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Increasing evidences show that the abnormal microRNA (miRNA) expression is

related to a variety of complex human diseases. However, the current biological

experiments to determinemiRNA-disease associations are time consuming and

expensive. Therefore, computational models to predict potential miRNA-

disease associations are in urgent need. Though many miRNA-disease

association prediction methods have been proposed, there is still a room to

improve the prediction accuracy. In this paper, we propose amatrix completion

model with bounded nuclear norm regularization to predict potential miRNA-

disease associations, which is called BNNRMDA. BNNRMDA at first constructs a

heterogeneous miRNA-disease network integrating the information of miRNA

self-similarity, disease self-similarity, and the known miRNA-disease

associations, which is represented by an adjacent matrix. Then, it models the

miRNA-disease prediction as a relaxed matrix completion with error tolerance,

value boundary and nuclear norm minimization. Finally it implements the

alternating direction method to solve the matrix completion problem.

BNNRMDA makes full use of available information of miRNAs and diseases,

and can deals with the data containing noise. Comparedwith four state-of-the-

art methods, the experimental results show BNNRMDA achieved the best

performance in five-fold cross-validation and leave-one-out cross-

validation. The case studies on two complex human diseases showed that

47 of the top 50 prediction results of BNNRMDA have been verified in the latest

HMDD database.
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1 Introduction

MicroRNA (miRNA) is a non-coding single-stranded RNAmolecule of about 22 nt in

length, which have been proved involved in gene regulation by binding to 3’ UTRs of the

target mRNAs. It plays a critical role in human cell differentiation, growth, and disease

development. Accumulating evidence has shown that miRNAs are closely related to

complex human diseases (Liu et al. (2010); Chen et al. (2019); Feng et al. (2012); Zhang

et al. (2013)), and discovering miRNA-disease associations is of great significance for the

prevention, diagnosis and treatment of human complex diseases. Recently, manymiRNA-

OPEN ACCESS

EDITED BY

Xuefeng Cui,
Shandong University, China

REVIEWED BY

Jin-Xing Liu,
Qufu Normal University, China
Wei Lan,
Guangxi University, China

*CORRESPONDENCE

Minzhu Xie,
xieminzhu@hunnu.edu.cn

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 27 June 2022
ACCEPTED 18 July 2022
PUBLISHED 22 August 2022

CITATION

Rao Y, Xie M and Wang H (2022), Predict
potential miRNA-disease associations
based on bounded nuclear
norm regularization.
Front. Genet. 13:978975.
doi: 10.3389/fgene.2022.978975

COPYRIGHT

© 2022 Rao, Xie and Wang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 22 August 2022
DOI 10.3389/fgene.2022.978975

https://www.frontiersin.org/articles/10.3389/fgene.2022.978975/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.978975/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.978975/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.978975&domain=pdf&date_stamp=2022-08-22
mailto:xieminzhu@hunnu.edu.cn
https://doi.org/10.3389/fgene.2022.978975
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.978975


disease associations have been confirmed and collected in

different databases. For example, the HMDD v3.2 database

(http://www.cuilab.cn/hmdd) contains 32281 confirmed

associations between 850 diseases and 1102 miRNAs (Huang

et al. (2019)). However, it is time-consuming and labor intensive

for current biological experiments to determine miRNA-disease

associations. Therefore, effective computational prediction

models are in urgent need.

As so far, a number of computational miRNA-disease

associations prediction models have been proposed [Chen

et al. (2019); Chen and Zhang (2013); Jiang et al. (2013);

Zeng et al. (2016b,a)], and all the models are based on the

known miRNA-disease associations to predict the potential

associations. For example, based on the known miRNA-

disease associations and a miRNA-miRNA functional

similarity network, Chen et al. [Chen X. et al. (2012)]

developed a method RWRMDA, which used a global network

similarity measurement and random walk with restart to predict

potential miRNA-disease associations. Based on a miRNA-

disease bilayer network constructed according to the above

information, Xuan et al. [Xuan et al. (2015)] presented a

method using random walk with restart to infer potential

associations between miRNAs and diseases. By including an

extra disease similarity network, Liao et al. [Liao et al. (2015)]

proposed a diffusion-based method NDBM, which also used a

global network similarity to predict miRNA-disease associations.

Furthermore, Chen et al. (Chen et al. (2016)) integrated the

information of miRNA functional similarity, disease semantic

similarity, Gaussian interaction profile kernel similarity and the

known miRNA-disease associations to build a heterogeneous

network, and proposed a new prediction method HGIMDA. You

et al. [You et al. (2017)] proposed a path-based prediction model

PBMDA, which constructed a similar heterogeneous network

and used a depth-first search algorithm to predict potential

associations. Based on the heterogeneous network, Chen et al.

[Chen et al. (2018c)] proposed a method BNPMDA, which

adopted a bipartite network recommendation algorithm to

infer potential associations between miRNAs and diseases.

Recently, machine learning methods have been applied to

miRNA-disease potential association prediction [Jiang et al.

(2013); Chen and Yan (2014); Chen et al. (2018a); Zheng

et al. (2019); Zeng et al. (2019); Liang et al. (2019); Li et al.

(2020); Zhou et al. (2021)]. For example, Jiang et al. [Jiang et al.

(2013)] used support vector machine (SVM) to predict miRNA-

disease interaction. Chen et al. [Chen et al. (2018a)] employed a

random forest algorithm to predict miRNA-disease associations

and proposed a prediction model RFMDA. RFMDA can

effectively distinguish related miRNA-disease pairs from

unrelated miRNA-disease pairs. Zheng et al. [Zheng et al.

(2019)] presented a prediction model MLMDA. MLMDA first

used a deep auto-encoder neural network to extract features from

the information of disease semantic similarity, Gaussian

interaction profile kernel similarity, miRNA functional

similarity and miRNA sequences, and adopted a random

forest classifier to predict potential associations between

miRNAs and diseases based on the extracted features. Liang

et al. [Liang et al. (2019)] proposed a method AMVML to infer

disease-related miRNAs based on adaptive multi-view multi-

label learning. Li et al. [Li et al. (2020)] proposed a miRNA-

disease association prediction model NIMCGCN. NIMCGCN

used graph convolutional networks to obtain the features of

miRNA and disease, and then adopted a neural inductive matrix

completion model to infer a new association matrix. Based on

graph embedding and multiple meta-paths fusion, Zhang et al.

[Zhang et al. (2020)] proposed a model M2GMDA to predict

miRNA-disease associations. Based on a heterogeneous network

integrating various known associations between miRNA, disease,

protein, long non-coding RNA (lncRNA) and drugs, Li et al. [Li

H. Y. et al. (2021)] proposed a miRNA-disease association

prediction model DF-MDA. DF-MDA adopted a diffusion-

based machine-learning method to extract features from the

network, and a random forest classifier to predict miRNA-

disease associations. Besides, other techniques such as

structural deep network embedding [Gong et al. (2019)] and

matrix decomposition [Chen et al. (2021); Li L. et al. (2021)] are

also used in miRNA-disease association prediction.

To further improve the performance of miRNA-disease

association prediction, we propose a novel Bounded Nuclear

Norm Regularization based miRNA-disease association

prediction model BNNRMDA. At first, BNNRMDA integrates

the information of the disease semantic similarity, the miRNA

functional similarity, the Gaussian interaction profile kernel

similarity and the experimentally verified miRNA-disease

associations to construct a heterogeneous miRNA-disease

network. Since the number of verified miRNA-disease

associations is very small than the total miRNA-disease pairs,

the adjacent matrix of the network is sparse, BNNRMDA uses a

bounded nuclear norm regularization method to complete the

sparse matrix, and the element value of the completed matrix

indicates the likelihood that the corresponding miRNA and

disease are related. The experiments of leave-one-out cross-

validation and five-fold cross-validation in a benchmark

dataset showed that BNNRMDA is effective to predict

potential miRNA-disease associations. In addition, case studies

of colon neoplasms and lung neoplasms showed that the

accuracy of BNNRMDA reached 94%.

2 Methods

Figure 1 gives a flowchart of BNNRMDA. The process of

BNNRMDA consists of 3 steps. The first step collects the

information of known miRNA–disease associations, the

disease similarity and the miRNA similarity. The second step

constructs a heterogeneous miRNA-disease network and obtain

the corresponding adjacent matrix M. The third step uses a
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matrix completion method to completeM, and predicts potential

miRNA-disease associations based on the completed matrix.

2.1 Data and similarity measures

2.1.1 Validated human miRNA-disease
associations

As most of similar works, the HMDD v2.0 database [Li et al.

(2014)] was used as the benchmark dataset, which contains

5430 verified associations between 495 miRNAs and

383 diseases. For convenience, we used a nd × nm binary

matrix ADM to store the validated associations from the

database with nd = 383 and nm = 495. If the ith disease has a

known association with the jth miRNA, then the elementADMi,j is

set to 1, otherwise it is 0.

2.1.2 MiRNA functional similarity
Based on the hypothesis that miRNAs with similar functions

are more likely to be related to similar diseases, Wang et al.

[Wang et al. (2010)] calculated the similarity between miRNAs

based on the similarity of their associated disease DAGs. The

miRNA functional similarity data was directly downloaded via

the link http://www.cuilab.cn/files/images/cuilab/misim.zip

provided by Wang et al. [Wang et al. (2010)]. We used a

matrix FS to represent the data, where the element FSi,j
represents the functional similarity score between the ith

miRNA and the jth miRNA.

2.1.3 Disease semantic similarity
We combined two disease semantic similarity measures to

calculate the semantic similarity between two diseases. The first

was introduced by Wang et al. (Wang et al. (2010)), which is

based on the medical subject headings (MeSH) descriptors. The

MeSH descriptor of a disease is organized as a hierarchical

directed acyclic graph (DAG) with each node is a disease

term. For a disease D, let the DAG corresponding to its

MeSH descriptor be DAG(D) = (T(D), E(D)). T(D) includes

the node D and its ancestor nodes (more general disease term),

and E(D) is the set of direct edges representing the parent-child

relationship between the disease terms.

The semantic contribution of a disease term t to D in

DAG(D) is defined as Eq. 1.

C1D t( ) � 1 if t � D
max θC1D t′( ) | t′ is a child of t{ } if t ≠ D

{ (1)

where θ is the semantic contribution factor, and is set 0.5 as

suggested in Wang et al. (2010).

The semantic value of diseaseD is calculated by Eq. 2, and the

Wang’s similarity between diseases di and dj is defined as Eq. 3.

V1 D( ) � ∑
d∈T D( )

C1D d( ). (2)

SS1 di, dj( ) � ∑t∈T di( )∩T dj( ) C1di
t( ) + C1dj

t( )( )
V1 di( ) + V1 dj( ) . (3)

The second disease similarity measure was introduced by

Xuan et al. (Xuan et al. (2013)), and it is defined as Eq. 4.

SS2 di, dj( ) � 2∑t∈T di( )∩T dj( )IC t( )
∑t∈T di( )IC t( ) +∑t∈T dj( )IC t( ). (4)

IC(t) is the information content of the likelihood of t

occurring as a node in a disease DAG, and can be calculated

as follows.

IC t( ) � −log the number of DAGs containing t
the total number of DAGs

[ ]. (5)

FIGURE 1
Flowchart of BNNRMDA. The first step collects the information of known miRNA–disease associations, the disease similarity and the miRNA
similarity. The second step constructs a heterogeneous miRNA-disease network. The third step uses a matrix completion method BNNR (bounded
nuclear norm regularization) to calculate a score for the miRNA-disease pairs with unknown relationship.
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Finally, we average the above two similarity measures of di
and dj and obtain the combined disease semantic similarity.

SS di, dj( ) � SS1 di, dj( ) + SS2 di, dj( )
2

. (6)

2.1.4 Gaussian interaction profile kernel
similarity

Based on similar diseases may be related to miRNAs with

similar functions, Gaussian interaction profile kernel (GIPK)

similarity has been widely used to calculate miRNA similarity

and disease similarity. Let K(di) be the vector containing

elements at the ith row of the binary miRNA-disease

association matrix ADM, and K(mj) be the vector containing

elements at the jth column of ADM. K(di) and K(mj) represent the

interaction profiles of disease di and miRNA mj respetively.

The equations to calculate the disease GIPK similarity and

the miRNA GIPK similarity are as follows.

GKSD di, dj( ) � exp −ρd‖K di( ) − K dj( )‖2( ) (7)
GKSM mi,mj( ) � exp −ρm‖K mi( ) −K mj( )‖2( ) (8)

The coefficients ρd and ρm are defined in the following

equations.

ρd �
nd

∑nd
i�1‖K di( )‖2 (9)

ρm � nm
∑nm

i�1‖K mi( )‖2 (10)

2.2 Similarity integration and
heterogeneous network construction

Since some diseases do not have any MeSH descriptor, we

cannot calculate the semantic similarity between these diseases

and others. In the case, we use GIPK similarity to replace the

semantic similarity. Similarly, when the functional similarity

between two miRNAs is missing, the corresponding GIPK

similarity is used instead. Finally we obtain a disease

similarity matrix ADD and a miRNA similarity matrix AMM as

follows.

ADDi,j � SS d i( ), d j( )( ) if SS d i( ), d j( )( ) ≠ 0,
GKSD d i( ), d j( )( ) otherwise.

{ (11)

AMMi,j � FS m i( ), m j( )( ) if FS m i( ), m j( )( ) ≠ 0,
GKSM m i( ), m j( )( ) otherwise.

{ (12)

We integrate the information of disease similarity, miRNA

similarity, the known miRNA-disease associations into a

heterogeneous miRNA-disease network. The heterogeneous

miRNA-disease network is encoded into a (nd + nm) × (nd +

nm) matrix M as follows.

M � ADD ADM

ADM
T AMM

[ ].

2.3 Matrix completion with bounded
nuclear norm regularization

Since the verified miRNA-disease associations are much less

than the total miRNA-disease pairs, ADM is very sparse (most

elements are 0). The miRNA-disease association prediction

problem can be model as the matrix completion problem of

M. If Mi,j corresponds to a known miRNA-disease association,

indicates a miRNA similarity or a disease similarity, it called a

known entry. LetΩ = {(i, j)|Mi,j is a known entry}. The goal of our

miRNA-disease association prediction is to find appropriate

values for the unknown entries of M as the final miRNA-

disease association prediction scores.

The matrix completion problem of M is generally formulated

as find a matrix M* such that the projections of M* andM ontoΩ
are equal and the rank ofM* is minimized, and the formulation is

as follows:

min
Mp

rank Mp( )
s.t. PΩ Mp( ) � PΩ M( ),

where PΩ(·) is the projection function such that

PΩ X( )ij � Xij, i, j( ) ∈ Ω
0, i, j( ) ∉ Ω .{

However the rank minimization matrix completion problem

is NP-hard. Inspired by Yang et al. (2019), we model the miRNA-

disease association prediction as a relaxed matrix completion

with error tolerance, value boundary and nuclear norm

minimization, which is called the BNNR (bounded nuclear

norm regularization) model (Yang et al. (2019)) and is

formulated as follows.

min
X

‖X‖p + α

2
‖PΩ X( ) − PΩ M( )‖2F

s.t. 0#X#1,
(13)

where ‖X‖* is the nuclear norm of X, i.e. the sum of all singular

values of X. ‖ ·‖F is the Frobenius norm and α is the parameter

that balances the nuclear norm and error term. The BNNRmodel

is a convex optimization problem, and many effective algorithms

such as AMM (alternating direction method) (Chen C. H. et al.

(2012)) could be used solve it.

To use AMM (Chen C. H. et al. (2012)) to solve the BNNR

model, we introduce an auxiliary matrixH, and the BNNRmodel

is equivalent to the following model.

min
X

‖X‖p + α

2
‖PΩ X( ) − PΩ M( )‖2F

s.t. X � H, 0#H#1.
(14)
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Therefore, the extended Lagrange function is:

L H,X, Y, α, β( ) � ‖X‖p + α

2
‖PΩ X( ) − PΩ M( )‖2F

+ Tr YT X −H( )( ) + β

2
‖X −H‖2F, (15)

where β > 0 is the penalty parameter and Y is the Lagrange

multiplier. The model (14) could be solved by an iterative

process, whose details could be found in (Yang et al. (2019).

After a series of iterations, a convergent H would be finally

obtained, which is denoted by H*. Let

Mp � Ap
DD Ap

DM

Ap
DMT Ap

MM
[ ] � Hp. (16)

The predicted miRNA-disease associations are found from

matrix ADM* .

3 Results

3.1 Parameter setting

The values of parameters α and β were determined by 5-fold

cross-validation experiments on the benchmark dataset. The

values were chosen from 0.1, 1, 2, 10, 100, and the AUC

results are shown in Figure 2. The experimental results show

that when α = 1 and β = 2, BNNRMDA achieved the best

performance. Therefore, in the following experiments, we set α =

1 and β = 2.

3.2 Performance evaluation

We compared BNNRMDA with four state-of-the-art

methods IMCMDA (Chen et al. (2018b)), KATZBNRA (Li

et al. (2019)), PMFMDA (Xu et al. (2019)) and WBNPMD

(Xie et al. (2019)) using global leave-one-out cross-validation

(LOOCV) and 5-fold cross-validation (5-fold CV).

The benchmark dataset was from the HMDD v2.0 database,

which contains 5430 known miRNA-disease associations. Under

the global LOOCV framework, each known association is selected

out for testing, the others are used as the training set, and all

unknown miRNA-disease associations will be used as candidate

associations. After BNNRMDA calculates all associated prediction

scores, the rank of each test sample will be obtained by comparing

with the candidate samples. Higher the rank of the test sample,

more effective our model is. We changed the threshold to calculate

the true positive rate (TPR) and false positive rate (FPR) and drew

the ROC curve. The area under the ROC curve (AUC) was

calculated to compare the performance. The higher the AUC

value, the better the performance of the model. The

experimental results of the global LOOCV is shown in Figure 3

(a). The AUC values of BNNRMDA, IMCMDA, KATZBNRA,

PMFMDA, and WBNPMD are 0.9393, 0.8470, 0.9311, 0.9252,

0.9321 respectively.

In the 5-CV framework, all known miRNA-disease

association pairs will be randomly divided into five parts; in

each experiment, one part is tested, and the other four parts are

used as a training set. Similar to LOOCV, the AUC values are

used to compare the performance of these models. Figure 3 (b)

FIGURE 2
The AUC values using different α and β values in five fold CV experiments on the training dataset.
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FIGURE 3
Performance comparisons of BNNRMDA with baseline methods (WBNPMD, KATZBNRA, PMFMDA, IMCMDA) in terms of AUC based on (A) the
global LOOCV scheme and (B) 5-CV scheme.

TABLE 1 The top 50 potential miRNAs associated with colon
neoplasms.

(2 pt) miRNA Evidence miRNA Evidence

hsa-mir-155 dbDEMC;HMDD hsa-mir-31 dbDEMC;HMDD

hsa-mir-21 dbDEMC;HMDD hsa-mir-146b dbDEMC

hsa-mir-146a dbDEMC;HMDD hsa-mir-141 dbDEMC;HMDD

hsa-mir-20a dbDEMC;HMDD hsa-mir-199a unconfirmed

hsa-mir-16 dbDEMC hsa-mir-24 dbDEMC;HMDD

hsa-mir-125b dbDEMC;HMDD hsa-let-7a dbDEMC;HMDD

hsa-mir-15b dbDEMC;HMDD hsa-mir-150 dbDEMC;HMDD

hsa-mir-29b dbDEMC;HMDD hsa-mir-200b dbDEMC;HMDD

hsa-mir-143 dbDEMC;HMDD hsa-mir-7 dbDEMC

hsa-mir-101 HMDD hsa-mir-9 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-148a dbDEMC;HMDD

hsa-mir-34a dbDEMC;HMDD hsa-let-7c dbDEMC;HMDD

hsa-mir-29a dbDEMC;HMDD hsa-mir-221 dbDEMC;HMDD

hsa-mir-106b dbDEMC;HMDD hsa-mir-23a dbDEMC;HMDD

hsa-mir-19a dbDEMC;HMDD hsa-mir-107 dbDEMC;HMDD

hsa-mir-196a dbDEMC;HMDD hsa-mir-133b dbDEMC;HMDD

hsa-mir-125a dbDEMC;HMDD hsa-mir-34c unconfirmed

hsa-mir-1 dbDEMC;HMDD hsa-mir-25 dbDEMC;HMDD

hsa-mir-15a dbDEMC;HMDD hsa-mir-30c dbDEMC;HMDD

hsa-mir-223 dbDEMC;HMDD hsa-mir-29c dbDEMC

hsa-mir-214 dbDEMC hsa-let-7b dbDEMC;HMDD

hsa-mir-133a dbDEMC;HMDD5 hsa-mir-26a unconfirmed

hsa-mir-132 dbDEMC;HMDD hsa-mir-203 dbDEMC;HMDD

hsa-mir-18a dbDEMC;HMDD hsa-let-7i dbDEMC;HMDD

hsa-mir-92a dbDEMC;HMDD hsa-mir-222 dbDEMC;HMDD

TABLE 2 The top 50 potential miRNAs associated with lung
neoplasms.

(2 pt) miRNA Evidence miRNA Evidence

hsa-mir-106b dbDEMC hsa-mir-429 dbDEMC

hsa-mir-20b dbDEMC hsa-mir-296 unconfirmed

hsa-mir-130a dbDEMC;HMDD hsa-mir-129 dbDEMC;HMDD

hsa-mir-16 dbDEMC;HMDD hsa-mir-708 dbDEMC

hsa-mir-23b dbDEMC hsa-mir-211 dbDEMC

hsa-mir-342 dbDEMC;HMDD hsa-mir-196b dbDEMC;HMDD

hsa-mir-15a dbDEMC;HMDD hsa-mir-302c dbDEMC

hsa-mir-378a unconfirmed hsa-mir-302b dbDEMC

hsa-mir-195 dbDEMC;HMDD hsa-mir-328 dbDEMC;HMDD

hsa-mir-15b dbDEMC hsa-mir-99b dbDEMC

hsa-mir-122 dbDEMC;HMDD hsa-mir-149 dbDEMC;HMDD

hsa-mir-193b dbDEMC hsa-mir-423 HMDD

hsa-mir-424 dbDEMC hsa-mir-152 dbDEMC;HMDD

hsa-mir-144 dbDEMC;HMDD hsa-mir-449b dbDEMC

hsa-mir-92b dbDEMC hsa-mir-194 dbDEMC;HMDD

hsa-mir-130b dbDEMC;HMDD hsa-mir-208a HMDD

hsa-mir-204 dbDEMC hsa-mir-302a dbDEMC

hsa-mir-451a dbDEMC;HMDD hsa-mir-491 dbDEMC

hsa-mir-99a dbDEMC;HMDD hsa-mir-452 dbDEMC

hsa-mir-449a dbDEMC;HMDD hsa-mir-373 dbDEMC;HMDD

hsa-mir-10a dbDEMC;HMDD hsa-mir-625 dbDEMC

hsa-mir-141 dbDEMC;HMDD hsa-mir-181d dbDEMC

hsa-mir-139 dbDEMC;HMDD hsa-mir-367 dbDEMC

hsa-mir-151a unconfirmed hsa-mir-520a dbDEMC

hsa-mir-28 dbDEMC hsa-mir-520d dbDEMC
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shows the results of the 5CV experiment, and BNNRMDA

achieved the best AUC of 0.9356. The AUC values of

IMCMDA, KATZBNRA, PMFMDA, and WBNPMD are

0.8341, 0.9295, 0.9194, 0.9225 respectively.

3.3 Case studies

In order to further verify the effect of the BNNRMDAmodel, we

conducted case studies on two human diseases colon neoplasms and

lung neoplasms. These diseases pose a great threat to human life. For

example, lung neoplasms are one of the common neoplasms in the

human body. In recent years, a large number of colon neoplasms

cases have died, posing a major threat to human life (DeSantis et al.

(2019)). For colon neoplasms, after removing all known related

miRNA-disease pairs, we rank the final prediction results of the

miRNA related to them. We use two miRNA-disease association

databases for verification, namely the dbDEMC (Yang et al. (2017))

database and the HMDD (Huang et al. (2019)) database. As can be

clearly seen in Table 1, 47 of the top 50 prediction results have been

confirmed to be related in dbDEMC2.0 and HMDD v3.2. Similarly,

the results of the top 50 miRNAs predicted for lung neoplasms are

shown in Table 2. Among them, 47 of the top 50 can be confirmed in

dbDEMC2.0 and HMDD v3.2.

4 Conclusion

We proposed a new miRNA-disease association prediction

model BNNRMDA. BNNRMDA constructs a miRNA-disease

heterogeneous network by integrating miRNA similarity

network, disease similarity network and miRNA-disease

known association network, and formulates the miRNA-

disease association prediction problem as a relaxed matrix

completion with error tolerance, value boundary and nuclear

norm minimization (BNNR), and at last uses alternating

direction method (AMM) to obtain an optimal solution. The

global leave-one-out cross-validation experiments and the five-

fold cross-validation framework experiments on the benchmark

dataset show that BNNRMDA performs better than four state-

of-the-art methods. In addition, the case studies on two complex

human diseases also illustrate the reliability of BNNRMDA.

BNNRMDA can be an effective tool to identify potential

miRNA-disease associations. There are some factors that will

affect the final prediction results of BNNRMDA. First of all, the

materials we used include experimentally verified miRNA-

disease associations, miRNA functional similarities, and

disease semantic similarities. These data may contain noises

and outliers, and appropriate preprocess of the data might

enhance the prediction accuracy of BNNRMDA. The choice

of parameters α and β has a certain impact on the prediction

performance, and how to choose appropriate parameters based

on some statistical characteristics of data is challenging.
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