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We describe the case of a newborn who presented with multiple organ dysfunction

syndrome (MODS) and hyperferritinemia, who eventually met criteria for hemophagocytic

lymphohistiocytosis (HLH) due to disseminated herpes simplex virus 1 (HSV-1). While

the cytokine storm abated after administration of multiple immune modulatory therapies

including dexamethasone, etoposide, intravenous immune globulin, anakinra, as well as

the interferon gamma antagonist emapalumab, multiple organ dysfunction syndrome

progressed. Care was withdrawn after 5 days. Subsequent genetic testing did not

reveal any mutations associated with familial HLH. This case highlights that even with

appropriate antiviral treatment and immune suppression, disseminated HSV is often

fatal. Further study is warranted to determine whether early immune modulatory therapy

including interferon gamma blockade can interrupt the HLH inflammatory cascade and

prevent progression of MODS.

Keywords: hemophagocytic lymphohistiocytosis, herpes simplex virus, hyperferritinemic syndrome, multiple

organ dysfunction syndrome, immune modulation

CASE REPORT

The patient is an 11-day-old female infant born at 38 weeks gestational age to a G1P0 mother. The
patient was referred to a local emergency department for increased work of breathing during her
mother’s routine postpartum evaluation. She was transported to our facility and quickly upgraded
to the pediatric intensive care unit (PICU) due to lethargy, hypothermia, respiratory distress, and
persistent bleeding. With a presumptive diagnosis of sepsis, laboratory workup including pan
cultures was obtained and empiric antimicrobial therapy initiated with ceftazidime, ampicillin,
and acyclovir at standard meningitic dosage. Initial laboratory findings were significant for
transaminitis with an alanine aminotransferase (ALT) measured at 3,174 IU/L, and a total bilirubin
level of 3.6 mg/dL. A complete blood count was only remarkable for thrombocytopenia (17,000
cells/µL). Further laboratory investigation demonstrated a severe coagulopathy with INR > 15.7
(Figure 1A) and fibrinogen <60 mg/dL. A mixed metabolic and respiratory acidosis was present
based on venous pH 7.23, pCO2 56.4 mmHg, and elevated lactate 11.1 mmol/L. Inflammatory
biomarkers revealed a slightly elevated C-reactive protein (CRP) of 5.18 mg/dL (Figure 1A) and
procalcitonin of 0.65 ng/mL. Given the degree of fulminant hepatic failure, the medical team
suspected hemophagocytic lymphohistiocytosis (HLH) and a ferritin level sent 6 h after admission
measured 191,420 µg/L (Figure 1B). The remainder of the HLH diagnostic laboratory tests were
also sent but bone marrow aspiration was not performed due to coagulopathy and general clinical
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FIGURE 1 | Effect of immune modulation on biomarkers, organ dysfunction, and cytokine levels during HSV-associated secondary HLH. The time course of clinical

laboratory values of serum C-reactive protein (CRP), creatinine (Cr), and INR levels (A), ferritin levels (B), as well as the timing of the administration of the immune

suppressive agents is shown (C). While IL-6 and TRAIL levels fell precipitously after admission, CXCL9 and IL-18 levels fell more gradually (D) (*Actual INR resulted as

>15.7).
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instability. Based on the extreme hyperferritinemia, the patient
was presumptively diagnosed with HLH while the rest of the
diagnostic workup continued.

Immune modulation with dexamethasone was begun 8 h
after admission (Figure 1C). Given the medical team’s previous
experience with a very similar case (1), and the recent U.S.
Food and Drug Administration (FDA) approval of emapalumab
(human anti-IFN-γ antibody, SOBI, Sweden), for the treatment
of primary HLH (2), the decision was made to administer
emapalumab to block the inflammatory cascade. While waiting
for emapalumab to arrive, etoposide was administered as per
HLH-94 treatment protocol (3).

The emapalumab study protocol for primary HLH called for
an initial dose of 1 mg/kg, followed by increased subsequent
dosages of 3, 6, and up to 10 mg/kg. Extreme ferritin elevation
has been significantly correlated with monokine induced by
gamma interferon (MIG/CXCL9) levels (4). We therefore chose
a moderate starting dose of emapalumab (6 mg/kg), which
was administered 35 h after admission. Additional immune
modulatory therapies were given including anakinra and
intravenous immune globulin. Unfortunately, MODS progressed
as evidenced by anuria and a rising serum creatinine (Figure 1A),
as well as coagulopathy relatively refractory to the administration
of fresh frozen plasma (Figure 1A), presumably due to loss of
liver synthetic function and ongoing disseminated intravascular
coagulation. The patient developed extreme fluid overload but
was deemed ineligible for hemodialysis catheter placement due
to small size (2.5 kg). On hospital day 6, after discussing the
likely futility of ongoing treatment, parents requested that care be
directed toward comfort measures only. She was compassionately
extubated and expired in her mother’s arms. Serum testing for
herpes simplex virus 1 (HSV-1) by polymerase chain reaction
returned positive shortly after the patient succumbed to her
illness. The remainder of infectious workup was negative.

The patient initially fulfilled four of eight diagnostic criteria
for HLH (3): fever (temperature instability), cytopenias
(hemoglobin and platelets), hypofibrinogenemia, and
hyperferritinemia. The soluble interleukin (IL)-2 receptor
level measured 4,306 pg/mL (reference range 175.2–858.2
pg/mL), which met the five criteria threshold for diagnosing
HLH. Circulating natural killer (NK) cell numbers were too
low to reliably measure NK cell activity (5). Subsequent genetic
analysis did not reveal any variants of clinical significance for the
genes associated with familial HLH. Therefore, final diagnosis
was secondary HLH due to acute primary disseminated HSV-1
infection. The final diagnosis and genetic testing results, as well
as implications for future pregnancy planning, were discussed
with the patient’s family.

Additional cytokine and chemokine analysis was performed
postmortem as the patient was enrolled in the authors’ own
Institutional Review Board (IRB)-approved observational
study of sepsis immune phenotypes. Our aggressive immune
modulatory therapies (Figure 1C) may have decreased IL-6
levels, as they fell precipitously from 11,713 to 289 pg/mL

Abbreviations:HLH,Hemophagocytic lymphohistiocytosis; HSV, Herpes simplex

virus; MODS, Multiple organs dysfunction syndrome.

following the initiation of dexamethasone and etoposide
(Figures 1C,D). In contrast, IL-18, which has been associated
with macrophage activation syndrome (6), remained modestly
elevated and relatively unaffected (Figures 1C,D). CXCL9,
a serum biomarker of IFN-γ activity (7), was markedly
elevated at 39,184 pg/mL, then gradually decreased with
immunosuppressive therapy (Figures 1C,D). Lastly, we
measured TNF-related apoptosis-inducing ligand (TRAIL) as
a marker of immune response to viral infection. TRAIL levels
were elevated at 948 pg/mL and demonstrated a robust decrease
similar to IL-6 after suppressive therapy (Figures 1C,D).

DISCUSSION

In this case, we attempted to use the IFN-γ antagonist
emapalumab to quell the pathogenic inflammatory cascade in
a critically ill infant with secondary HLH due to disseminated
HSV-1 infection. We initially believed this to be the first
described use of emapalumab for secondary HLH. However, Dr.
Jordan’s group published the case of a 20-month-old boy with
secondary HLH initially due to acute Epstein-Barr virus (EBV)
infection, who subsequently developed multiple other viral and
fungal infections after standard HLH-94 therapy (8). That patient
was not enrolled in the existing emapalumab treatment trial due
to multiorgan failure, but was instead treated using an emergency
investigational new drug application as a last resort. While that
patient survived, our patient ultimately succumbed toMODS and
fulminant liver failure. Unfortunately, her small size limited our
ability to provide dialysis as bridging support for the possibility
of liver transplantation (9). We chose to administer etoposide
as per the HLH-94 treatment protocol. Etoposide likely serves
to deplete activated T and NK cells (10). However, etoposide
treatment can be hepatotoxic (11) and neonatal dosing (12),
especially in the setting of liver failure (13), is difficult. The use
of more precise immunomodulatory therapies with fewer adverse
effects on organ function would provide a safer treatment strategy
for patients with MODS.

Disseminated HSV is commonly associated with immune
deficiencies, as cytotoxic NK cells and T lymphocytes are
crucial for the host immune response to HSV infection (14).
This case highlights that in neonates, even with appropriate
early antiviral treatment and immune suppression, disseminated
HSV continues to have poor outcomes (15). Neonates have
a quantitative immune deficiency due to low numbers of
cytotoxic lymphocytes (16) and increased regulatory T cells (17).
The relationship between HSV infection and HLH has been
increasingly recognized (1, 18–20); however, controversy remains
about whether this presentation truly represents HLH or is
an “HLH mimic.” Upon presentation, the patient was already
in fulminant hepatic failure, so the authors decided to treat
with immune suppression in an effort to mitigate further organ
damage. However, the exact pathophysiologic role of IFN-γ in
this situation is still not clear. Some studies have demonstrated
that IFN-γ is helpful in the initial clearance of HSV through
synergy with type I IFNs (21, 22). However, other studies have
shown that IFN-γ governs a limited role in the control of HSV
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and HSV pathogenesis (23, 24). Our use of emapalumab was
based on the known role of IFN-γ in HLH.

IFN-γ was first implicated in the pathogenesis of HLH
via the murine model of type 2 familial HLH: lymphocytic
choriomeningitis virus (LCMV) infection of perforin-deficient
(prf1−/−) mice (25, 26). This preclinical work led to the
development and trial of emapalumab for primary HLH (2).
The sources of IFN-γ secretion during HLH are antigen-specific
CD8+ and CD4+ T cells as well as NK cells. This IFN-γ
stimulates the activation of macrophages, and increases antigen
presentation by both hematopoietic and non-hematopoietic cells.
Fortunately, the adverse effect profile of emapalumab is minimal
(2). Therefore, targeted blockade of IFN-γwith emapalumab is an
attractive therapeutic strategy to block the inflammatory cascade
in an attempt to avoid cytotoxic chemotherapy in the setting
of MODS.

The decision to block IFN-γ may provide both benefits and
drawbacks in a patient with a disseminated viral infection. If
IFN-γ plays a role in suppressing HSV infection, blocking this
pathway in the setting of an active viral infection could have
deleterious effects. A large body of preclinical studies have
examined the role of IFN-γ and IFN-γ receptor signaling in
HSV infections in mice. Most of these studies examined HSV
encephalitis and ocular infection, some examined vaginal (27)
or mucosal infection (28), and a limited number investigated
disseminated HSV infection (24). On one hand, several studies
indicate that IFN-γ suppresses HSV (27), likely through synergy
with type I IFNs acting to block HSV replication (21, 22) and
reactivation (29). IFN-γmay also protect neurons from apoptosis
(30). However, a large number of murine studies indicate that
IFN-γ plays only a limited role in HSV systemic spread (24) and
viral clearance (23, 28, 31–33). The role of IFN-γ during HSV
is likely nuanced and depends on multiple factors including the
mouse strain background and the virus subtype.

IFN-γ may not be the sole immune activator driving HLH
pathogenesis. Another established model of HLH, murine
cytomegalovirus (MCMV) infection of BALB/c mice, is not
dependent upon IFN-γ (34). Additionally, sequential toll-
like receptor (TLR) stimulation recapitulates HLH in mice
by inducing a unique metabolic profile in macrophages but
does not require IFN-γ. In another model of MAS/HLH
(35), repeated TLR9 stimulation of C57BL/6 mice with CpG
oligodeoxynucleotides induces HLH, though the full disease
phenotype is only seen with blockade of the regulatory cytokine
IL-10 (36). Interestingly, in the mouse cytomegalovirus (MCMV)

model of herpes infection, IL-10 is chiefly produced by NK cells
in the liver and provides protection from collateral injury by
modulating the inflammatory response associated with MCMV
infection (37, 38). One therapeutic avenue that was not explored
in this case is the janus-associated kinase (JAK) inhibitor,
ruxolitinib, which was shown to be superior to IFN-γ blockade
in both primary and secondary mouse models of HLH due
to its suppressive effects on activated T cells and neutrophils
(39). Ruxolitinib, in addition to dexamethasone and etoposide,
is being investigated for the treatment of newly diagnosed or
refractory HLH.

Secondary HLH is likely a common final pathway of multiple
disease processes. In this case, secondary HLH was the result
of disseminated HSV infection. While emapalumab was not
able to rescue this patient, perhaps earlier IFN-γ blockade, or
other immune suppressive therapy, may have mitigated some
of the organ damage without injurious side effects. Further
investigation into whether early administration of targeted
immune modulators for secondary HLH is warranted.
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