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DNA synthesis for true random number generation
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The volume of securely encrypted data transmission required by today's network complexity
of people, transactions and interactions increases continuously. To guarantee security of
encryption and decryption schemes for exchanging sensitive information, large volumes of
true random numbers are required. Here we present a method to exploit the stochastic
nature of chemistry by synthesizing DNA strands composed of random nucleotides. We
compare three commercial random DNA syntheses giving a measure for robustness and
synthesis distribution of nucleotides and show that using DNA for random number genera-
tion, we can obtain 7 million GB of randomness from one synthesis run, which can be read
out using state-of-the-art sequencing technologies at rates of ca. 300 kB/s. Using the von
Neumann algorithm for data compression, we remove bias introduced from human or
technological sources and assess randomness using NIST's statistical test suite.
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s an instrument for selecting at random, I have found

nothing superior to dice. [...] When they are shaken,

[...] they tumble wildly about, and their positions at
the outset afford no perceptible clue to what they will be after
even a single good shake and toss”!. These words of Francis
Galton published in Nature in 1890, vividly demonstrate one of
the simplest methods for generating random numbers. The
increasing necessity of being able to generate large quantities of
random numbers for societal needs is made obvious when
viewing the technological developments thereafter: About half a
century later, solving problems with probabilistic procedures
demanded a volume of random numbers much greater than that
a dice could produce efficiently?. Thus began a series of techno-
logical breakthroughs including the first integration of a hardware
random number generator (RNG) into a real computer, the
Manchester Mark I, by using electrical noise®. Shifting from
algorithm to interactions, the modern world required network
security services, and thus introduced encryption and decryption
schemes for exchanging information securely, requiring high-
quality random numbers (generated faster while being less prone
to attacks)*>. New methods for random number generation were
developed, such as the Silicon Valley-developed lava lamp and the
Mersenne Twister (a software RNG)®7. Of today’s state-of-the-art
RNGs, the Intel RNG provides 500 MB/s of throughput. Such
hardware RNGs create bit streams depending on highly unpre-
dictable physical processes, making them useful for secure data
transmission as they are less prone to cryptanalytic attacks8-11.

It is important to note the distinction between true RNGs and
pseudo-RNGs. A true RNG uses a non-deterministic (chaotic)
source for random number generation!>13, whereas a pseudo-
RNG creates a deterministic sequence of numbers that depends
on an input (seed)!112, If the input seed is known, the entire
random number sequence can be reproduced. However, pseudo-
RNGs can have better statistical properties and can oftentimes
produce random numbers faster than true RNGs, and are thus
still popular today. A more recent example of a true RNG has
been shown by Gaviria Rojas et al.!4, addressing integrated low-
cost, mechanically flexible devices by using semiconducting
single-walled carbon nanotubes to digitize thermal noise in order
to generate random bits.

As opposed to existing RNGs that are based on physical phe-
nomena or software algorithms, chemical reactions can also be
employed as an entropy source for generating random num-
bers!®. Chemical reactions are statistical processes where the
formation of chemical products follows a certain probability
distribution depending on the activation energy for a reaction!®.
Although the expectation of products can be statistically pre-
dicted, being able to identify individual molecules after synthesis
is rarely possible!>. Recently, Lee et al. have suggested an auto-
mated system exploiting the large available pool of entropy of
detectable macrostates of growing crystals in chemical reactions,
generating random bits!>. Although this is a promising approach,
not being able to identify individual molecules results in the loss
of randomness when analyzing stochastic chemical processes,
which is why chemical reactions cannot typically be used as
RNGs!.

This, however, is different for the synthesis of DNA. The
synthetic production of DNA is a stochastic chemical process

with the advantage that the individual molecules in the synthe-
sized DNA sequence can easily be identified and analyzed by next
generation sequencing (NGS) technologies. Sequencing technol-
ogies to identify individual nucleotides in strands of DNA have
been around since the late 1970s!7. Nowadays, next-generation
sequencing methods offer remarkable throughput!8-20 and enable
us to read individual molecules and thus use DNA as a source of
random number generation. Previous work has presented the idea
of simulation of the DNA random number generation circuitry
by theoretically proposing a scheme for a possible automated
workflow for DNA random number generation. However, the
physical realization of the theory and the experimental limitations
were not investigated?1:22,

In this work, we combine the technologies readily available for
synthesizing and sequencing DNA to generate random numbers,
analyze the results of DNA synthesis, and evaluate the produced
randomness. Our contribution is twofold: We offer a transfor-
mative application of chemical synthesis as well as explore the
robustness and the statistical properties of DNA synthesis.

Results

Design of DNA. In biology, methods for identifying global pat-
terns of the microbial component in the biosphere require the
synthesis of random nucleotides at specific positions of primers,
to assess for hypervariable regions, for example, of the 16S rRNA
gene, to allow for taxonomic classification?3-27. Other applica-
tions for random nucleotide syntheses are found in barcoding,
where, by means of unique molecular identifiers (UMI), PCR
amplification bias can be eliminated?8. Such random nucleotides
are represented by one single symbol, N, according to the
Nomenclature Committee of the International Union of Bio-
chemistry (NC-IUB)2%-30, Consequently, we have made use of the
possibility to synthesize a random nucleotide per position
denoted by the letter N in the design of our DNA.

Our DNA strands have been designed such that a 64-
nucleotide random region is entailed by a given forward primer
region at one end and a given reverse primer region at the other
end (see Fig. 1)27. The total length of the DNA strand as designed
is 105 nucleotides, including the two primer regions and the
random region. This DNA strand is then synthesized chemically
by suppliers using state of the art solid state synthesis
technologies, to obtain a physical medium of randomness (Fig. 2).

The mixing of DNA nucleotide building blocks has also found
application in the field of DNA data storage. Anavy et al. have
shown that extending the DNA alphabet, by pre-determining the
mixing ratio of all four DNA nucleotides at certain positions in
the DNA sequence, can increase the logical density for DNA data
storage by using composite letters for DNA synthesis3!.

Analysis of DNA random nucleotide synthesis. Random DNA
sequences as illustrated in Fig. 1 were synthesized commercially
three times: twice by Microsynth and once by Eurofins Genomics.
We have placed one customized order with Microsynth (synthesis
1), asking specifically for mixing of all building blocks before
coupling. The other two orders placed with Microsynth (synthesis
2) and Eurofins Genomics have been ordered regularly on-line,
without any special demands. From our DNA order with
Microsynth (synthesis 1), we have received 204 ug of dried DNA,

EIACA CGA CGCTCT TCC GAT CTINNINENININBNININENININAGA TCG GAA GAG CAC ACG TCTERY

! Forward primer region
20 nucleotides

! Random region
64 nucleotides

\ - . \
Reverse primer region
21 nucleotides

Fig. 1 DNA design. Design of DNA containing a forward primer region of 20 nucleotides, random region of 64 nucleotides (where one letter N represents
one random nucleotide) and a reverse primer region, containing 21 nucleotides.
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Fig. 2 DNA random synthesis. Major procedural steps in synthesizing random DNA strands during solid state DNA synthesis. DNA building blocks are
mixed prior to entering the binding substrate, where they start forming a strand of DNA based on their coupling efficiencies. The rate of the individual
nucleotides couplings, r;, can be approximated by multiplication of the respective rate constant, k; and the nucleotide concentration, ¢;. During the process,
individual nucleotides are shielded from binding to other nucleotides using protecting groups, ensuring that only one new random nucleotide can bind per
DNA strand per iteration. Excess nucleotides that have not found a DNA strand to bind to are then removed from the synthesis chamber, and DNA strands
are de-protected. To elongate each DNA strand to the desired length, the process of adding a mix of nucleotides, washing off left-over and subsequently
de-protecting is repeated as often as required. Once the desired strand length of DNA has been reached, the DNA is cleaved from the synthesis support.

synthesized from the 3’ to 5’ direction®>33. To read out ran-
domness, the DNA pool was sequenced and subsequently digi-
tally filtered such that sequences not containing the correct
adapter were removed (Supplementary Information 1).

When looking at the composition of the DNA strands as a
function of position in the random region (Fig. 3) we observe two
general trends: (1) In all syntheses, the percentage of G (guanine)
and T (thymine) nucleotides is higher than the percentage of A
(adenine), and C (cytosine) nucleotides. We call this trend
nucleotide nonequivalence. (2) Whereas the percentage of A and
C is relatively constant over the string of 60 nucleotides, the
percentage of G decreases from 5’ to 3’ and the percentage of T
increases from 5 to 3’. This second trend we call position
nonequivalence. This trend is stronger in both synthesis runs
from Microsynth than in the material received from Eurofins.

Besides these two general trends, other observations can be
made when looking at the synthesis data. Across all manufac-
turers, the curves in Fig. 3 obtained from Microsynth synthesis 1
are much smoother than those obtained from Microsynth 2 and
Eurofins Genomics syntheses.

The observed trends give a first indication about data
robustness and could in part be explained by chemical processes
occurring during DNA synthesis. The discrepancy between the
percentages of nucleotides G, T and A, C (Trend 1, nucleotide
nonequivalence) can be caused by several factors. Microsynth
informed us in a discussion that the volumes of the individual
building blocks are not controlled to the nearest microliter.
Differences in concentration across the profile of the mixing
chamber may be the result, leading to a less homogeneous
distribution of nucleotides along the strand. In addition, the
coupling efficiency differs for each building block, and is
dependent on variables such as the utilization period of synthesis

reagents by the manufacturers or the protecting groups attached
to each building block. The result of differing coupling efficiencies
is most likely due to an uneven distribution of the four
nucleotides. The decrease of G and increase of T from 5 to 3/
(Trend 2, position nonequivalence) can be a result of the chemical
procedure a DNA strand experiences during synthesis. As DNA
synthesis proceeds in the 3'-5’ direction, the nucleotides shown in
position 60 of Fig. 3 have been added to the DNA strand first. As
synthesized DNA fragments remain in the synthesis chamber
until the desired DNA strand length has been obtained,
nucleotides added to a DNA strand at the beginning of a
synthesis have remained in the synthesis environment for the
longest time. Thus, these nucleotides have seen the most synthesis
steps, and in turn also the most oxidation steps. This throughput
feature of chemical DNA synthesis can be an explanation for
trend 2 (position nonequivalence) where the composition of G
decreases along the strand in 5'-3' direction and the composition
of T increases in 5'-3’ direction. Oxidation can lead to a
phenomenon called G-T transversion, whereby the base G gets
chemically altered such that during DNA replication steps, it can
be exchanged for a base T. The mechanism of transversion is
illustrated in Fig. 3e.

Besides the general trends, the difference in smoothness of the
curves in Fig. 3 can be explained by the differences in synthesis
strategy from the suppliers: whereas usually the four phosphor-
amidites are mixed from their storage vessels in the reaction
chamber for every synthesis cycle (Micosynth synthesis 2 and
Eurofins), the phosphoramidites were pre-mixed (upon request)
and this same mixture was used for all synthesis cycles for
Microsynth synthesis 1 yielding a much flatter curve.

There are two main potential sources of bias that can have an
effect on the results as shown in Fig. 3: coverage bias and error
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Fig. 3 Commercial DNA syntheses. Commercial DNA synthesis of random nucleotides from a Microsynth (synthesis 1), b Microsynth (synthesis 2),

¢ Eurofins Genomics. d Heat map showing normalized nucleotide pair distribution along the strand length of Microsynth 1 synthesis (Fig. 3a). For the three
syntheses, illustrated are the 60 nucleotides of the random section of DNA strands, respectively, based on the design featured in Fig. 1. The direction of
synthesis is indicated by arrows. Analyzed sample size ca. 700,000 sequences each. e The mechanism of G-T transversion can be a source for the effect
of percentage variation of G and T along the strand of DNA (position nonequivalence). Source data are provided in the Source Data file.

bias. The former bias has been investigated by Chen et al.3* and is
predominantly expressed by bias that can be related to the spatial
location on the synthesis chip and PCR stochasticity>*. The latter
bias is the result of insertions, deletions, or substitutions of
erroneous  nucleotides  during  synthesis, PCR, and
sequencing steps.

For our work, coverage bias only influences the nucleotide
distribution if there is a significant discrepancy between coverage
of each random sequence. We have analyzed this by counting the
number of occurrences of each sequence and found that a single
sequence is not present in the pool more than five times with a
mean presence of each sequence of 1.03 times. This implies that
the bias from sequence coverage cannot be the reason for the
observed nucleotide nonequivalence and position nonequivalence
behavior.

As for the error bias, it is difficult to distinguish between
synthesis and sequencing errors as the two processes cannot be
completely decoupled, as access to the molecular morphology of
DNA is only possible through sequencing DNA. However, studies
have suggested that if data is handled accordingly, sequencing
errors occur at random positions?®. During synthesis of DNA,
growing strands may be terminated before having reached the
desired length and thus induce a bias to the pool3637. We account
for this synthesis bias by following strict sequence selection
criteria. To our best knowledge, no studies of sequencing error
trends have shown effects of nature and magnitude as we see in
Fig. 3a—c. We therefore must conclude that the trend seen is that
the trend seen predominately originates from synthesis.

By normalizing Microsynth synthesis 1 (Fig. 3a), we obtain a
heat map illustrating the prevalence of two nucleotides binding
(Fig. 3d), and can observe a third bias: nucleotide binding
prevalence. We see that the preference for one base binding to the
existing nucleotide is partially dependent on the nature of the
existing nucleotide, thus, guanine is least prevalent to bind to an

4

adenine (normalized proportion <0), if it has the possibility to
bind to an adenine, thymine, cytosine, or guanine, and guanine is
most prevalent to bind to guanine (normalized proportion >0), if
it is free to bind to adenine, thymine, cytosine, or guanine. Note
that the nucleotide pair distribution cannot only be explained by
the position-dependent bias as seen in Fig. 3a: For example, when
just going by bias, CA should be less frequent than GG at the
beginning of the sequence, yet they are equally likely.

From a synthesis point of view, there are practical possibilities
to remove the biases induced. For example, adding more T than
G building blocks to the reaction as synthesis proceeds (and thus
altering the predetermined ratio of nucleotides A, G, T, and C)
could leverage the bias from transversion. However, such
interventions are laborious and result in the synthesis system to
be less robust. We have thus chosen to instead utilize a
computational post-processing algorithm to remove bias created
during DNA synthesis, increasing the robustness and reprodu-
cibility of the overall procedure.

Data handling. For data analysis and handling, we treated each
synthesis pool shown in Fig. 3 separately. For clarity purposes, we
have chosen to demonstrate our results using the data created
from Microsynth synthesis 1. Although Microsynth synthesis
1 shows the strongest bias resulting from transversion, the
smooth curves show the most homogeneous mixing and coupling
behavior during synthesis steps.

Reading the randomness from synthesized DNA strands
requires reading of the individual DNA strands, which is done
by state-of-the-art sequencing technologies. With various options
available for sequencing, we chose Illumina’s iSeql00 in a
procedure as described by Meiser et al.38.

Sequencing output (a digital file) was processed in order to
select the “error-free” sequences from the pool. Errors that may
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have occurred include deletion, insertion, and substitution errors
and can result in the DNA strand being short of a base, too long
by a base or containing a faulty base, respectively38. The selection
procedure is illustrated in Supplementary Information 1. Pfeiffer
et al.3> have shown that after processing the DNA pool by means
of sequencing-by-synthesis using Illumina, removing (faulty)
shortened sequences, errors from sequencing DNA occur at
seemingly random positions. Other studies have shown that
errors may be related to the sequencing context, where the
highest rate of errors was found for nucleotide T, which in our
case would result to be erroneous once in every 1250 nucleotides,
and the error rates for C, G, and A being much lower3®. Overall,
expected error rates were found to increase towards the end of the
DNA strand3®. To minimize the influence of (especially) deletion
errors on randomness, we shortened all sequences to 60
nucleotides and simultaneously selected only the sequences
containing the correct length of random nucleotides (Supple-
mentary Information 1).

Once the pool of computer-processed DNA has been confined
(to sequences, all 60 nucleotides in length), DNA nucleotides
were mapped to bits by using the following scheme: A — 0, C —
0, T — 1, G — 1. Mapping translated the digitized DNA file to a
digitized binary file. (Other mapping alternatives can be found in
the Supplementary Information.) The strings of bits (bit streams)
obtained after mapping were subsequently tested for randomness
using the NIST statistical test suite. We selected very strict
randomness evaluation criteria: a pass was only obtained, when
all selected tests were passed individually. If even one test failed,
the randomness evaluation failed.

Evaluation of the (raw) bit streams using NIST statistical test
suite showed that not all tests passed, implying that the bit
streams we obtain do not have the same statistical properties as a
fully random sequence, i.e., they still contain some redundancy
and bias (see Supplementary Information 2). Thus, further bit-
processing was necessary in order to remove the bias introduced
during synthesis.

De-biasing algorithm. There are various options for algorithms
removing bias from data. Known are, for example, compression
using a cryptographic hash, compression using good linear codes,
or compression using the Von Neumann algorithm®4041. Out of
the existing options, we have chosen to apply the Von Neumann
corrector to our set of data, as it is very simple to use, and does
not introduce any additional source of randomness into the data,
allowing the analysis of the random nature of the physical
data®40, The output of the Von Neumann corrector is expected to
be perfectly unbiased®4041, generating output as follows: (1) if the
input is “01” or “10”, the first digit becomes the output and the
second digit is discarded. (2) If the input is “00” or “11”, there is
no output and both input digits are discarded. However, the big
drawback of the Von Neumann generator is the large loss of data,
as at least 75% of the input is being discarded. This implies that
the input needs to be sufficiently large®40.

The effect of Von Neumann de-biasing can be seen when
analyzing the difference between raw bit streams (containing
bias) and processed bit streams (stripped of bias). Figure 4
illustrates how Von Neumann de-biasing alters the morphology
of the pool of raw bit streams. As Von Neumann de-
biasing removes bits from the original bit streams, processed bit
streams are shorter than raw bit streams. The cumulative sum of
each raw bit stream (each 60 nucleotides long) and each
processed bit stream (each shorter than 60 nucleotides long)
was calculated by assigning every 0 to the value —1 and every 1 to
the value 1, and the results were plotted. Further, all de-biased bit
streams were put together into one block of bits (bit block).

It was observed that the cumulative sum before de-biasing was
skewed (binomial distribution not centered around a cumulative
sum across of zero). Removing the bias by applying the Von
Neumann algorithm shows a shift of the binomial distribution
along the horizontal axis, such that when de-biased, the
cumulative sum of the bit distribution is centered around zero.
The effect of de-biasing on the bits can also be quantified as
follows: Synthesis 1 by Microsynth with a nucleotide-to-bit
mapping A —0, C—0, T— 1, G—1, results in a de-biasing
efficiency of 23.7% (meaning 23.7% of bits originally present in
raw bit streams are still present after Von Neumann de-biasing).
Although the loss of data is massive (more than 75% of all bits
lost) and computational efficiency is low (as the average output
rate of data is four times slower than the average input rate of
data), bias removal is perfect (with the output being completely
unbiased, as seen when comparing the cumulative sum across bit
streams before and after de-biasing in Fig. 4)40,

After employing the Von Neumann algorithm, the bit block
was tested for randomness again, using the NIST statistical
test suite.

Randomness evaluation (NIST-statistical test suite). As can be
seen in Table 1, the processed bit streams passed every test listed
with a pass rate for every test of >54/56, surpassing the statisti-
cally required minimum (52/56)!2. The decision level for P-values
is such that P-value > 0.001 indicates that the sequence is random
with a confidence of 99.9%!2. The results go to show that the
design for the DNA RNG, using the intrinsically stochastic pro-
cesses of a chemical reaction, is very suitable to serve as an
effective true RNG. Robustness evaluation of the NIST statistical
test suite with respect to our data is shown in Supplementary
Information 3.

As mentioned previously, we have further synthesized two
more random pools of DNA (Microsynth, synthesis 2 and
Eurofins Genomics synthesis). De-biasing efficiencies for each
synthesis scheme are between 23% and 24% (see Supplementary
Information 4). Further improvements of de-biasing efficiencies
can theoretically be addressed as follows: If we bundle three
nucleotides together (for example when taking the nucleotides A,
C, and T), we obtain six choices of combination of these three
nucleotides, which have the same probability of appearing in a
random nucleotide stream. (In our example case, the six
possibilities would be: ACT, ATC, CAT, CTA, TAC, TCA.) Each
of these possibilities can then be mapped to numbers zero to five,
which in turn are mapped to a binary sequence. This binary will
be uniformly distributed. If all nucleotides were unbiased, the
expected efficiency of de-biasing is 28.72%, thus showing a slight
improvement over 1-bit-to-1-nucleotide mapping.

In addition, to the de-biasing efficiencies, results of the NIST
evaluation of all syntheses can be found in Supplementary
Information 5 with respective analyses and different nucleotide-
to-bit mapping schemes applied. It was seen that for every 1-bit-
to-1-nucleotide mapping possible, the data set synthesized can be
de-biased and made random using Von Neumann algorithms.
Additionally, a 2-bits-to-1-nucleotide mapping was investigated.
The raw bit streams were not random, and one Von Neumann
compression did not make the bit streams random. However,
after a second compression, bit streams did become random.
These results show the robustness of random number generation
using DNA synthesis together with de-biasing using the Von
Neumann algorithm.

Scalability. The complete process of randomness generation from
DNA synthesis is schematically depicted in Fig. 5 where the steps
discussed in this work are visually summarized. From the
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data are provided in the Source Data file.

Table 1 NIST statistical test suite randomness evaluation.

NIST statistical test P-value Proportion Result
Frequency 0.058984 56/56 Pass
Block frequency 0.383827 56/56 Pass
Cumulative sums 0.739918 56/56 Pass
Runs 0.213309 55/56 Pass
Longest run of ones 0.23681 54/56 Pass
Rank? 0.616305 56/56 Pass
Discrete Fourier 0.002758 55/56 Pass
transform

Approximate entropy 0.574903 56/56 Pass
Serial 0.011791 56/56 Pass

NIST statistical tests performed on processed synthesized DNA oligonucleotides, mapped to
bits using the scheme A -0, C— 0, T -1, G — 1. For each test, 56 bit streams containing 1096
bits were tested.

aException for the rank test: 56 bit streams containing 100,000 bits each were tested.

synthesis by Microsynth (synthesis 1), we have obtained 204 pg of
DNA, which translates to about 4 x 10! strands of DNA.
Microsynth informed us that this amount of DNA is manu-
factured by fully automated machines within 8.75h, and can be
obtained commercially for a price of ca. USD 100. The sample of
dry DNA contains a theoretical entropy of 28 PB (if there is no
bias in the data), and 7 PB of randomness when removing bias
using Von Neumann with a loss of 75% of bits. Consequently, in
contrast to DNA data storage3®, DNA synthesis is not the bot-
tleneck in DNA random number generation as such a standard
synthesis can generate true randomness at a rate of 225 GB/s at a
cost of 0.000014 USD/GB.

Sequencing, however, is one of the bottleneck steps concerning
time and costs of DNA handling2. While our smaller scaled
sequencing experiments were performed on an Illumina iSeq
device, Illumina technology is fully scalable and high throughput
systems (such as Illumina NovaSeq 6000) allow a throughput of
up to 20 billion sequence reads within 36 h*3 for a price of ~USD
22,000%4. Accounting for losses due to strict sequence filtering,
and after Von Neumann correction, a full NovaSeq 6000 run
could generate true random numbers at a rate of ca. 300 kB/s at a

cost of 600 USD/GB. A more modular approach will allow the
combination of different synthesis and sequencing methods, thus,
technological advances can further reduce costs of writing and
reading randomness from DNA.

In comparison to other random number generation methods
(Table 2), DNA synthesis shows a higher randomness production
rate than many commercial options such as the online
distributors Random.org or HotBits, for example*>4°. However,
randomness generation can also be orders of magnitudes faster,
especially when shifting from true RNGs to pseudo-RNGs. When
using random numbers transmitted through the internet it is
important to consider that these come with limitations, such as
potential interception of data, which adds a certain degree of
uncertainty to the security.

Limitations in terms of costs and speed of random number
generation by DNA synthesis, especially of reading the DNA, will
not vanish within the next months. However, there are other
benefits entailed to generating randomness in the form of DNA.
These include enhanced storage capacities, as the density of data
in DNA is very high, mobility of sequencing devices, such as the
MinION to a wide range of surrounding conditions, as well as the
advantage that once synthesized, DNA can be archived for
millennia, preserving the generated randomness over generations
to come®”+48,

Discussion

In this work, we have found that DNA syntheses have two major
biases in part from synthesis discrepancies, such as mixing and
coupling efficiencies, but also from transversion, originating from
oxidation steps during DNA synthesis. These biases can, however,
be removed using randomness extraction algorithms such as the
Von Neumann algorithm applied here. Using NIST’s statistical
test suite for evaluation of randomness, we find that de-biased
sets of DNA-generated bit streams are random, with all tests
passed.

We have shown that DNA synthesis can be used for generating
random numbers by making use of the stochastic process of
chemical product formation together with next-generation
sequencing technologies to analyze individual molecules. By
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Fig. 5 Process overview. Data processing steps for DNA random number generation. a DNA synthesis by Microsynth (synthesis 1) showing the
percentage of nucleotides per position in the DNA segment for the overall pool (see Fig. 3). b Percentage of bits at each position in the bit stream for all
sequences in the pool. ¢ Percentage of bits at each position in the bit stream for all sequences in the pool after Von Neumann de-biasing algorithm has
been applied. Subsequently to Von Neumann de-biasing, the individual bit streams were combined into a block of bits and then separated into 60-bit
streams for better comparison (Supplementary Information 6). Source data are provided in the Source Data file.

Table 2 Selection of random number generators, the underlying generation methods and randomness production rate in MB/s.

Method

Random number generator Randomness production
rate [MB/s]

Meiser et al. 03

Gaviria Rojas et al.14 Not available

Lee et al.”® 0.025

Reidler et al.4? 1560

HotBits4 0.0001

Random.org#® 0.0015

Lavarand® 0.02

Intel digital random number 800

generator8

Mersenne Twister’ 15,000

DNA synthesis

Solution-processed carbon nanotubes

Crystallization robot analyzing chemical processes

Chaotic semiconductor laser

Timing successive pairs of radioactive decays

Entropy from atmospheric noise

Patterns photographed off floating material in lava lamps

Processor resident entropy source to seed hardware-implemented entropy
from atmospheric noise

Pseudo-random number generator: algorithm using polynomial algebra

synthesizing 204 ug of DNA, we have shown the possibility of
synthesizing random numbers at a rate higher than 225 GB/s,
offering volumes of up to 7 million GB of randomness for a cost
of 0.000014 USD/GB (synthesis) and a fully scalable read-out on
demand using Illumina sequencing technology. Our analysis
further displays that synthesis errors (gradients and nucleotide
nonequivalence) commonly observed during the generation of
random nucleotides can be computationally corrected for using a
standard de-biasing routine. In the examples used the yield of
random numbers per strand sequenced was hardly affected by the
quality of the synthesis.

DNA as a physical medium containing randomness, can be
stored and preserved for millennia to come. Due to the high-

randomness density of DNA, it can physically or digitally be
transported to any location desired. In this work, we have taken
advantage of the stochastic properties of chemical reactions,
generating true random numbers from DNA synthesis, offering a
viable alternative for large volumes of randomness. While efforts
are ongoing, reducing costs for reading and writing DNA, uti-
lizing DNA as a commercial RNG could already be of
interest today.

Methods
Random-DNA design. DNA was designed such that two priming regions around
64 random nucleotides give a total DNA length of 105 nucleotides with a structure
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as follows: 5 ACA CGA CGC TCT TCC GAT CT-RANDOM-AGA TCG GAA
GAG CAC ACG TCT 3.

Random-DNA synthesis. Three orders were placed with two different DNA
synthesizing companies: Microsynth (synthesis 1 and 2), and Eurofins Genomics
(synthesis 3). For synthesis 1, we had placed a special demand that all building
blocks were to be mixed before coupling. Synthesis 2 and 3 were regular on-line
orders (no 5 and 3’ modifications, 0.2 pmol synthesis scale, PAGE purification).

Library preparation. All samples were diluted in 200 uL mili-Q water. Sequencing
adapters F1/R1 and 2RI/2FU were added, and dilutions of the samples for
sequencing were performed using the protocol described by Meiser et al.38.
Concentrations were measured using a fluorescence-based DNA concentration
assay (Qubit). A list of all primers used can be found in Supplementary
Information 7.

Next-generation sequencing. Each sample was diluted to 1 nM and then further
processed for sequencing using the iSeq100 Sequencing System Guide. For quality
control, 2% (vol/vol) PhiX were added to the sequencing run. (PhiX is a reliable,
adapter-ligated, ready-to-use genomic DNA sequencing control library provided by
Illumina.) Sequencing was performed on Illumina’s iSeq 100 with a paired-end
read length of 2 x 150 bp. Analysis of sequencing output was performed using
Matlab version R2018b and python version 3.8.

Selection of error-free sequences. To only allow for sequences that have been
synthesized and sequenced correctly, sequences containing 16 nucleotides of the
adapter (AGA TCG GAA GAG CAC A) were searched for and used for further
data treatment. All other sequences were discarded. The remaining sequences were
then shortened to 69 nucleotides. As deletions may occur during synthesis and
sequencing steps, the designed random region of 64 nucleotides may be shorter
than designed. Thus, the remaining 69-nucleotide long sequences were searched for
the first 9 nucleotides of the adapter (AGA TCG GAA). This time, all sequences
still containing these nucleotides were discarded from the pool. All other sequences
were shortened to 60 nucleotides. Thus, it is guaranteed, that the random region
does not contain any adapter nucleotides due to deletion errors. An illustration of
this procedure can be found in Supplementary Information 1.

Nucleotide-binding prevalence. For every position x along the sequence data, the
relative presence of two nucleotides following each other (e.g. AT) is normalized by
the relative presence of the single nucleotides (e.g. A and T) at the corresponding
position. (e.g. for AT at position x: 2"™(AT) = ((f(AT)/f(A))/(fes1(T)). This
gives the general formula with nucleotides N; and Ny: fR°"™(N;N,) = ((f.(N;N,)/
AN (Fera(N).

NIST evaluation parameters. NIST evaluation tests were chosen such that for
each test, 56 bit streams containing 1096 bits were tested (with the exception of the
rank test, where 56 bit streams containing 100,000 bits each were tested). This
variant of statistical analyses was chosen and explained by Rojas et al.!4. The tests
were applied with the standard parameters as given by the NIST statistical test
suite!2, with the following parameters differing from set values: (1) frequency test,
no parameter adjustments; (2) block frequency test, no parameter adjustments
(block length, M = 128); (3) cumulative sums test, no parameter adjustments; (4)
runs test, no parameter adjustments; (5) longest runs of ones test, no parameter
adjustments; (6) rank test, no parameter adjustments; (7) discrete Fourier trans-
form test, no parameter adjustments; (8) approximate entropy test parameter
adjustment: block length, m = 5; 9) serial test no parameter adjustments (block
length, m = 16). For each statistical test, the NIST software computes a P-value,
which gives the probability that the sequence tested is more random than the
sequence a perfect RNG would have produced. Thereby, a P-value of 1 indicates
perfect randomness, whereas a P-value of 0 indicated complete non-randomness.
More specifically, for a P-value > 0.001: sequence can be considered random with a
confidence of 99.9%, and for a P-value < 0.001 sequence can be considered non-
random with a confidence of 99.9%!2.

Calculations of cost and rate for randomness generation. Cost and rate of
randomness generation were calculated as a basis of the number of random
nucleotides synthesized. This was done by calculating the number of strands
synthesized (NS) from the amount of DNA synthesized (M): NS = M x Avogadro
constant.

For the number of random bits synthesized (NRB), 60 random nucleotides per
strand were assumed. The randomness output volume (ROV) was calculated by
assuming a 25% de-biasing efficiency: ROV = 0.25 x NRB.

The possible entropy of a random 60-mer is 460 = 103, and thus is significantly
larger than the number of sequences in the pool. This implies that it may be
expected that every strand synthesized is unique. As a result, the 204 pug sample of
dry DNA contain a theoretical entropy of 1 bits/nucleotide x 60 nucleotides/
strand x 4 x 1015 strands = 28 PB (if there is no bias in the data), and 7 PB of
randomness when calculating the ROV with 25% de-biasing efficiency.

Integrating the cost per synthesis run and the time for synthesis, the overall
synthesis cost as well as the synthesis speed were calculated. For sequencing, scaled
costs were calculated for the NovaSeq 6000 system with an S4 flow cell of 2 x 100
bp reads, which allows for 20 billion sequence reads in 36 h for a cost of 22,000
USD. We have evaluated sequencing output by the DNA trimming and selection
scheme depicted in Supplementary Information 1. The overall sequencing cost as
well as the sequencing speed were calculated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The sequencing data underlying Fig. 3 is available on figshare repository: https://doi.org/
10.6084/m9.figshare.12941786.v1. Any additional data will be made available upon
reasonable request. Source data are provided with this paper.

Code availability
The analysis code that supports the findings of this study is available upon request/is on
figshare repository: https://doi.org/10.6084/m9.figshare.12941795.v1.
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