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Abstract

Sporotrichosis is a chronic subcutaneous mycosis caused by Sporothrix species, of which

the main aetiological agents are S. brasiliensis, S. schenckii, and S. globosa. Infection

occurs after a traumatic inoculation of Sporothrix propagules in mammals’ skin and can fol-

low either a classic route through traumatic inoculation by plant debris (e.g., S. schenckii

and S. globosa) or an alternative route through zoonotic transmission from animals (e.g., S.

brasiliensis). Epizootics followed by a zoonotic route occur in Brazil, with Rio de Janeiro as

the epicenter of a recent cat-transmitted epidemic. DNA-based markers are needed to

explore the epidemiology of these Sporothrix expansions using molecular methods. This

paper reports the use of amplified-fragment-length polymorphisms (AFLP) to assess the

degree of intraspecific variability among Sporothrix species. We used whole-genome

sequences from Sporothrix species to generate 2,304 virtual AFLP fingerprints. In silico

screening highlighted 6 primer pair combinations to be tested in vitro. The protocol was

used to genotype 27 medically relevant Sporothrix. Based on the overall scored AFLP mark-

ers (97–137 fragments), the values of polymorphism information content (PIC = 0.2552–

0.3113), marker index (MI = 0.002–0.0039), effective multiplex ratio (E = 17.8519–35.2222),

resolving power (Rp = 33.6296–63.1852), discriminating power (D = 0.9291–0.9662),

expected heterozygosity (H = 0.3003–0.3857), and mean heterozygosity (Havp = 0.0001)

demonstrated the utility of these primer combinations for discriminating Sporothrix. AFLP

markers revealed cryptic diversity in species previously thought to be the most prevalent

clonal type, such as S. brasiliensis, responsible for cat-transmitted sporotrichosis, and S.

globosa responsible for large sapronosis outbreaks in Asia. Three combinations (#3 EcoRI-

FAM-GA/MseI-TT, #5 EcoRI-FAM-GA/MseI-AG, and #6 EcoRI-FAM-TA/MseI-AA) provide

the best diversity indices and lowest error rates. These methods make it easier to track

routes of disease transmission during epizooties and zoonosis, and our DNA fingerprint

assay can be further transferred between laboratories to give insights into the ecology and
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evolution of pathogenic Sporothrix species and to inform management and mitigation strate-

gies to tackle the advance of sporotrichosis.

Author summary

Sporotrichosis is a subacute or chronic infection characterized by nodular lesions of the

(sub)cutaneous tissues and adjacent lymphatics. Sporothrix brasiliensis, S. schenckii, and S.

globosa are the main agents of sporotrichosis in humans and other mammals. Sporothrix
propagules gain entrance by traumatic implantation in the skin following two main routes

of infection, which include animal transmission (e.g., cat-cat and cat-human) and plant

origin. In recent years there has been a significant increase in the number of atypical and

more severe cases of sporotrichosis, along with the expansion of the area of occurrence of

Sporothrix species, such as the highly virulent S. brasiliensis. We investigated the useful-

ness of the AFLP technology, a DNA fingerprinting technique, which is based on the

selective amplification of genomic restriction fragments by PCR to explore genetic diver-

sity and population structure in Sporothrix during ongoing outbreaks. We report six

highly effective sets of AFLP markers to discriminate Sporothrix at species and strain level,

thus allowing tracking the spread of sporotrichosis. Adding molecular data in an outbreak

response context can reveal better ways to improve public policies to contain the advance

of sporotrichosis, by early detection, response, intervention, and follow-up.

Introduction

Sporothrix (Ascomycota: Ophiostomatales) comprises 53 species reported in the literature [1].

Within a genus showing an essentially environmental core associated with plant debris, decay-

ing wood, insects, and soil, only a few members have emerged in recent years with the ability

to infect warm-blooded hosts [1]. Sporothrix brasiliensis, S. schenckii, and S. globosa are the

main etiological agents of sporotrichosis in humans and other mammals. To a lesser extent,

the disease is also caused by members of the S. pallida complex, such as S. chilensis, S. mexi-
cana, and S. pallida s. str. [2, 3], or members of the S. stenoceras complex [4] which are usually

non-virulent to mammals.

Sporotrichosis is a subacute or chronic fungal infection characterized by nodular lesions of

the cutaneous or subcutaneous tissues and adjacent lymphatics, which suppurate, ulcerate and

drain [5, 6]. Sporothrix propagules gain entrance by traumatic implantation in the skin follow-

ing two main routes of infection, which include animal transmission (e.g., cat-cat and cat-

human) and plant origin (i.e., classic sapronosis). In humans, cutaneous lesions develop at the

site of inoculation, and dissemination can occur through the lymphatics during the first 2–3

weeks of infection [7]. Cats are highly susceptible to Sporothrix, and the most common clinical

manifestations include multiple skin nodules and ulcers, often associated with nasal mucosa

lesions and respiratory signs [8–11], which can lead to the development of severe forms that

are difficult to treat and may lead to the death of animals [12, 13]

Infections transmitted via either animal or plant vectors usually escalate to outbreaks or epi-

demics [14]. Transmission routes of Sporothrix vary among species and host populations.

Understanding how transmission spreads following host shifts is of major importance when

considering the emergence of Sporothrix in humans and animals. For example, S. schenckii
and S. globosa are cosmopolitan pathogens that appear to be widespread environmentally
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following traumatic inoculation of contaminated plant material [14]. This route affects specific

occupational populations, including agricultural workers, florists and gardeners, and was

termed “Gardner’s disease” [15] or reed toxin [16]. However, in the alternative route the highly

virulent offshoot S. brasiliensis has spread successfully via animal horizontal transmission or

zoonotic transmission in South America, so it seems that the sapronotic route plays a minor

role during outbreaks caused by S. brasiliensis. Shifts from plant to animal transmission have

led to the emergence of sporotrichosis in Brazil, and host jumping is an important feature

among the Ophiostomatales, distinguishing cat-transmitted sporotrichosis as an occupation-

independent disease [14].

The disease has been reported around the world, mainly in areas with high moisture and

temperature [17]. The global burden of sporotrichosis is>40,000 cases [18], and the regions

where the disease is endemic include Latin America (especially Brazil, Colombia, Mexico,

Peru, and Venezuela) [19], Asia (especially China, India, and Japan) [20] and Africa [21]. In

Brazil, recent epidemics are peculiar, especially in the South and Southeast regions, with the

potential for zoonotic transmission of S. brasiliensis, nearly always related to cats as the main

source of fungal infection for humans, dogs and other cats [22].

In Brazil, cases of sporotrichosis in humans and animals have increased significantly in

recent years. The emergence of S. brasiliensis is associated with the appearance of atypical and

more severe clinical manifestations in humans [23, 24]. This phenomenon is recent, since for

decades feline sporotrichosis in Brazil occurred only as sporadic, self-limiting clusters [25, 26].

However, the current outbreak of feline sporotrichosis due to S. brasiliensis in South and

Southeast Brazil has risen to epidemic status, creating a public health emergency of interna-

tional concern because of the potential of zoonotic transmission [14, 22, 27]. Remarkably, S.

brasiliensis has been showing spatial expansion, with a wave of expansion tracking northwards

through Northeast Brazil over the last five years [1].

Tracking the movement of Sporothrix during outbreaks to understand the epidemiological

processes driving population expansion is needed to understand epidemic sporotrichosis.

However, researchers lack powerful genome-wide markers with which to address the epidemi-

ology of Sporothrix. The use of amplified fragment length polymorphisms (AFLP) is one of the

most informative and cost-effective DNA fingerprinting technologies applicable for any

organism, without the need for prior sequence knowledge [28]. This technique provides an

effective means of genotyping using a highly discriminatory panel of genome-wide markers,

which is helpful in many areas of population genetics [29]. In fungi, AFLP markers have been

successfully applied in studies of Cryptococcus spp., Candida spp., Histoplasma capsulatum,

Aspergillus fumigatus, Fusarium oxysporum, Phytophthora pinifolia, Monilinia fructicola, Fon-
secaea spp. [30–38] and Sporothrix spp., being considered appropriate for investigating genetic

variation [20, 39, 40]. However, in some cases, failure to recover the correct tree topology dis-

playing paraphyletic groups [20] associated with the description of no correlation between

AFLP genotypes and the geographical origins of isolates [39] or clinical pictures [39, 40] led us

to improve the design of these genome-wide markers, aiming finer-scale epidemiological

patterns.

AFLP recognizes genetic differences between any two fungal genomes using a combination

of restriction enzyme digestion of genomic DNA and PCR amplification. A pair of AFLP

primers is sufficient to generate complex DNA fingerprints, and different sets of primers will

yield unique profiles. Selectivity is achieved by designing primers that anneal specifically to the

adaptor and the recognition site and carry one or more arbitrary chosen nucleotides at the 30

end, which reduces the number of genomic fragments being amplified and analyzed. By using

AFLP, polymorphisms can be detected by (i) a mutation in the restriction site for enzymes, (ii)

a mutation in the sequence corresponding to the selective bases (primer extension), and (iii) a
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deletion/insertion within the amplified fragment. To this end, we took advantage of Sporothrix
genomes available in the GenBank to optimize, through extensive in silico analysis, the AFLP

technique by targeting selective bases that can best answer questions related to epidemiology,

genetic diversity and population structure in Sporothrix species. Once developed, the use of

AFLP patterns of medically relevant Sporothrix as well as environmental species was compared

to determine their genetic relationship and to explore levels of intraspecific diversity, with a

focus amongst species involved in outbreaks such as S. brasiliensis. To achieve higher resolu-

tion, different primer combinations were tested in vitro to determine the best combination to

be used for a focal Sporothrix species. Here, we report new AFLP primer combinations that

will be used to test epidemiological and evolutionary hypotheses in Sporothrix and as high-

throughput technology for assessing the degree of intraspecific variability in Sporothrix species

during ongoing outbreaks of this disease.

Methods

Ethics approval

All Sporothrix strains used in this study belong to the culture collection of the Federal Univer-

sity of São Paulo (UNIFESP), Paulista School of Medicine (EPM), and were described earlier

[41–44]. The protocol was approved by the Ethics in Research Committee of the Federal Uni-

versity of São Paulo under protocol number 2443270218.

Fungal strains

This study included 27 Sporothrix isolates (S. brasiliensis, n = 9; S. schenckii, n = 8; S. globosa,

n = 6; S. mexicana, n = 2; S. chilensis, n = 1, and S. pallida n = 1), obtained from clinical lesions

of patients with varying degrees of disease severity (n = 20), from animals (n = 3) or from

environmental sources (n = 4). The isolates were identified down to species level by compari-

son with the descriptions presented by Rodrigues et al. [41–44], and were stored at room tem-

perature in slant cultures on Sabouraud dextrose agar (Difco Laboratories, Detroit, MI, USA)

[45].

DNA extraction

Total DNA was obtained and purified directly from 14-day-old monosporic colonies on

Sabouraud slants by following the Fast DNA kit protocol (MP Biomedicals, Irvine, CA, USA),

as previously described [44]. All isolates were characterized down to species level using a Spor-
othrix species-specific PCR targeting the gene encoding calmodulin, as described before [46].

Reference strains representing the main phylogenetic groups in Sporothrix were included in all

experiments (Table 1).

Phylogenetic and haplotype analysis

Genetic relationships for the calmodulin encoding gene sequences (exons 3–5) were investi-

gated by phylogenetic analysis using the neighbor-joining (NJ), maximum likelihood (ML),

and maximum parsimony (MP) methods. Phylogenetic trees were constructed with MEGA7

[49]. Evolutionary distances were computed using the Kimura 2-parameter distance [50] (for

NJ and ML analysis), and the robustness of branches was assessed by bootstrap analysis of

1,000 replicates [51].

The nucleotide (π), as well as the haplotype (Hd) diversities [52], were estimated using

DnaSP version 6 [53]. Haplotype network analysis was carried out using the median-joining

method [54], implemented in NETWORK v4.6.1.0 (Fluxus Technology, Suffolk, UK), and was
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used to visualize differences and diversity among Sporothrix species sequence data. Sites con-

taining gaps and missing data were not considered in the analysis.

In silico AFLP analyses

Whole-genome sequences of nine Sporothrix isolates (Table 2) were analyzed in silico to pre-

dict AFLP markers of corresponding lengths (50–500 bp) that might be generated in vitro dur-

ing the standard AFLP procedure. In silico AFLP analyses were performed using AFLPinSilico

[55] and ISIF (In Silico Fingerprinting) [56]. Briefly, Sporothrix genomes were retrieved from

the GenBank and in silico digested with EcoRI and MseI restriction enzymes. Afterward, a

total of 256 combinations of two selective bases (EcoRI+2 and MseI+2) were used to mine a

subset of selective fragments. Finally, to properly simulate the AFLP procedure, we determined

the length of all the peaks of the in silico AFLP profile, with the addition of the adaptor and

primer lengths. The number and size of the fragments were used to construct a matrix of frag-

ments and data were visualized using heatmaps. Hierarchical cluster analysis of in silico AFLP

Table 1. Strains, species, source, origin, haplotypes, and GenBank accession numbers of Sporothrix spp. isolates used in this study.

Isolate code Other Code Species Source Origin CAL hapa GenBank Reference

Ss09 - S. brasiliensis Human Brazil H1 KC693833 [16]

Ss43 - S. brasiliensis Human Brazil H2 JX077112 [13]

Ss53 CBS 132989 S. brasiliensis Feline Brazil H1 KC693846 [16]

Ss55 - S. brasiliensis Human Brazil H1 KC693847 [16]

Ss94 - S. brasiliensis Human Brazil H1 KF943664 [15]

IPEC 16919 - S. brasiliensis Human Brazil H1 AM116898 [1–3]

IPEC 16490T CBS 120339 S. brasiliensis Human Brazil H1 AM116899 [1–3]

Ss256 CBS 133015 S. brasiliensis Feline Brazil H1 KC693889 [16]

Ss261 - S. brasiliensis Human Brazil H1 KC693894 [16]

Ss01 CBS 132961 S. schenckii Feline Brazil H6 KC693828 [16]

Ss03 CBS 132963 S. schenckii Human Brazil H6 JX077117 [13]

Ss04 - S. schenckii Human Brazil H6 JX077118 [13]

Ss36 - S. schenckii Human Brazil H7 KC693843 [16]

Ss58 - S. schenckii Human Brazil H8 KF943646 [15]

Ss61 - S. schenckii Soil Brazil H9 KF561244 [24]

Ss137 - S. schenckii Human Brazil H7 KF574462 [24]

Ss143 - S. schenckii Human Brazil H10 JQ041906 [13]

Ss06 CBS 132922 S. globosa Human Brazil H3 JF811336 [13]

Ss41 CBS 132923 S. globosa Human Brazil H4 JF811337 [13]

Ss49 CBS 132924 S. globosa Human Brazil H4 JF811338 [13]

FMR 8600T CBS 120340 S. globosa Human Spain H5 AM116908 [47, 48]

FMR 8595 CBS 130104 S. globosa Human Spain H4 AM116905 [47, 48]

Ss236 CBS 132925 S. globosa Human Brazil H4 KC693877 [47, 48]

FMR 9107 CBS 120342 S. mexicana Vegetal Mexico H11 AM398392 [47, 48]

FMR 9108T CBS 120341 S. mexicana Soil Mexico H11 AM398393 [47, 48]

FMR 8803 - S. pallida Insect China H12 AM398998 [47, 48]

Ss469 CBS 139891 S. chilensis Human Chile H13 KP711815 [14]

aCalmodulin haplotype; IPEC, Instituto de Pesquisa Clı́nica Evandro Chagas, Fiocruz, Brasil; FMR, Facultat de Medicina I Cièncias de La Salut, Reus, Spain; CBS,

culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; All “Ss” strains belong to the culture collection of Federal University of São

Paulo (UNIFESP), Paulista School of Medicine (EPM).

https://doi.org/10.1371/journal.pntd.0008330.t001
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profiles was performed using Heatmapper [57], based on average linkage and Euclidean dis-

tance applied to each row-cluster.

Genotyping by AFLP fingerprinting

Digestion of DNA, adapter ligation, non-selective, and selective amplifications were carried

out in vitro as described previously by Vos et al. [64] with some modifications. Briefly, 200 ng

of Sporothrix genomic DNA was digested by EcoRI and MseI (New England Biolabs, Ipswich,

MA) and ligated to EcoRI and MseI adapters simultaneously (Integrated DNA Technologies,

USA) [64]. A preselective amplification was performed with EcoRI+0 and MseI+0 primers

[64]. Fluorescent AFLP was done with 6-carboxyfluorescein (FAM; blue) fluorescent dye-

labeled EcoRI primer, with two selective bases (50-GAC TGC GTA CCA ATT CNN-30), and

unlabeled MseI primer with two selective bases (50-GAT GAG TCC TGA GTA ANN-30). Six

different combinations were chosen to evaluate the potential for genetic characterization of

clinical Sporothrix isolates (combination #1 EcoRI-GA/MseI-AA; #2 EcoRI-AA/MseI-AA; #3

EcoRI-GA/MseI-TT; #4 EcoRI-AA/MseI-TT; #5 EcoRI-GA/MseI-AG; #6 EcoRI-TA/

MseI-AA). All oligonucleotides were supplied by Integrated DNA Technologies (IDT, San

Diego, CA, USA). PCR-amplified AFLP fragments were resolved by capillary electrophoresis

with an ABI3100 Genetic Analyzer alongside a LIZ500 internal size standard (Applied Biosys-

tems. Foster City, CA, USA) at the Human Genome and Stem Cell Research Center Core

Facility (University of São Paulo, São Paulo, Brazil) under previously described conditions. At

least two independent electropherograms for each combination of selective primers were

imported in BioNumerics v7.6 (Applied Maths, St. Martens-Latem, Belgium) and analyzed to

verify the ability to accurately reproduce results.

The selection of the amplified restriction products was automated, and only strong and

high-quality fragments were considered. To minimize scoring errors, each electropherogram

was carefully inspected to exclude doubtful peaks, setting a minimum threshold at 100 relative

fluorescent units, and considering only peaks with sizes between 50 and 500 base pairs. The

size of the AFLP fragments was determined by BioNumerics v7.6. Peak patterns were con-

verted to the dominant presence (1) or absence (0) at probable fragment positions.

Relationships among Sporothrix specimens and taxa were evaluated employing distance-

based methods, as recommended for dominant anonymous markers. Therefore, pairwise

genetic distances were calculated using the band-based Jaccard’s similarity coefficient com-

bined with a "fuzzy logic" option in BioNumerics v7.6. Dendrograms were created according

to the unweighted pair group mean arithmetic method (UPGMA). Branch resampling support

Table 2. Genomes of Sporothrix species retrieved from NCBI Genome database (https://www.ncbi.nlm.nih.gov/genome) for in silico analysis.

Strain Species Source Origin INSDC1 (WGS) Total length BioProjects Reference

5110 S. brasiliensis Feline Brazil AWTV01 33.2 Mb PRJNA218075 [58]

ATCC 58251 S. schenckii Human USA AWEQ01 32.5 Mb PRJNA217088 [59]

1099–18 S. schenckii Human USA AXCR01 32.5 Mb PRJNA218070 [58]

SsMS1 S. schenckii Human Colombia PGUU01 32.6 Mb PRJNA401003 [60]

SsEM7 S. schenckii Human Colombia NTMI01 32.8 Mb PRJNA401003 [60]

CBS 120340 S. globosa Human Spain LVYW01 33.4 Mb PRJNA315855 [61]

SS01 S. globosa Human China LVYX01 33.4 Mb PRJNA315862 [61]

SPA8 S. pallida Soil Spain JNEX02 37.8 Mb PRJNA248334 [62]

RCEF 264 S. insectorum Insect China AZHD01 34.7 Mb PRJNA72727 [63]

1International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org/)

https://doi.org/10.1371/journal.pntd.0008330.t002
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was conducted using the cophenetic correlation coefficient and the standard deviation was

used to express the consistency of a given cluster, which determines the correlation between

the dendrogram-derived similarities and the matrix similarities.

To assess the existence of topological congruence between any two AFLP dendrograms or

between AFLP dendrograms and DNA-sequencing phylogeny, and the associated confidence

level, Newick trees were used to calculate the congruence index (Icong), as described by de

Vienne and colleagues [65], based on maximum agreement subtrees (MAST).

The minimum spanning tree (MST) model was used to investigate the evolutionary rela-

tionships among all the observed genotypes of medically relevant Sporothrix species. AFLP-

derived MSTs were executed in BioNumerics v7.6 with AFLP data after conversion into a

band matching table. When a set of distances is given between n entries, a minimum spanning

tree is the tree that connects all entries in such a way that the summed distance of all branches

of the tree is the shortest possible [66]. All figures were exported and treated using Corel Draw

X8 (Corel, Ottawa, Canada).

Reproducibility of AFLP markers

Reproducibility of AFLP fragment profiles was assessed by repeated digestion of DNA, adapter

ligation, non-selective and selective amplification of all individuals genotyped per species [67].

A single error rate was calculated for all the samples analyzed. Error rates were determined as

the percentage of loci that were mismatched between the replicate pairs [68].

Genetic diversity and statistical analysis

To evaluate which of the six AFLP primer combinations were the most informative, the follow-

ing polymorphism indices for dominant markers were calculated: polymorphic information

content (PIC) [69], expected heterozygosity (H) [70], effective multiplex ratio (E) [71], arith-

metic mean heterozygosity (Havp) [71], marker index (MI) [71, 72], discriminating power (D)

[73], and resolving power (Rp) [74].

Dimensioning analysis

Principal component analysis (PCA) and multi-dimensional scaling (MDS) were used as alter-

native grouping methods, producing three-dimensional plots in which the entries were spread

according to their relatedness. Dimensioning techniques were executed with AFLP data after

conversion into a band matching table. Automated band matching was performed on all fin-

gerprint entries within the comparison, considering minimum profiling of 5%, with the opti-

mization and position tolerances for selecting bands set to 0.10%. Default settings were applied

for PCA and MDS in BioNumerics v7.6, subtracting the average for characters [38]. All Figs

were exported and treated using Corel Draw X8.

Results

We selected 27 well-characterized Sporothrix isolates and used calmodulin to explore genetic

diversity and intraspecific variability in our dataset. The aligned CAL sequences were 623 bp

long, including 437 invariable characters, 167 variable parsimony-informative sites (26.8%),

and 19 singletons. The clade of pathogenic Sporothrix species was well supported with high

bootstrap values (100), including S. brasiliensis (clade I), S. schenckii (clade II), and S. globosa
(clade III) (Fig 1A). Comparison of CAL sequences revealed significant polymorphisms

among S. schenckii isolates (π = 0.00908), whereas sequences from S. brasiliensis (π =

0.00000) and S. globosa (π = 0.00112) were much less diverse. The haplotype diversity was
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assessed using the DnaSP software [53], which allowed identifying 13 distinct haplotypes. The

overall values of haplotype (Hd = 0.8889) and nucleotide diversities (π = 0.08680) were high

for Sporothrix. However, when considering only S. brasiliensis or S. globosa just two

(Hd = 0.2222) and three (Hd = 0.6000) haplotypes were found, respectively, suggesting that

CAL works as a suitable barcoding marker for diagnosis but may cover cryptic diversity in

these species (Fig 1B). The Simpson index of diversity [75] was calculated as 0.2279.

To test the hypothesis of cryptic diversity in S. brasiliensis and S. globosa, we developed

AFLP markers to explore genetic variation in these emerging agents. The first step in our strat-

egy involved the in silico characterization of Sporothrix genomes deposited with NCBI, com-

prising medically relevant members as well as environmental species. AFLPinSilico and ISIF

were used to scan restriction sites for EcoRI and MseI. Afterward, a subset of modified geno-

mic fragments was created by adding EcoRI and MseI adaptors, and an enriched population of

modified genetic fragments was chosen based on two selective bases for EcoRI+2 and MseI+2

primers. Therefore, 256 possible combinations were investigated for nine genomes, producing

a matrix of 2,304 virtual AFLP profiles, which are presented as a heatmap in Fig 2. A remark-

able diversity of fragments was generated, which ranged from 0–56 and 0–62 in 256 combina-

tions tested in AFLPinSilico and ISIF, respectively (Fig 3, S1 Table). Sporothrix pallida

Fig 1. Phylogenetic tree (A), inferred using the maximum likelihood method and Kimura 2-parameter model of the calmodulin sequences of 27 strains of Sporothrix.

Numbers close to the branches represent ML/NJ/MP respectively. Bootstraps higher than 95 based on 1000 replications are represented in bold branches. Haplotype

network of Sporothrix (B) was done using the median-joining method. The circumference size is proportional to the frequency of haplotype. The median vectors are

displayed by black dots and represent hypothetical unsampled or extinct haplotypes in the population.

https://doi.org/10.1371/journal.pntd.0008330.g001
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presented the largest genome core (~37.8 Mb) and it was represented in our in silico scan by

the largest number of AFLP markers in 62.5–70.7% combinations (Pearson correlation = 0.861,

r2 = 0.7421, P = 0.00283) (Fig 3).

Fig 2. Heatmap of fragments generated by in silico analyses with 256 combinations of selective primer pairs in two programs–AFLPinSilico (A) and ISIF (B)–for

nine genome sequences of Sporothrix retrieved from the GenBank. The highest numbers of fragments are represented by red shading and the lower by blue

shading.

https://doi.org/10.1371/journal.pntd.0008330.g002
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Among all Sporothrix species evaluated, S. brasiliensis and S. globosa had little genetic diver-

sity (Fig 1B), so the diversity of fragments generated for these emerging species were funda-

mental for the selection of putative combinations (Fig 3A). Therefore, we highlighted six

combinations (#1–6) to be tested in vitro, which showed the highest number of polymorphic

markers (i.e., number and size) with the potential to be used to speciate Sporothrix and explore

intraspecific variation (S2 Table).

A total of 685 loci were amplified using the selective primers EcoRI+2 and MseI+2, among

them 135, 137, 106, 111, 99 and 96 polymorphic fragments, for combinations #1 to #6, respec-

tively. The averages of fragments varied per isolate for the six combinations between 19.5–32.8

for S. brasiliensis, 19.3–40.6 for S. schenckii, 15.6–31.5 for S. globosa, 14.5–41.5 for S. mexicana,

23–44 for S. pallida and 16–45 for S. chilensis. The details of marker attributes for different

AFLP primer combinations are given in Table 3.

The PIC determined for each primer pair was both comparable between species and

between markers. Overall, PIC values ranged from 0.2552 to 0.3145, and all markers presented

high discrimination power. The highest PIC value was observed for primer combination 5 and

the lowest was recorded for primer combination 6, indicating good diversity among the stud-

ied Sporothrix. Interestingly, the highest PIC value for S. globosa was obtained in combination

6 (0.3714), demonstrating the potential use of this primer pair to explore diversity in S. globosa.

In general, S. brasiliensis and S. schenckii showed slightly higher values than S. globosa
(Table 3).

Marker index (MI) as a feature of marker diversity representing the product of the effective

multiplex ratio (E) and the arithmetic mean heterozygosity (Havp) was also calculated for all

the primer combinations. The MI values ranged from 0.002 to 0.0039. The highest value

(0.0039) was obtained with primer pair 5 and the lowest values (0.002) for primer pair 6. A

positive correlation was observed betweenMI and PIC values (Pearson correlation = 0.9950171,

r2 = 0.9901, P = 0.00001). The resolving power, Rp, is a feature that indicates the discrimina-

tory potential of the marker to distinguish between large numbers of genotypes. Rp ranged

from 33.6296 to 63.1852. The highest value (63.1852) was scored with primer combination 1

and the lowest (33.6296) for primer combination 6. The Rp values were not positively

Fig 3. A total of 256 combinations of selective EcoRI+2 and MseI+2 primer pairs were employed to generate 2,304 virtual AFLP profiles AFLPinSilico (A) and ISIF (B).

The dots located on the left X-axis represent the number of fragments generated for each combination. The bold bar represents the average of fragments generated for all

combinations. The white dots located on the right X-axis represent the genome size, estimated by whole genome sequencing.

https://doi.org/10.1371/journal.pntd.0008330.g003
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correlated with MI (Pearson correlation = 0.4797601, r2 = 0.2302, P = 0.335). Nevertheless,

combination 6 provided the highest values of Rp (18.3333) and MI (0.0361) for S. globosa.

Table 3. Summary of polymorphism statistics calculated for different pairs of selective primers (EcoRI+2 and MseI+2) of Sporothrix species.

#1 EcoRI-GA/MseI-AA

Species Scored bands H PIC E Havp MI D Rp Error %

S. brasiliensis 62 0.4991 0.3745 29.6667 0.0009 0.0265 0.7715 21.3333 1.12

S. schenckii 84 0.4995 0.3747 40.6250 0.0007 0.0302 0.7665 38.2500 1.23

S. globosa 43 0.3918 0.3151 31.5000 0.0015 0.0478 0.4641 9.6667 1.05

S. mexicana 45 0.1435 0.1332 41.5000 0.0016 0.0661 0.1503 7.0000 0.00

Overall 135 0.3857 0.3113 35.2222 0.0001 0.0037 0.9320 63.1852 1.04

#2 EcoRI-AA/MseI-AA

Species Scored bands H PIC E Havp MI D Rp Error %

S. brasiliensis 56 0.4997 0.3749 28.6667 0.0010 0.0284 0.7385 16.8889 0.00

S. schenckii 63 0.4854 0.3676 26.1250 0.0010 0.0252 0.8285 26.7500 0.47

S. globosa 34 0.4192 0.3313 23.8333 0.0021 0.0490 0.5097 10.3333 0.64

S. mexicana 37 0.0267 0.0263 36.5000 0.0004 0.0132 0.0270 1.0000 0.00

Overall 137 0.3287 0.2747 28.4074 0.0001 0.0025 0.9570 52.0741 0.28

#3 EcoRI-GA/MseI-TT

Species Scored bands H PIC E Havp MI D Rp Error %

S. brasiliensis 52 0.4974 0.3737 27.8889 0.0011 0.0296 0.7129 19.7778 0.00

S. schenckii 52 0.4833 0.3665 21.2500 0.0012 0.0247 0.8336 17.5000 0.58

S. globosa 28 0.3501 0.2888 21.6667 0.0021 0.0451 0.4023 4.0000 0.00

S. mexicana 21 0.0465 0.0454 20.5000 0.0011 0.0227 0.0476 1.0000 0.00

Overall 106 0.3449 0.2854 23.4815 0.0001 0.0028 0.9510 40.8889 0.16

#4 EcoRI-AA/MseI-TT

Species Scored bands H PIC E Havp MI D Rp Error %

S. brasiliensis 44 0.4999 0.3750 21.7778 0.0013 0.0275 0.7557 16.4444 0.51

S. schenckii 52 0.4967 0.3733 23.8750 0.0012 0.0285 0.7898 19.7500 0.52

S. globosa 38 0.4038 0.3223 27.3333 0.0018 0.0484 0.4835 8.6667 0.00

S. mexicana 28 0.0000 0.0000 28.0000 0.0000 0.0000 0.0000 0.0000 0.00

Overall 111 0.3483 0.2876 24.9259 0.0001 0.0029 0.9496 45.6296 0.32

#5 EcoRI-GA/MseI-AG

Species Scored bands H PIC E Havp MI D Rp Error %

S. brasiliensis 55 0.4993 0.3746 28.5556 0.0010 0.0288 0.7309 18.6667 0.78

S. schenckii 52 0.4958 0.3729 28.3750 0.0012 0.0338 0.7028 14.2500 0.00

S. globosa 29 0.4096 0.3257 20.6667 0.0024 0.0486 0.4933 10.0000 0.00

S. mexicana 28 0.0000 0.0000 28.0000 0.0000 0.0000 0.0000 0.0000 0.00

Overall 99 0.3908 0.3145 26.3704 0.0001 0.0039 0.9291 40.9630 0.29

#6 EcoRI-TA/MseI-AA

Species Scored bands H PIC E Havp MI D Rp Error %

S. brasiliensis 49 0.4787 0.3641 19.4444 0.0011 0.0211 0.8431 21.7778 1.14

S. schenckii 53 0.4639 0.3563 19.3750 0.0011 0.0212 0.8669 22.2500 0.00

S. globosa 36 0.4928 0.3714 15.8333 0.0023 0.0361 0.8077 18.3333 0.00

S. mexicana 15 0.0644 0.0624 14.5000 0.0021 0.0311 0.0667 1.0000 0.00

Overall 97 0.3003 0.2552 17.8519 0.0001 0.0020 0.9662 33.6296 0.44

D = discriminating power; E = effective multiplex ratio; H = expected heterozygosity; Havp = mean heterozygosity; MI = marker index; PIC = polymorphism

information content; Rp = resolving power.

https://doi.org/10.1371/journal.pntd.0008330.t003
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We also determined expected heterozygosity (H), which is defined as the probability that an

individual is heterozygous for the locus in the population. It is equivalent to Nei’s unbiased

gene diversity (HS), as adapted for dominant markers under the assumptions of Hardy-Wein-

berg equilibrium and the Lynch-Milligan model [76]. The overall average expected heterozy-

gosity for Sporothrix species ranged between 0.3003–0.3908 (Table 4). The high combined

expected heterozygosity for S. brasiliensis (H = 0.4787–0.4999) and S. globosa (H = 0.3501–

0.4928) is surprising given previous reports [14, 20, 42, 44, 77–79], which showed little or no

genetic variation within these pathogens based on DNA sequencing data. Indeed, the indices

reported here are comparable to that of S. schenckii (0.4639–0.4995), a species described as

more diverse than S. brasiliensis and S. globosa. Based on these criteria, the high number of loci

generated for S. brasiliensis, S. schenckii, and S. globosa is sufficient to reveal the true fine-scale

population genetic structure, and we recommend the use of combinations #5 (EcoRI--

FAM-GA/MseI-AG), #6 (EcoRI-FAM-TA/MseI-AA) and #3 (EcoRI-FAM-GA/MseI-TT) to

explore genetic diversity in Sporothrix species.

We evaluated the quality of standard fluorescent AFLP genotyping by determining the

error rate and reproducibility of our datasets. The suggested and generally acceptable error

rate for AFLP data ranges between 2–5% [29, 80]. AFLP electropherograms (50–500 bp) of S.

brasiliensis (Fig 4A and 4B) and S. globosa (Fig 4C) show the high reproducibility of the finger-

prints obtained using fluorescent capillary electrophoresis, which was crucial to reliably score

AFLP markers. A fragment was considered unreliable if it showed any variability within the

duplicate tested. For duplicated genotyped Sporothrix isolates, we observed the lowest average

error rate across all markers for S. globosa (0.00–1.05%), S. brasiliensis (0.00–1.14%), and S.

schenckii (0.00–1.23%). All the fragments scored were reproducible. Error rates never exceeded

1.23%, indicating that our protocol is highly reproducible across Sporothrix species, which are

the main agents of human and animal sporotrichosis [80].

Typical AFLP dendrograms based on Jaccard’s similarity coefficient are depicted in Fig 5.

These show six well-supported clades with a similarity level ranging between 40 and 98%, with

high cophenetic values (>90) in the majority of branches (S2 Table). This is in accordance

with the generally applied calmodulin-based classification of Marimon et al. [47]. The first

clade comprises S. brasiliensis isolates recovered from human and animal cases of sporotricho-

sis. It was possible to reveal cryptic diversity for S. brasiliensis in all datasets, with similarity lev-

els ranging from 37.53% ± 4.06% to 51.96% ± 2.83% (S2 Table). AFLP markers could separate

the S. brasiliensis isolates belonging to Rio Grande do Sul, which remained together in all com-

binations. The polymorphic fragments ranged from 38–50 fragments in the six combinations

for all S. brasiliensis isolates, in a total of 44–62 fragments. The second clade comprised S.

schenckii, which showed greater diversity, ranging from 27.44% ± 2.55% to 52.56% ± 1.43%

(S2 Table), compared to other isolates of clinical relevance, corroborating the classic findings

of DNA sequencing. Polymorphic fragments ranged from 37–77 per combination in a total of

52–84 fragments generated. The third clade comprised S. globosa isolates, which showed a sim-

ilar pattern for the six isolates tested with cryptic diversity (42.79% ± 1.61% to 74.38% ±
1.82%), but lower than S. brasiliensis and S. schenckii isolates. The total of fragments generated

for S. globosa varied from 28–43, with a range of 10 to 31 polymorphic fragments per combina-

tion. The remaining isolates represent members of the S. pallida complex, including S. chilen-
sis, S. mexicana, and S. pallida s. str. In clade 4, AFLP markers varied from 14–44 fragments,

and S. pallida isolate FMR 8803 grouped apart from the other members of the S. pallida com-

plex (i.e. S. chilensis and S. mexicana) in combinations #1, #2 and #4. The two isolates of S.

mexicana presented high genetic similarity (above 90% in 5 out of 6 combinations), generating

15–45 fragments. Polymorphic bands were absent in combinations #3 and #4, whereas in
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combination #1 we detected seven polymorphic bands. Likewise, S. chilensis produced a range

of 15–45 fragments, following the same clustering pattern as combinations #2 to #6.

To assess the existence of topological congruence between any two dendrograms or

between dendrograms and the calmodulin phylogenetic tree, we used the congruence index

(Icong) [65]. Multiple comparisons revealed a similar and consistent clustering pattern, as evi-

denced by Icong values and their significant associated P-values (Table 4). Therefore, the AFLP

dendrogram and calmodulin trees are more congruent than expected by chance, supporting

the use of new AFLP markers to speciate Sporothrix with the same confidence of DNA-

sequencing methods.

The AFLP markers were used to generate pairwise genetic distance matrices based on Jac-

card’s similarity coefficient, which were subjected to a principal component analysis (PCA)

with BioNumerics v7.6 to allow 3D graphic visualization of the relationships among each Spor-
othrix sample with those representing the same taxon. Fig 6 shows the PCA plots for combina-

tions #1–6, and the distribution of 27 Sporothrix isolates among the three co-ordinates agreed

with the UPGMA tree. Combinations #3, #5 and #6 revealed the highest cumulative percentage

explained, with 58.7–59.2% of the variation explained by the first three components together

(coordinates X, Y, and Z). The dimensioning analysis showed clearly both the high degree of

intraspecific clustering and the relatively large genetic separation between any individual

taxon (interspecific variation). This tight clustering supports cryptic diversity in S. brasiliensis
and S. globosa. In all combinations evaluated, S. schenckii continued being a more diverse spe-

cies than its siblings S. brasiliensis and S. globosa, in line with the higher level of intraspecific

variability demonstrated in calmodulin sequencing.

Table 4. Comparison among the clustering methods used for phylogenetic analysis and AFLP-derived dendrograms for combinations #1 to #6 generated by congru-

ence index values (Icong).

Tree comparison Leaves MASTa Icong P-value Congruent

AFLP 1 vs AFLP 2 27 13 1.714 2.19e-05 Yes

AFLP 1 vs AFLP 3 26 11 1.479 0.0009 Yes

AFLP 1 vs AFLP 4 27 12 1.583 0.0001 Yes

AFLP 1 vs AFLP 5 26 13 1.748 1.46e-05 Yes

AFLP 1 vs AFLP 6 26 13 1.748 1.46e-05 Yes

AFLP 2 vs AFLP 3 27 13 1.714 2.19e-05 Yes

AFLP 2 vs AFLP 4 27 14 1.846 2.79e-05 Yes

AFLP 2 vs AFLP 5 27 14 1.846 2.79e-05 Yes

AFLP 2 vs AFLP 6 27 13 1.714 2.19e-05 Yes

AFLP 3 vs AFLP 4 27 16 2.110 4.54e-08 Yes

AFLP 3 vs AFLP 5 26 12 1.613 0.0001 Yes

AFLP 3 vs AFLP 6 26 11 1.479 0.0009 Yes

AFLP 4 vs AFLP 5 27 15 1.978 3.56e-07 Yes

AFLP 4 vs AFLP 6 27 11 1.451 0.0013 Yes

AFLP 5 vs AFLP 6 26 14 1.882 1.82e-06 Yes

AFLP 1 vs Cal 26 11 1.479 0.0009 Yes

AFLP 2 vs Cal 27 12 1.583 0.0001 Yes

AFLP 3 vs Cal 26 10 1.344 0.0075 Yes

AFLP 4 vs Cal 27 23 3.034 2.46e-14 Yes

AFLP 5 vs Cal 26 12 1.613 0.0001 Yes

AFLP 6 vs Cal 26 10 1.344 0.0075 Yes

a MAST, Maximum Agreement Subtree.

https://doi.org/10.1371/journal.pntd.0008330.t004
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The AFLP-derived MSTs in Fig 7 essentially confirm the diversity structure of S. brasilien-
sis, S. schenckii, and S. globosa with the majority of isolates having a unique genotype, in con-

trast with those found for calmodulin sequencing (Fig 1B). In general, AFLP-derived MSTs

Fig 4. Electropherograms from an ABI3100 depicting the range of fragments between 50 and 500 bp for S. brasiliensis IPEC 16919 (A), S.

brasiliensis CBS 120339 (B) and S. globosa CBS 120340 (C), with EcoRI-GA and MseI-TT selective primers labeled with blue (6-FAM). Error rates

were never greater than 1.23%, indicating that our protocol is highly reproducible across Sporothrix species.

https://doi.org/10.1371/journal.pntd.0008330.g004
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were similar in their identification of totally different types of genetic variants. This suggests

that despite the enhanced inherent variability of AFLP markers, clusters of isolates remain

traceable.

Discussion

In this study, we develop a new AFLP technique aimed at studying the genetic epidemiology of

medically relevant Sporothrix species. The most promising result is the discovery of cryptic

diversity in species previously thought to be prevalent clonal types, such as S. brasiliensis,
which is responsible for the cat-transmitted sporotrichosis in Brazil, and S. globosa, responsible

for large sapronosis taking place in Asia. Our technique, therefore, will enable finer-scale epi-

demiological patterns to be described than was previously possible.

The first clues that S. brasiliensis might have cryptic genetic diversity emerged from host-

pathogen interaction data, where genetically identical isolates (based on CAL sequences) had

distinct virulence profiles when inoculated in BALB/c mice for variables such as animal weight

loss, death, and capacity to disseminate to organs [81]. For S. schenckii the higher levels of

intraspecific genetic variability are associated with more variable virulence profiles in BALB/c

[82] suggesting that genotype is an important factor in determining clinically-relevant pheno-

types. Considering all molecular markers previously used to explore genetic diversity in Sporo-
thrix, including chitin synthase [83], elongation factor 1α [2], β-tubulin [2, 83], ITS1/2+5.8s

[20, 78, 79] and calmodulin [2, 47, 83], the last perform best in estimating diversity by showing

up to 31.69% variable parsimony-informative sites and comprising for the largest number of

genotypes. However, our study shows that calmodulin (and other markers) underestimated

the genotypic diversity of S. brasiliensis. Therefore, we clearly need new, higher-power, mark-

ers to study the recent expansion (2015–2019) of epizooties of feline sporotrichosis due to S.

brasiliensis towards Northeastern Brazil [1].

Classic studies in the literature describe the use of AFLP markers as one of the most infor-

mative and cost-effective DNA fingerprinting methods for genetic characterization of patho-

genic Sporothrix. The technique usually shows a strong geographical population structure and

is useful to speciate Sporothrix isolates [20, 39, 40]. Through our markers, we were able to iden-

tify Sporothrix down to species level, with results similar to the gold standard DNA sequencing

of the calmodulin encoding gene [47], CAL-RFLP [41], or species-specific PCR [46]. More-

over, we were able to differentiate Sporothrix down to strain level, surpassing the resolution

provided by the gold-standard method (calmodulin) used to investigate diversity in Sporothrix.

Our single protocol was easily transferred between distantly related taxa, including members

of the clinical and environmental clades.

The main advantages of using AFLP analysis include the use of a standard protocol in com-

bination with different restriction endonucleases and the choice of adding one or more selec-

tive nucleotides in the selective EcoRI and MseI primers to achieve optimal fingerprints

without prior knowledge of the organism’s genome sequence. This is useful for non-model

organisms such as Sporothrix. Disadvantages include the dominance of alleles, and the possible

non-homology of comigrating fragments belonging to different loci, leading to suboptimal

reproducibility, particularly across different platforms. However, we took advantage of the

growing number of full genome sequences available for Sporothrix [58–63] to generate 2,304

virtual fingerprints of Sporothrix DNA, reducing time and costs related to extensive trials, min-

imizing possible reproducibility errors.

Fig 5. Dendrograms of combinations 1 to 6 (A to F, respectively). The dendrograms show the clustering profile of the 27 samples of Sporothrix. The dendrograms were

constructed by the Jaccard similarity coefficient and UPGMA clustering in the software BioNumerics v.7.6.

https://doi.org/10.1371/journal.pntd.0008330.g005
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Fig 6. PCA of combinations 1 to 6 (A to F, respectively). PCAs were constructed in the software BioNumerics v.7.6. The PCAs were used to demonstrate the

correlations among the 27 samples of Sporothrix using the six primer pair combinations. The isolates are represented by colored circles.

https://doi.org/10.1371/journal.pntd.0008330.g006
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Therefore, the first step in our standardization included an in silico approach using the pro-

grams AFLPinSilico [55] and ISIF [56] to optimize the best combination of selective primers

(EcoRI+2 and MseI+2) to produce the largest number of polymorphic AFLP markers and

address questions related to speciation, genetic diversity, and population structure. The results

revealed that, while the two bioinformatic programs had minor divergences between them, in
vitro results were consistent with in silico prediction. The main criterion used was to choose

combinations that would reveal cryptic diversity in S. brasiliensis and S. globosa, two species

that were previously characterized as having low genetic diversity or clonal population struc-

ture using DNA-sequencing methods [14, 20, 42, 44, 77–79].

The size and complexity of the Sporothrix genome can have a tremendous influence on

AFLP patterns, due to the amount of DNA that is necessary for the initial restriction/ligation

step, as large genomes usually require larger amounts of DNA [84]. Here, 200 ng was enough

to produce clear, intense AFLP fragments [85]. Another observation from our Sporothrix
genome scan follow-up is that the number of selective bases greatly influenced the number

and diversity of fragments. Generating too many fragments is not ideal, since it makes it diffi-

cult to unambiguously score AFLP electrophoresis profiles (e.g., owing to comigrating non-

homologous fragments). If, however, the primer combination generates a low number of

AFLP markers, it will reduce the probability of polymorphism detection. We found that two

selective bases (EcoRI+2 and MseI+2) produced the ideal number of AFLP markers (i.e., 96–

137 polymorphic fragments) to explore diversity in Sporothrix. This holds true also when deal-

ing with microorganisms having a larger genome size [29]. We found a higher number of

AFLP bands in silico in at least 62.5–70.7% of combinations for S. pallida (genome size of

~37.8 Mb) compared to S. brasiliensis, S. schenckii or S. globosa (32.5–33.4 Mb) [85] suggesting

that, as expected, AFLP patterns scale in complexity with genome size.

Understanding the spread of Sporothrix species by exploring inter- and intraspecific genetic

diversities is fundamental to tackle the increasing number of cases in recent years [86]. Many

molecular techniques have been employed for Sporothrix to address these questions [20, 39–

41, 46, 85, 87, 88], and have been successful in providing quality data. However, limitations

include the low number of polymorphic and reproducible characters evaluated. AFLP has

been considered to be highly reproducible and discriminatory, mainly for epidemiological

studies [89], and can be employed for any organisms without the need of sequence informa-

tion [90]. However, only Zhang et al. employed the technique on S. brasiliensis, but they were

not able to describe high levels of diversity [20]. Our in vitro AFLP succeeded, demonstrating

it is a relevant method for epidemiological studies of Sporothrix, which is in line with previous

studies that used the technique [20, 39, 40]. Comparing haplotype and AFLP dendrograms or

AFLP-derived MSTs generated here, the DNA fingerprint methods demonstrated meaningful

variations in Sporothrix spp.

DNA-sequencing data demonstrated there are at least two different S. brasiliensis popula-

tions circulating in Brazil, one belonging to the Rio Grande do Sul cluster and the other related

to the long-lasting epidemic taking place in Rio de Janeiro, which is spreading to neighboring

states such as São Paulo, Minas Gerais and Espı́rito Santo [44, 86]. Zhang et al. [20] demon-

strated that S. brasiliensis clustered into three different clades in an AFLP study, and one of the

clades contained isolates from Southern Brazil, agreeing with the phylogeography proposed by

Rodrigues et al. [44]. The same pattern was evidenced in our study, and strains from Rio

Grande do Sul (e.g., Ss55, Ss261, and CBS 132989) presented an identical clustering pattern,

Fig 7. AFLP-derived minimum spanning trees (MSTs) of Sporothrix isolates using combinations 1 to 6 (A to F, respectively). CAL tree and AFLP MSTs were

divergent in their identification of different types of genetic variants, since the finer resolution was obtained using AFLP markers.

https://doi.org/10.1371/journal.pntd.0008330.g007
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showing high levels of similarity among the isolates, which differed from those originated

from other Brazilian regions. The three clusters of S. brasiliensis found by Zhang et al. [20]

were supported by high bootstrap values in phylogenetic analysis (i.e., partial CAL, TEF1, and

TEF3), but the AFLP fingerprints showed little variation [20]. Our fingerprints revealed mean-

ingful variations in S. brasiliensis, with a large number of polymorphic bands, showing that the

strategy used here based on extensive in silico screening of selective bases was fundamental to

guide the choice of the best primer combination.

Among the pathogenic species, S. schenckii is considered to have the highest genetic diver-

sity [20, 47, 83], with evidence of genetic recombination [42]. Diversity in S. schenckii was also

found by other researchers, who separated this species into five groups using AFLP [20]. Our

AFLP setup was able to detect diversity within S. schenckii.
AFLP markers revealed that S. globosa also presented subtle diversity, but it is important to

point out that these isolates were less diverse than S. schenckii and S. brasiliensis, confirming

previous findings of Zhang et al., who considered that the DNA fingerprints were identical in

S. globosa. Sporothrix globosa is widely distributed in temperate and warm regions [47, 83, 91],

and rapid dispersal by unknown vectors could explain the similar genotypes for isolates col-

lected from distant geographical regions [20, 92]. In addition, Zhao et al. [40] also detected

cryptic diversity in S. globosa evaluating a higher number of strains, similar to the variation

found using our new AFLP markers.

Comparison of the DNA-sequence tree with AFLP dendrogram using the congruence

index (Icong) revealed a strong topological congruence between any two AFLP dendrograms

or between AFLP dendrograms and a calmodulin tree, supporting the use of all combinations

to distinguish Sporothrix species. The congruence observed is in agreement with previous

studies, which found that S. brasiliensis, S. schenckii and S. globosa are related in a pathogenic/

clinical clade and S. mexicana, S. pallida, and S. chilensis are nested in an environmental clade,

supported by high bootstrap values or cophenetic values [2, 42–44, 79]. On one hand, several

studies have demonstrated that moderate numbers of AFLP fragments are necessary to recover

the correct topology of a DNA-sequence tree with high bootstrap support values (i.e. >70%)

[93–95]. On the other hand, a higher number of taxa (i.e., covering all 53 Sporothrix species

described so far) may increase the number of possible trees and reduce internode distances for

a given tree length, making it less likely to recover the correct tree [95, 96]. However, this size

effect is more likely to occur in inferences considering ancient radiations [95, 96], which does

not seem to be the case of medically relevant Sporothrix species, especially S. brasiliensis, which

likely originated from a recent radiation event (about 3.8–4.9 MYA) based on its geographical

distribution and phylogenetic inferences [42, 58, 97].

Using our new AFLP markers, we can now better track routes of disease transmission dur-

ing epizooties and zoonosis in Brazil, allowing the possibility of linking specific genotypes to

antifungal susceptibility profiles as well as addressing links between clinical outcomes in feline

and human sporotrichosis. All six primers pairs performed well, but the most precise level of

inter-species discrimination and the highest level of intra-species discrimination of the Sporo-
thrix isolates were observed in the AFLP EcoRI-FAM-GA/MseI-TT, EcoRI-FAM-GA/

MseI-AG and EcoRI-FAM-TA/MseI-AA sets. These combinations stand out among all combi-

nations for having the best diversity indices and the lowest error rates, and thus may be valu-

able in human and veterinary diagnostics as well as in epidemiology. Moreover, our DNA

fingerprinting assay can be further transferred between laboratories to give insights into the

ecology and evolution of pathogenic Sporothrix species and to inform management and miti-

gation strategies to tackle the advance of sporotrichosis. Although sporotrichosis has a global

distribution, pathogenic species are not evenly distributed and individual lineages that vary in

pathogenicity still occur in geographically limited ranges, such as S. brasiliensis. Thus, as
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Sporothrix genotypes continue to expand their range, we need to consider using genome-wide

markers to identify, distinguish, and track these emerging pathogens spreading through the

mammal hosts.
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