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Abstract
Background: The MAQC project demonstrated that microarrays with comparable content show
inter- and intra-platform reproducibility. However, since the content of gene databases still
increases, the development of new generations of microarrays covering new content is mandatory.
To better understand the potential challenges updated microarray content might pose on clinical
and biological projects we developed a methodology consisting of in silico analyses combined with
performance analysis using real biological samples.

Results: Here we clearly demonstrate that not only oligonucleotide design but also database
content and annotation strongly influence comparability and performance of subsequent
generations of microarrays. Additionally, using human blood samples and purified T lymphocyte
subsets as two independent examples, we show that a performance analysis using biological
samples is crucial for the assessment of consistency and differences.

Conclusion: This study provides an important resource assisting investigators in comparing
microarrays of updated content especially when working in a clinical or regulatory setting.

Background
The ability to assess genome-wide transcriptional profiles
of cells, tissues or even whole organs is a cornerstone of
the advances genomics has brought to the life and medical
sciences [1,2]. DNA microarrays are the major technology
used for this purpose [3]. Both in biology and medicine,
important new findings have been revealed by this tech-
nology [4-6]. More recently, the MicroArray Quality Con-
trol (MAQC) project, a community-wide effort initiated
and led by FDA (US Food and Drug Administration) sci-

entists, has made a significant contribution assuring relia-
bility and consistency of DNA microarray technology [7-
12] at a time when concerns about repeatability, repro-
ducibility and comparability of microarray results were
raised [13-15]. The major message from the MAQC
project is that microarrays with comparable content show
inter- and intra-platform reproducibility of gene expres-
sion measurements. Major regulatory agencies such as the
FDA or the European Medicine Agencies (E MEA) have
recognized genomic technologies, particularly gene
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expression profiling by DNA microarrays, as opportuni-
ties in advancing personalized medicine [16,17]. There-
fore, the results established by MAQC are very promising
for the use of DNA microarrays in drug development,
medical diagnostics and risk assessment, and the use of
these technologies has been encouraged by the regulatory
agencies.

However, as already outlined by the MAQC project, an
important aspect of DNA microarray technology needs
further attention [10]. Advances in array technology as
well as improvements of genomic database content will
lead to the development of new generations of microar-
rays in upcoming years [18,19]. The currently available
annotation of transcripts represented on DNA microar-
rays (microarray content) is still incomplete. In fact, our
knowledge about gene expression is far from being com-
plete, which is reflected by a continuous increase of con-
tent of gene databases such as RefSeq [20]. Therefore there
have been advances in updating the annotation of micro-
array probes to the most up-to-date annotation available
by providing either new annotation files or software tools
for re-annotating existing microarray formats [21-25]. So
far, using the most recent DNA microarray technology has
always been seen as an advantage – especially when
searching for novel transcripts [26]. However, this might
be different in the context of drug development, medical
diagnostics or risk assessment, where signatures rather
than single genes are of highest relevance. Here, unaltered
gene annotation and probe sequence content are needed
for long-term applications. The potential impact of
advances in technology and database content on success-
fully established diagnostic gene signatures (e.g. the 70-
gene signature established by van't Veer et al. for predict-
ing therapy outcome in breast cancer patients [27,28]) has
not been fully appreciated. It is therefore mandatory to
develop approaches and methods that allow fast and deci-
sive assessment of the global impact of database improve-
ments, content changes of microarrays and technical
advances.

Results
Significant dynamics of gene sequence content of current 
genome databases
One of the major resources for genomic research are data-
bases such as RefSeq [20], Unigene [29], Ensembl [30], or
GenBank [31]. To investigate the underlying dynamics of
these databases we performed analyses on both the Refseq
and the Ensembl databases. Plotting the official release
statistics of the RefSeq database shows a continuing
growth of RefSeq sequences (Figure 1A) mainly explained
by constant addition of new species. To determine the
development of the content of human gene sequences,
human database entries (huDE) from the RefSeq release
catalog were extracted. Starting with almost 40,000 huDE

in release one (R1) the content dropped to less than
28,000 huDE, steadily increased to 30,000 huDE (R16)
after which almost 11,000 huDE were added in R17. Since
then the overall number of huDE remained stable (Figure
1B). The increase of huDE observed from R2 to R17 can
be explained by new knowledge concerning transcript var-
iants (mainly splice variants), which have been added
continuously to the database and have more than dou-
bled since 2003 (Figure 1C). Assessing the RefSeq content
of subsequent releases (Figure 1D) revealed a surprisingly
high number of changes. When performing this analysis
on the Ensembl database a similar picture occurred. Since
2004 the number of human entries in the Ensembl data-
base has continuously grown (see Additional file 1A) with
a high number of additions and removals of sequences in
between subsequent releases (see Additional file 1B).
Based on these unexpected and still high dynamics of
database content, we hypothesized that the broadly
applied microarray technologies, for which RefSeq and
Ensembl are two of the main repositories, would be
strongly influenced by such changes.

Content and annotation of microarrays depends on the 
repository database
To address the influence of database content on array
design and probe content, we used the RefSeq database as
a model and first assessed the impact of different RefSeq
releases on array annotation. Here, we define array anno-
tation as the number of RefSeq hits obtained by all probes
on a microarray. As examples for microarray annotation
we used three commercially available oligonucleotide-
based microarray platforms, the Whole Human Genome
Oligo Microarray distributed by Agilent (A-huGOM), the
Human Genome Survey Microarray distributed by
Applied Biosystems (AB-huGSM) and the Human Bead-
Chip distributed by Illumina (I-huBC) (Figure 2A) [32-
34]. For this analysis the most recent versions of the
respective microarrays were used. All oligonucleotide
probes on each microarray were blasted against RefSeq
releases R1 to R24 to determine the number of RefSeq hits
for the respective releases. As shown in Figure 2B, the
number of common RefSeq hits between two subsequent
releases remained constant for all three platforms except
for the increase between R16 and R18 (also seen in Figure
1B). Similarly, when investigating gains and losses of Ref-
Seq hits (Figure 2C) the observed pattern reflected the
underlying database changes (Figure 1D).

Consistency of consecutive array versions strictly depends 
on database content and annotation
Due to the high dynamics in database content and subse-
quent annotation changes we were particularly interested
in characterizing the impact of database content on subse-
quent array versions. We therefore further investigated the
AB-huGSM and the I-huBC arrays. Both distributing com-
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panies recently launched a second version of their original
product: AB-huGSM-V2 (January 2005) and I-huBC-V2
(December 2006). The AB-huGSM arrays are comprised
of 33,096 (AB-huGSM-V1) and 32,787 (AB-huGSM-V2)
oligonucleotides. 30,469 oligonucleotides remained
identical between AB-huGSM-V1 and AB-huGSM-V2,
whereas 2,627 were removed and 2,318 were added (Fig-
ure 3A). The I-huBC arrays included 47,296 (I-huBC-V1)
and 48,701 (I-huBC-V2) probes, respectively [34], but to
our surprise, only 8,299 oligonucleotides remained iden-
tical between I-huBC-V1 and I-huBC-V2 (Figure 3B). We
postulated that the dramatic differences concerning probe
content would greatly challenge comparability of results.
To address this issue in detail, we assessed the overall

magnitude of changes using I-huBC-V1 (version 1) and I-
huBC-V2 (version 2) as a model. Refseq was used as the
annotation database, since both I-huBC-V1 and I-huBC-
V2 were designed based on Refseq. We performed a BLAST
analysis on all oligonucleotide sequences from both
arrays using three Refseq releases (R4, R17 and R24) and
categorized hits into one of the 4 categories presented in
Figure 3C (see also Additional file 2). R4 represents the
release at the time of I-huBC-V1 design (Figure 3D), R17
the release at the time of I-huBC-V2 array design (Figure
3E), and R24 the most current release (Figure 3F). For R17
(Figure 3E) we obtained the highest number of perfect
hits for I-huBC-V2 (36,405) as well as the highest number
of common RefSeq hits between I-huBC-V1 and I-huBC-

Dynamics of RefSeq databaseFigure 1
Dynamics of RefSeq database. Release statistics retrieved from ftp://ftp.ncbi.nih.gov/refseq/release/release-statistics/ shows 
the development of the RefSeq database, including (A) all RefSeq IDs, (B) human RefSeq IDs, and (C) human RefSeq IDs termed 
"transcript variant". (D) For human RefSeq IDs, consecutive releases were compared to each other to determine changes in 
the database over time.
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V2 (27,090). Also the lowest number of removals (catego-
ries 4, 2b and 2c) as well as the highest number of addi-
tions (categories 3, 2d and 2e) was obtained. Surprisingly,
these numbers changed dramatically when performing
the BLAST analysis on the most recent release R24 (Figure
3F), reflecting the strong dependence of array content on
database content. The analysis based on R4 (Figure 3D)
showed the least agreement in probe level content, as well
as the lowest gain of content and the highest number of
removals. When running the BLAST analysis on all official
RefSeq releases (R1 to R24) we detected the optimum of
concordance at R16 and R17 (Figure 3G and Additional
file 3), the existent releases at the time of array design of I-
huBC-V2. To ensure the reliability of our results we per-
formed the identical analysis on the Ensembl database.
Here we also saw differing concordances between I-huBC-

V1 and I-huBC-V2 depending on the release. However, we
did not observe the drastic difference between the release
at the time of array design and the most current release,
which might indicate a more stable annotation within
Ensembl (see Additional file 1C).

Altogether, comparability of consecutive array versions
even on a single platform is a function of oligonucleotide
design, database content and annotation available at the
time of array design. Unexpectedly, optimal comparabil-
ity is not achieved with the newest annotation of the Ref-
Seq database but rather with the annotation available at
the time of design of the newest array version. As long as
the database content is not yet finalized, updates in array
design are mandatory to correctly reflect genomic content.

Influence of Refseq database content on annotation of microarray probesFigure 2
Influence of Refseq database content on annotation of microarray probes. (A) Array type, feature type and number 
of features interrogated by three commercially available oligonucleotide-based microarray platforms. (B) Influence of RefSeq 
version on annotation of probes used by the three microarray platforms. (C) Differences in the annotation status based on dif-
ferences of consecutive Refse versions q for the A-huGOM, the AB-huGSM and the I-huBC.
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Comparison of probe level content on subsequent array versionsFigure 3
Comparison of probe level content on subsequent array versions. For (A) the AB-huGSM and (B) the I-huBC two 
subsequent array versions were compared regarding their probe level content. (C) Generally, probe sequence changes on con-
secutive array versions can lead to different numbers and types of RefSeq hits in both array versions. We categorized RefSeq 
hits resulting from probe sequence changes into 4 hit categories. I-huBC-V1 and I-huBC-V2 were investigated regarding these 
hit categories based on the following RefSeq releases: (D) R4, (E R17, and (F) R24. (G) Concordances and differences in probe 
level content between I-huBC-V1 and I-huBC-V2 over all RefSeq releases.
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Selection of representative data sets for best investigation 
of performance issues
The above described in silico analysis of consecutive array
designs is an important first step to estimate the overall
impact on array performance. However, we postulate that
site-by-site comparison of performance of consecutive
array versions by applying biological experiments is the
most critical part of future array development as well as
compatibility analysis for long-term projects spanning the
life time availability of different array versions. We pro-
pose that these experiments fulfill specified criteria (see
Additional file 4). We performed two different sets of
experiments. As an example for a biological screening
experiment we compared CD25+ CD127- regulatory T cells
(Treg, n = 3) as a specialized T cell subpopulation to so-
called CD25- CD127+ conventional T cells (Tconv, n = 3)
(Figure 4A) [35,36]. Intracellular staining with FOXP3
mAbs confirmed that CD25+ CD127- cells were indeed Treg
cells. Moreover, quantitative RT-PCR for FOXP3 mRNA
revealed high level expression of FOXP3 in CD25+ CD127-

Treg cells but not in CD25- CD127+ Tconv cells (Figure 4A).
As an experiment within a diagnostic setting we chose the
analysis of peripheral blood samples derived from
patients with either scleroderma (n = 11) or bacteremia (n
= 7). These samples are part of a larger study addressing
diagnostic signatures of systemic diseases in peripheral
blood (S. Debey-Pascher, unpublished results). For these
samples, we performed microarray analysis on both array
types.

I-huBC-V2 outperforms I-huBC-V1 concerning sensitivity, 
signal-to-noise-ratio and dynamic range
For further analyses concerning performance issues of two
different array versions we cross-annotated the re-blasted
probes from the I-huBC-V1 and the I-hu-V2 arrays BC (see
Additional file 2). To quickly assess improvement of per-
formance by newer generation technology, we assessed 4
parameters describing important quality aspects, (1) the
percentage of detected transcripts reflecting sensitivity, (2)
the dynamic range of signal intensities, (3) the values of
background/noise signals reflecting signal-to-noise ratio
and (4) technical replication reflecting reproducibility. In
the Treg data set, on average 23.9% of all probes were
called present on I-huBC-V1 and 31.0% on I-huBC-V2.
Similarly, in the whole blood data set, we obtained mean
percentages of present calls of 23.2% for I-huBC-V1 and
30.7% for I-huBC-V2 samples (see Additional file 5).
Additionally, probes with low signal intensities on both
arrays were generally more often called present on I-
huBC-V2 in comparison to I-huBC-V1 suggesting that I-
huBC-V2 has a higher detection sensitivity (see Additional
file 2, see Additional file 6). Boxplots were used to com-
pare the dynamic range of signals between I-huBC-V1 and
I-huBC-V2. When plotting the signals of the 8,299 probes
that were identical on both versions, we observed an
enlargement of the dynamic range as well as a decrease in

median signal intensities on I-huBC-V2 for both data sets
(Figure 4B, C) which was due to reduced overall back-
ground values on I-huBC-V2 (for cross-annotated probes
see Additional file 7A for the Treg dataset, see Additional
File 7B for the whole blood dataset). Analysis of identical
oligonucleotides represented on both versions in con-
junction with the use of the same cRNA samples, can be
used to assess the performance of both arrays concerning
technical replication. When comparing raw signal intensi-
ties of such technical replicates we observed increased sig-
nal intensities for moderate to highly expressed transcripts
on I-huBC-V2 (see Additional file 7C). For visualization
we used pairwise scatterplots, principal components anal-
ysis (PCA) and hierarchical clustering on normalized
data. Samples of the Treg data set showed a mean correla-
tion of 0.97 ± 0.005 (see Additional file 8 for a table of all
correlations and Additional file 9 for scatterplots) and
samples of the whole blood data set a mean correlation of
0.91 ± 0.17 (see Additional file 10 for a table of all corre-
lations and Additional file 11 for scatterplots). These
results were confirmed when performing PCA using the
100 most variable probes out of the 8,299 identical oligo-
nucleotides (Figure 4D, E). Additionally, when perform-
ing hierarchical clustering on these samples, almost all
technical replicates clearly clustered next to each other
(see Additional file 12).

Rank correlation metric reveals significant differences 
between subsequent microarray versions
To examine the comparability of results across platforms
we performed a rank correlation metric [10] and used the
ratio of differential expression (between defined groups,
here Treg versus Tconv resp. systemic sclerosis versus bacter-
emia samples) as a basis for ranking. In a first step we used
transcripts, which were moderately to highly expressed
(signal intensity > 500) in either one of the sub-groups of
the data sets to eliminate possible impairment due to
absent or low expressed transcripts. Figure 5A shows the
result of the analysis based on the 8,299 identical oligonu-
cleotides in the Treg data set. Here, 252 transcripts were
highly expressed throughout the data set and obtained a
rank correlation of 0.95. When using the cross-annotated
probes (628) the rank correlation dropped slightly to 0.85
(Figure 5B), which can most probably be ascribed to the
differences in oligonucleotide placement within a gene
(e.g. closer to 5'end). To our surprise, this high compara-
bility could not be achieved for the whole blood data set.
Here, we obtained a rank correlation of 0.77 for identical
oligonucleotides (99, Figure 5C) and 0.78 for cross-anno-
tated probes (269, Figure 5D). In a second step we used
probes called present in either one of the sub-groups.
Within the Treg data set, we observed a rank correlation of
0.84 for the identical oligonucleotides and a rank correla-
tion of only 0.69 for the cross-annotated probes (Figure
5E, F). Using the whole blood data set, the rank correla-
tions dropped to 0.66 for the identical oligonucleotides
Page 6 of 14
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Technical replication on subsequent array versionsFigure 4
Technical replication on subsequent array versions. (A) Experimental analysis for the Treg data set: FACS analysis and 
sorting windows of CD4+ CD127low CD25+ Treg cells and CD4+ CD127+ CD25- Tconv cells (left). Expression of FOXP3 in the 
respective T cell subsets was assessed by flow cytometry (middle) and quantitative RT-PCR (right). Boxplots were used to com-
pare the dynamic range of signal intensities on the arrays for (B) the Treg data set and (C) the whole blood data set. Only signals 
for the 8299 identical oligonucleotides were used. Technical replicates were checked both by principle component analysis 
based on the 100 most variable genes for (D) the Treg data set and (E) the whole blood data set as well as hierarchical cluster 
analysis (see Additional file 11).
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and to only 0.55 for the cross-annotated probes (Figure
5G, H). To examine the strong decrease in rank correla-
tion in more detail, we calculated differentially expressed
probes between scleroderma and bacteremia samples for
I-huBC-V1 and determined the corresponding signal val-
ues on I-huBC-V2 (see Additional file 13). Here, we
detected several probes, which were called differentially
expressed on I-huBC-V1, but not on I- huBC-V2 due to
very low signal values in both sub-groups. Due to the
higher detection sensitivity of I-huBC-V2, these probes
were not called absent. To rule out that this difference was
intrinsic to the whole blood samples we performed the
same analysis for the Treg data set. Similar to the whole
blood data set, several probes showing differential expres-
sion on I-huBC-V1 were not called differentially expressed
on I-huBC-V2 and also had low signal values for both T
cell sub-groups (see Additional file 14). Among these
probes was also FOXP3, which is the most important
marker of Treg cells. As shown in Figure 4A, differential
expression of FOXP3 between Treg and Tconv cells was
already confirmed by quantitative RT-PCR as well as intra-
cellular FACS analysis to assess protein expression. There-
fore, at least for FOXP3, the data generated with I-huBC-
V1 reflected real differences between the tested sub-groups
while the I-huBC-V2 did not. Furthermore, BLAST analy-

sis of the FOXP3 probes revealed distinct, yet perfect hits
(100% identity), for both I-huBC-V1 and I-huBC-V2 (data
not shown), suggesting that a functional probe was
exchanged by a non-functional.

We therefore propose a comparison approach combining
an extended in silico analysis with the experimental anal-
ysis (Figure 6). The in silico analysis consists of re-blasting
all probe sequences, collecting perfect hits, and categori-
zation of hits. The experimental analysis should include at
least cross-annotation, analysis of sensitivity, dynamic
range, technical replication and a rank correlation metric.
The global impact of upgrading microarray technology
and content on any given project can be quickly estimated
by this standardized approach.

Discussion
Most recently, validity and comparability of transcrip-
tional profiling using different microarray platforms has
been very elegantly demonstrated by the MAQC consor-
tium [10]. Proving consistency of these technologies
when introducing technological advances was suggested
by MAQC as a major issue for future development. Here
we have addressed the overall impact of improvements of
genomic database content and annotation over time and

Comparison of rank correlation of probes between subsequent array versionsFigure 5
Comparison of rank correlation of probes between subsequent array versions. Rank correlation was used as a met-
ric to investigate comparability of hybridization results between the two array versions. In a first step only moderately to highly 
expressed probes (signal intensity > 500) were used for comparison. This analysis was performed for (A) identical oligonucle-
otides in the Treg data set, (B) cross-annotated probes in the Treg data set, (C) identical oligonucleotides in the whole blood 
data set, and (D) cross-annotated probes in the whole blood data set. In the second step all probes which were present in 
either one of the sub-groups were used. Again, this analysis was performed for (E) identical oligonucleotides in the Treg data 
set, (F) cross-annotated probes in the Treg data set, (G) identical oligonucleotides in the whole blood data set, and (H) cross-
annotated probes in the whole blood data set.
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Workflow diagramFigure 6
Workflow diagram. Proposed method to quickly determine the impact of changes between subsequent microarray versions. 
This generalized impact analysis consists of an in silico analysis combined with an experimental performance analysis.
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the impact of technology optimization on major perform-
ance issues of a typical microarray analysis. Unexpectedly,
database content and annotation as exemplified for the
Refseq database still remains highly dynamic, which by
itself has a significant impact on microarray probe anno-
tation. Using an in silico approach based on BLAST analy-
sis combined with categorization of probes and respective
cross-annotation approaches, we demonstrate that con-
tent changes on a given microarray platform are also influ-
enced by database dynamics. Moreover, we conducted a
performance analysis combining common quality control
measures with a rank correlation metric and show that the
inclusion of real biological experiments is mandatory to
estimate the overall impact of technology improvements
on data consistency. Using the Illumina BeadChip plat-
form as an example, we demonstrate that a large change
of probe content between subsequent array versions
results in incompatible data in addition to unexpected
challenges, such as significant introduction of non-func-
tional probes. This has high impact on biological screen-
ing experiments, when signals for known marker genes
are lost (as exemplified for FOXP3). Even higher impact
can be expected for experiments within a diagnostic set-
ting, where content and technology changes will lead to
incompatible diagnostic signatures. Up to now, using the
most recent DNA microarray format has always been seen
as an advantage, since the most recent version is usually
an improvement of the old version. However, this might
only be true for the technical performance of an array.

It should be noted that we chose the Illumina BeadChip over
the Agilent arrays as an example, since the number of changes
between subsequent array generations was significantly higher
for this platform. Also, we have only used ~20,000 cross-
annotated probes for performance analysis, which is less than
50% of the content. The reason for this strictness was, in part,
based on a recent publication by Lee et al. demonstrating high
signal disagreement for probes targeting genes susceptible to
alternative splicing [37]. We therefore limited our analysis to
probes with identical targets.

As already outlined by the MAQC project, high through-
put technologies including microarrays for transcriptional
profiling require significantly more attention to quality
control and comparability than any test measuring only a
single data point [10]. The MAQC project clearly demon-
strated that comparability of microarray technology is
already high 1) when restricting the analysis to a compa-
rable set of data points (genes) and 2) when comparing
high throughput technologies developed approximately
at the same time. Here we clearly show that a next impor-
tant step in genomic sciences will be to quickly introduce
standardized general impact analyses to assess newer gen-
eration technologies. It would be desirable to introduce
the presented approach as a starting point for further

projects within the MAQC consortium. Next steps could
be to test the overall impact of the presented approach in
the larger consortium and perform such impact analyses
on a grand scale respectively when new technologies
become available again.

Conclusion
In summary, standardized methods and approaches are
critically needed to quickly address the impact of intro-
ducing upgrades of high throughput technologies on
project content.

Methods
Retrieving database releases and statistics
Human sequences for RefSeq releases 1 through 24 (Sep-
tember 2007) were obtained in two steps. First, the
human RefSeq entries for each release were extracted from
the release catalog which can be obtained from ftp://
ftp.ncbi.nih.gov/refseq/release/release-catalog. Second,
by using GI numbers and the E-utilities provided by
NCBI, fasta sequences for each entry were downloaded.
All fasta sequences for a Release were stored in a separate
file. Human sequences for Ensembl releases 21–52 (April
2004 – December 2008) were obtained as fasta sequences
from ftp://ftp.ensembl.org/pub/.

BLAST analysis of probes
For performing the BLAST analyses we used the Stan-
dalone BLAST tool (v2.2.16) distributed by NCBI ftp://
ftp.ncbi.nih.gov/blast/. Probe sequences for the different
array versions were extracted from the annotation files
provided by the manufacturers and fasta files were gener-
ated from them. For blasting probe sequences we used the
blastn program. The output file (tab-delimited) was
imported into R for further analysis. Three different
classes of hits to the databases can a be retrieved for each
probe: (1) a hit was called 'perfect' if the alignment length
was equal to the probe length and returned a 100% iden-
tity, (2) a hit was called 'imperfect' if the alignment length
was equal to the probe length and returned an identity
which was 90% < identity < 100% and (3) a hit was called
'unspecific' if the alignment length was shorter than the
probe length.

Cross-annotation of probes
By BLAST analysis a set of probes was identified with per-
fect hits to Refseq. For cross-annotation purposes three
types of probes with perfect hits have to be considered:
(1) probes showing a single perfect hit to one Refseq ID,
(2) probes with hits to more than one Refseq ID, all of
which are splice variants of the same gene and (3) probes
showing hits to more than one Refseq comprising differ-
ent genes. To ensure cross-annotation of probes only
within one probe type we chose the following cross-anno-
tation approach:
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Let list(XA) (list(YB)) be the list of Refseq IDs with a perfect
hit of probe X (Y) on arrays A (B). Then X and Y will be
cross-annotated if list (XA) = list (YB). This approach
ensures cross-annotation of probes within one probe
type.

Determination of absent or present status of individual 
genes
For comparing the absent or present status of transcripts
on the I-huBC-V1 and the I-huBC-V2 array, respectively,
the following criteria were used: A probe was called
present on a single array, if the detection p-value < 0.05. A
probe was called present within a sub-group, if it was
called present in at least 2/3 of the samples within this
sub-group. Otherwise it was called absent.

Data analysis
Raw data collection for Illumina BeadChip arrays was per-
formed using Illumina BeadStudio software. All data anal-
ysis was performed using the R Statistical language [38]
and packages from the Bioconductor [39] project. Data
sets were normalized using the quantile normalization
method implemented in the 'affy' package. Hierarchical
clustering was performed using the 'hcluster' package with
average linkage and Pearson's correlation as the linkage
resp. distance methods. Principal components analysis
was performed using the pcurve package. Pairwise scatter-
plots for investigating technical replication were per-
formed on normalized data. When performing an analysis
based on the 8,299 identical probes data from I-huBC-V1
and I-huBC-V2 was limited to these 8,299 proes and then
normalized together using quantile normalization. For all
other analyses based on cross-annotated probes, data was
normalized individually within each array version, since a
combined normalization across cross-annotated probes
(in contrast to identical probes) could potentially alter the
results.

Differentially expressed genes were calculated using Stu-
dent's t-test using the following criteria: fold change >
1.75, p-value < 0.05 and difference of mean group-signal
> 100. Variation of probes across a data set was deter-
mined using the variation coefficient for each probe
(mean/stdev) across all samples. The 100 most variable
probes were then used for further analysis.

Rank correlation metric
To examine the comparability of results from two differ-
ent array versions we performed a rank correlation com-
parison. Cross-annotated probes that were moderately to
highly expressed (signal intensity > 500) or present in one
of the sub-groups on either one array type were used for
analysis. Probes were ranked according to the following
criteria: (1) log fold change, (2) p-value and (3) difference

of means. Rank correlations were calculated using Pear-
son's correlation coefficient implemented in R.

Sample collection and preparation
Blood samples from patients with systemic sclerosis or
bacteremia, respectively, were collected in PAXgene blood
RNA tubes (BD Biosciences, Heidelberg, Germany) after
written informed consent had been obtained and follow-
ing approval by the institutional review board. CD4+

CD127low CD25+ (Treg) and CD4+ CD127+ CD25-(Tconv) T
cells were stained with CD4, CD25 and CD127 mAb (all
from BD Pharmingen) and sorted on a FACSDiva cell
sorter. Cell purity after isolation was assessed by intracel-
lular staining for FOXP3 (e-bioscience) and routinely
showed purities >95%.

RNA preparation and microarray hybridization
RNA from Treg and Tconv cells lysed in TRIzol (Invitrogen,
Karlsruhe, Germany) was isolated according to the manu-
facturer's protocol with subsequent column purification
using the RNeasy MinElute Cleanup Kit (Qiagen, Hilden,
Germany). Total RNA from PAXgene samples was pre-
pared according to the manufacturer's recommendations
including an optional DNAse digestion step. cDNA and
biotin-labeled cRNA synthesis was generated from 100 ng
total RNA using the Illumina® TotalPrep™ RNA Amplifica-
tion Kit (Applied Biosystems, Darmstadt, Germany).
cRNA (1.5 μg) was hybridized to Human-6 Expression
BeadChips V1 and V2 (Illumina, San Diego, CA) and
scanned on Illumina BeadStation 500×. All microarray
data has been submitted to Gene Expression Omnibus
(GSE16031).
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