2015; 10:e0128088. https://doi.org/10.1371/journal.pone.0128088 PMID: 26083536

3. Dahle B, Sørensen OJ, Wedul EH, Swenson JE, Sandergren F. The diet of brown bears Ursus arctos in

central Scandinavia: the effect of access to free-ranging domestic sheep Ovis aries. Wildlife Biology.

1998; 4:147–158.

4. Aichun X, Zhigang J, Chunwang L, Jixun G, Guosheng W, Ping C. Summer food habits of brown bears

in Kekexili Nature Reserve, Qinghai-Tibetan Reserve, China. Ursus. 2006; 17:132–137.

5. Naves J, Fernández-Gil A, Rodrı́guez C, Delibes M. Brown bear food habits at the border of its range: a

long-term study. Journal of Mammalogy. 2006; 87:899–908.

6. Bojarska K, Selva N. Spatial patterns in brown bear Ursus arctos diet: the role of geographical and envi-

ronmental factors. Mammal Review. 2012; 42:120–143.

7. Deschner T, Fuller BT, Oelze VM, Boesch C, Hublin J, Mundry R, et al. Identification of energy con-

sumption and nutritional stress by isotopic and elemental analysis of urine in bonobos (Pan paniscus).

Rapid Communications in Mass Spectrometry. 2012; 26:69–77. https://doi.org/10.1002/rcm.5312

PMID: 22215580
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