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M. Nascimento2, Emerson L. Olivares1*

1 Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences,

Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica–RJ, Brazil, 2 Laboratory of

Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro–

Rio de Janeiro, Rio de Janeiro, Brazil, 3 Laboratory of Cellular and Molecular Cardiology, Carlos Chagas

Filho Biophysics Institute, Federal University of Rio de Janeiro–Rio de Janeiro, Rio de Janeiro, Brazil,

4 Laboratory of Physiology and Human Performance, Department of Physical Education and Sports, Institute

of Education, Federal Rural University of Rio de Janeiro, Seropedica–RJ, Brazil

* el.olivares@gmail.com

Abstract

Aim

Thyroid dysfunctions can increase the risk of myocardial ischemia and infarction. However,

the repercussions on cardiac ischemia/reperfusion (IR) injury remain unclear so far. We

report here the effects of hypothyroidism and thyrotoxicosis in the susceptibility to IR injury

in isolated rat hearts compared to euthyroid condition and the potential role of antioxidant

enzymes.

Methods

Hypothyroidism and thyrotoxicosis were induced by administration of methimazole (MMZ,

300 mg/L) and thyroxine (T4, 12 mg/L), respectively in drinking water for 35 days. Isolated

hearts were submitted to IR and evaluated for mechanical dysfunctions and infarct size.

Superoxide dismutase types 1 and 2 (SOD1 and SOD2), glutathione peroxidase types 1

and 3 (GPX 1 and GPX3) and catalase mRNA levels were assessed by quantitative RT-

PCR to investigate the potential role of antioxidant enzymes.

Results

Thyrotoxicosis elicited cardiac hypertrophy and increased baseline mechanical perfor-

mance, including increased left ventricle (LV) systolic pressure, LV developed pressure and

derivatives of pressure (dP/dt), whereas in hypothyroid hearts exhibited decreased dP/dt.

Post-ischemic recovery of LV end-diastolic pressure (LVEDP), LVDP and dP/dt was

impaired in thyrotoxic rat hearts, whereas hypothyroid hearts exhibited improved LVEDP

and decreased infarct size. Catalase expression was decreased by thyrotoxicosis.
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Conclusion

Thyrotoxicosis was correlated, at least in part, to cardiac remodeling and increased suscep-

tibility to IR injury possibly due to down-regulation of antioxidant enzymes, whereas hypo-

thyroid hearts were less vulnerable to IR injury.

Introduction

Thyroid hormones (TH) are known to play crucial roles in the regulation of cardiovascular

system homeostasis. By binding to nuclear receptors, TH regulates the expression of several

contractile and calcium-handling proteins, ion channels and sympathetic tonus [1]. As a result,

cardiac inotropic, chronotropic, lusitropic and dromotropic properties, as well as vascular

resistance, are directly affected by TH levels.

It has been widely recognized from clinical data that thyroid dysfunction is correlated to

increased cardiovascular morbidity and mortality [2]. Overall, tachycardia and tachyarrhyth-

mic events, cardiac hypertrophy and heart failure have been frequently reported in conditions

of TH excess, such as Graves’ disease, thyroid or pituitary adenoma, and toxic multinodular

goitre [3,4]. On the other hand, bradyarrhythmias, mild hypertension, impaired systolic and

diastolic functions have been associated to TH deficiency [4,5].

Importantly, clinical reports have demonstrated that hyperthyroid and hypothyroid

patients are more predisposed to myocardial ischemia and acute myocardial infarction (AMI),

the leading cause of death among cardiovascular diseases, when compared to euthyroid

patients [6,7]. In case of TH excess, coronary artery spasm and increased prothrombotic state

can elicit coronary artery occlusion and myocardial ischemia [8–10]. Myocardial ischemia can

be further worsened by increased cardiac workload and oxygen demand elicited by TH excess

[11]. In hypothyroid patients, dyslipidaemia and increased circulating cholesterol levels are the

main contributors to the formation of atherosclerotic plaque and development of coronary

artery disease [3,10]. Nonetheless, decreased blood vessel density and increased arterial wall

stiffness account for the declined coronary blood flow and the higher risk of myocardial ische-

mia, despite the decreased cardiac workload induced by TH deficiency [11–13].

Reperfusion remains the most effective therapeutic maneuver to rescue ischemic myocar-

dium and has been widely recommended by both American Heart Association and European

Society of Cardiology [14,15]. Even so, reperfusion per se recruits pro-apoptotic pathways that

culminate in cardiomyocyte death and further infarct expansion, a condition referred to as

reperfusion injury [16]. Among several pathophysiological mechanisms, Redox imbalance has

been demonstrated to play a pivotal role in the progression of ischemia/reperfusion (IR) injury

by promoting oxidative damage and cell apoptosis [17].

The clinical relevance of changes on TH level in the progression of IR injury and the reper-

cussion on AMI outcomes are unclear, whereas experimental data remain conflicting so far.

Administration of 3,5,3’- triiodothyronine (T3), the main cellular active thyroid hormone, has

been reported to potentiate post-ischemic recovery of myocardial mechanical properties in

experimental models of IR injury [18,19]. Conversely, IR-induced myocardial damage and

ventricular arrhythmias have been shown to be attenuated in hypothyroid rat hearts in com-

parison to euthyroid and thyrotoxic rats [20,21]. Therefore, this study aimed to assess both car-

diac mechanical properties, as well as the extent of myocardial damage induced by IR in rats

exposed to long-term TH deficiency and excess in comparison to euthyroid rats. The potential

role of antioxidant enzyme imbalance was also investigated.
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Materials and methods

Animals

This study followed the standards and ethical guidelines of the Ethics Committee for Research

of the Federal Rural University of Rio de Janeiro and of the Federal University of Rio de

Janeiro. It was approved by the Ethics Committee for Research of the Federal Rural University

of Rio de Janeiro and of the Federal University of Rio de Janeiro under the number

IBCCF194-07/16. Furthermore, all the standards proposed by the Guide for the Care and Use

of Laboratory Animals (U.S. National Institutes of Health (NIH) Publication No. 85–23,

revised 1996) were observed.

Experimental protocol

Male Wistar rats (8 weeks-old, 170–200 g) obtained at the Central Vivarium (Carlos Chagas

Filho Institute of Biophysics, UFRJ, Brazil) were housed in cages under controlled temperature

(21 ± 2˚C), daily exposed to 12-hour light–dark cycle (lights off at 7:00 pm) and water and

standard chow ad libitum. The animals were divided into three groups: euthyroid (CTL,

N = 18), hypothyroid (MMZ, N = 14) and thyrotoxic (T4, thyroxine group, N = 17). Hypothy-

roidism and thyrotoxicosis were induced by methimazole (300 mg/L) and L-thyroxine (12

mg/L), respectively, administered in drinking water for 35 days [22]. No animal exhibited

adverse symptoms during all period of vehicle, T4 and MMZ exposure. After treatments, all

animals were euthanized under anesthesia with isoflurane by exsanguination, and blood sam-

ples were collected for serum T4 and T3 measurements by radioimmunoassay. Hearts were

excised and weighed, and the tibia length was measured for pathological analysis. The suscepti-

bility to IR injury was evaluated in isolated hearts using a Langedorff apparatus. Cardiac sam-

ples were collected and stored at -80˚C for posterior molecular analyses.

Ex vivo IR experiments

Methods for isolated rat heart experiments were similar to those previously described [23].

Excised hearts were weighted and placed in modified Krebs-Henseleit solution (KHS) (118

mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 25 mM NaHCO3, 10 mM glucose,

1.8 mM CaCl2, saturated with 95% O2 and 5% CO2). Aortas were hung on the cannula of a

modified Langendorff apparatus and hearts were artificially perfused with modified KHS

adjusted for pH 7.4 and 37˚C at a constant flow (10 mL/min). A latex balloon was inserted

into the left ventricular (LV) chamber through an atrial incision to assess mechanical perfor-

mance. Hearts were kept immersed in perfusion solution and baseline LV end-diastolic pres-

sure (LVEDP) was set at 10 mmHg. After 20 min of baseline period, wherein heart rate,

diastolic and systolic pressures were stable, the peristaltic pump was stopped and hearts were

submitted to 30 min of global ischemia and subsequent 60 min of reperfusion. LV developed

pressure (LVDP), LV systolic pressure (LVSP), LV end-diastolic pressure, LV maximal deriva-

tive of pressure (max. dP/dt) and LV minimal derivative of pressure (min. dP/dt) waveforms

were recorded with a pressure transducer (PT 300, Grass Technologies). The transducer was

connected to an amplifier (ML 110 ADInstruments), which was connected to an analogical/

digital converter (PowerLab 400, ADInstruments). All recordings were digitized and stored on

a computer for later analysis using the program LabChart 5.0 (ADInstruments1).

Measurement of infarct size

Ventricular sections were sliced into approximately 1.5 mm from apex to base and incubated

in 1% (w/v) TTC in phosphate buffer (pH 7.4) for 5 min at 37˚C. All slices were placed in a
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10% (v/v) formaldehyde solution for 24 h to improve contrast between stained (viable) and

unstained (necrotic) tissues. Ventricle slices were placed between two glass slides and their

images were digitally acquired in a scanner. Infarct size was determined using ImageJ software

(NIH ImageJ: National Institute of Health, USA, version 1.22). Values were expressed as % of

total ventricular area [24].

Radioimmunoassay for total serum T4 and T3

Blood samples were collected at the end of treatment after euthanasia (35th day). Samples were

centrifuged at 1931.9 xg for 20 min, and sera were separated and stored at -20˚C. Serum T3

and T4 were determined by specific Coated-Tube Radioimmunoassay kits (MP Biomedicals,

LLC, USA). All the procedures were carried out following the kit recommendation.

Quantitative polymerase-chain reaction (qPCR)

To estimate mRNA expression levels of superoxide dismutase type 1 (SOD1), SOD2, catalase,

glutathione peroxidase type 1 (GPX1) and GPX3 (Table 1), total RNA was extracted from LV

tissue samples using RNeasy1 Fibrous Tissue Mini Kit (QIAGEN) and cDNA was prepared

from 1 μg of total RNA using High-Capacity Reverse Transcription kit (Thermo Fisher Scien-

tific) according to the manufacturer’s instructions. mRNA levels of target genes (Table 1) were

evaluated by qRT-PCR. Amplification reactions containing 1ng of cDNA were performed at

60˚C during the annealing and extension cycles. The expression of chosen genes was normal-

ized to GAPDH as an internal control. The quantification of selected mRNA was determined

by 2-(ΔΔCT) method in a Viia7 Software v1.2.4 and expressed as fold change of MMZ and T4

group compared to the control group.

Statistical analysis

Data are presented as mean ± standard error of mean (S.E.M.). Normal statistical distribution

of all data was determined by Shapiro-Wilks test (Statext v2.7, http://www.statext.com/index.

php). One-way ANOVA followed by Bonferroni post-hoc test were used to compare MMZ

and T4 groups to CTL group (Prism1, GraphPad). Statistical differences were considered sig-

nificant when P< 0.05.

Results and discussion

The present study provides evidence that the pathophysiological progression of myocardial IR

injury can be distinctly affected by TH excess or deficiency. While thyrotoxic rat-hearts were

more vulnerable to post-ischemic myocardial stunning than euthyroid rat hearts, post-ische-

mic recovery of mechanical properties was improved and infarct size was decreased in hypo-

thyroid rat hearts. Increased susceptibility to redox imbalance and oxidative damage might

contribute to these deleterious effects, given that thyrotoxic rat-hearts exhibited decreased

mRNA expression level of antioxidant enzymes SOD2 and catalase.

TH deficiency is the most commonly diagnosed thyroid dysfunction and can result from

several different environmental and physiological disturbances, such as iodine deficiency, pri-

mary atrophic hypothyroidism and Hashimoto’s thyroiditis [25]. The most frequent causes of

TH excess are Graves’ disease, toxic multinodular goitre and thyroid adenoma [25]. Despite

the limitations to mimic all features of human thyroid dysfunctions, delivery of MMZ and T4

in drinking water have been frequently used as non-invasive experimental models of hypothy-

roidism and thyrotoxicosis, respectively [22]. MMZ inhibits thyroidal enzyme thyroperoxidase

and incorporation of iodine into thyroglobulin, resulting in drop of T3 and T4 production, as

Repercussion of thyroid status on cardiac ischemia/reperfusion injury
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evidenced in the MMZ group (Table 2, P< 0.05 vs. CTL group). Unsurprisingly, long-term

T4 exposure increased serum level of T4 (Table 2, P < 0.01 vs. CTL group). In addition, serum

T3 levels were also increased in the T4 group (Table 2, P< 0.01 vs. CTL group), given that T4

can be converted into T3 by deiodinases (DIO) type 1 and 2 in target tissues. Taken together,

these findings confirm that MMZ and T4 groups developed hypothyroidism and thyrotoxico-

sis, respectively as expected. TH-deficient rats exhibited decreased mean body weight (Table 2,

P< 0.001 vs. CTL group), in agreement with the essential role of TH in the process of muscu-

loskeletal growth by regulating pituitary and hypothalamic growth hormone synthesis [26].

Furthermore, TH deficiency has been correlated to decreased food intake and decline on body

weight gain [26]. Conversely, body weight gain was not significantly affected by long-term T4

exposure (Table 2, P > 0.05 vs. CTL group). Although previous data have demonstrated that

food intake can be increased by TH excess, it has been widely recognized that metabolic rate

can also be increased in such a condition, which might elicit balanced body weight gain [27].

Clinical and pre-clinical data have demonstrated that TH excess can induce substantial car-

diac morphological changes [28,29]. Indeed, thyrotoxic rats exhibited increased HW (Table 2,

P< 0.01 vs. CTL group), HW/BW (Table 2, P< 0.001 vs. CTL group) and HW/tibia length

(Table 2, P< 0.01 vs. CTL group) in comparison to euthyroid rats, suggesting development of

cardiac hypertrophy. At initial phases, cardiac growth in response to TH involves proportional

rates of cardiomyocyte enlargement and proliferation of other cell types, such as fibroblasts

and vascular cells [30–32]. At the transcriptional level, contractile and calcium-handling pro-

teins are up-regulated, resulting in a condition frequently referred as physiological cardiac

Table 1. Primer sequences.

Targets Forward Reverse Amplicon length

SOD1 TGTGTCCATTGAAGATCGTGTG CTTCCAGCATTTCCAGTCTTTG 138 bp

SOD2 GGACAAACCTGAGCCCTAAG CAAAAGACCCAAAGTCACGC 81 bp

GPX1 AATCAGTTCGGACATCAGGAG GAAGGTAAAGAGCGGGTGAG 150 bp

GPX3 CAGCTACTGAGGTCTGACAG ACTAGGCAGGATCTCCGAG 145 bp

Catalase CAAGCTGGTTAATGCGAATGG TTGAAAAGATCTCGGAGGCC 141 bp

GAPDH CCATCAACGACCCCTTCATT GACCAGCTTCCCATTCTCAG 110 bp

SOD1 and SOD2 = Superoxide dismutase types 1 and 2; GPX1 and GPX3 = glutathione peroxidase types 1 and 3; GAPDH = Glyceraldehyde 3-phosphate

dehydrogenase.

https://doi.org/10.1371/journal.pone.0190355.t001

Table 2. Thyroid hormone levels and biometric parameters.

Parameters CTL MMZ T4

Total T4 (μg/dL) 4.10 ± 0.25 2.06 ± 0.13* 12.19 ± 1.35**

Total T3 (ng/dL) 27.86 ± 5.54 8.74 ± 0.92* 347.1 ± 36.82**

Initial BW (g) 160.3 ± 2.431 162.0 ± 3.209 159.6 ± 3.156

Final BW (g) 262.0 ± 3.804 194.4 ± 4.925*** 279.4 ± 10.35

HW (g) 1.217 ± 0.04112 0.8520 ± 0.04352** 1.582 ± 0.07506**

HW/BW (mg/g) 4.287 ± 0.1180 4.382 ± 0.1818 9.913 ± 0.4274***

HW/Tibia length (g/cm) 0.4953 ± 0.02398 0.4338 ± 0.03431 0.6833 ± 0.03318**

T4 = thyroxine; T3 = 3,5,3’ triiodothyronine; BW = body weight; HW = heart weight. Data are mean ± S.E.M. N = 14–18.

*P<0.05

**P<0.01 and

***P<0.001 vs. CTL.

https://doi.org/10.1371/journal.pone.0190355.t002
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hypertrophy [33,34]. As demonstrated elsewhere, TH can potentiate calcium-induced calcium

release from sarcoplasmic reticulum, as well as cytosolic calcium concentration during systolic

period by up-regulation of ryanodine receptor expression level [33–34]. In addition, up-regu-

lation of sarcoplasmic Ca2+ ATPase, as well as down-regulation of phospholambam expression

levels can potentiate calcium uptake by sarcoplasmic reticulum, which has been correlated to

increased relaxation rate during diastole, and further calcium release in the following excita-

tion-contraction cycle [33–34]. Consequently, hyperthyroid patients can present increased

fractional shortening and ejection fraction compared to euthyroid patients [35]. In keeping

with these evidences, baseline contractility and relaxation properties were potentiated by TH

excess, as evidenced by increased LVSP (Table 3, P< 0.05 vs. CTL group), LVDP (Table 3,

P< 0.05 vs. CTL group) max. dP/dt (Table 3, P< 0.001 vs. CTL group) and min. dP/dt

(Table 3, P< 0.05 vs. CTL group).

On the other hand, there is no consensus regarding cardiac structural changes elicited by

TH deficiency. In general, clinical studies have demonstrated no significant changes on LV

structure of hypothyroid patients [36–38]. Even so, cardiac atrophy has been reported in

few experimental clinical studies, whereas cardiac hypertrophy and dilation can be observed

during the progression towards heart failure [39]. Corroborating these evidences, TH-defi-

cient rats did not show significant changes in relative HW/BW and HW/tibia length

(Table 3, P > 0.05 vs. CTL group) in comparison to euthyroid rats, although absolute HW

was decreased (Table 2, P < 0.01 vs. CTL group). Furthermore, contractility (Table 3,

P < 0.001 vs. CTL group) and relaxation (Table 3, P < 0.05 vs. CTL group) rates were signif-

icantly decreased by hypothyroidism, in agreement with the neuralgic role played by TH in

the regulation of contractile and calcium-related proteins. Indeed, decreased fractional

shortening, ejection fraction, stroke volume and cardiac output have been strictly correlated

to TH-deficiency-related diseases [4,5].

After the onset of ischemia, LVEDP progressively rose in all experimental groups (Fig 1).

Ischemic contracture, also known as stone heart, has been attributed to reduced ATP bioavail-

ability. The shift towards glycolysis and the unbalanced metabolic demand result in increased

lactate production and cytosolic acidification, an effect counterbalanced by the extrusion of

H+ by the Na+/H+ exchanger (NHX) [40]. As a result of increased NHX-induced sodium

influx, the activity of Na+/Ca2+ exchanger (NCX) also increases, as does intracellular calcium

concentration and LVEDP [41–43]. Interestingly, ischemic contracture was delayed (Fig 1F),

whereas post-ischemic LVEDP reached the lowest levels among hypothyroid rat hearts

(Table 4, P< 0.05 vs. CTL group). In agreement with our findings, Mourouzis et al. observed

decreased post-ischemic LVEDP in hypothyroid rat hearts, which resulted in increased LVDP

Table 3. Baseline hemodynamic parameters.

Mean baseline parameters CTL MMZ T4

LVSP (mmHg) 80.34 ± 5.086 87.28 ± 3.898 98.33 ± 3.345*

LVEDP (mmHg) 11.06 ± 0.8729 10.50 ± 0.8639 9.110 ± 0.7380

LVDP (mmHg) 70.69 ± 5.100 80.31 ± 4.717 89.22 ± 3.226*

Max. dP/dt (mmHg/s) 2709 ± 130.3 1825 ± 99.36*** 3517 ± 94.76***

Min. dP/dt (mmHg/s) -1860 ± 78.35 -1462 ± 57.27* -2205 ± 119.9*

LVSP = left ventricle systolic pressure; LVEDP = left ventricle end-diastolic pressure; LVDP = left ventricle developed pressure; max. dP/dt = maximal

derivative of pressure; min. dP/dt = minimal derivative of pressure. Data are mean ± S.E.M. N = 4–6 per group.

*P < 0.05, and

***P < 0.001 vs. CTL group.

https://doi.org/10.1371/journal.pone.0190355.t003
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recovery [20]. In thyrotoxic rat hearts, though, LVDP recovery was significantly impaired

(Table 4, P< 0.05 vs. CTL group) due to persistently increased LVEDP levels throughout the

reperfusion period (Table 4, P< 0.05 vs. CTL group). Furthermore, contractility and

Fig 1. Progression of hemodynamic parameters during baseline, ischemia and reperfusion periods.

Left-ventricle (LV) systolic pressure (a, LVSP), LV end-diastolic pressure (b, LVEDP), LV developed pressure

(c, LVDP), maximal derivative of pressure (d, max. dP/dt), minimal derivative of pressure (e, min. dP/dt) and

amplitude of ischemic contracture (f) were measured in isolated rat hearts of CTL (circles), MMZ (squares)

and T4 (triangles) groups. Data are expressed as Mean ± S.E.M. *P < 0.05 vs. CTL group. N = 5–6 per group.

https://doi.org/10.1371/journal.pone.0190355.g001

Table 4. Post-ischemic hemodynamic parameters.

Reperfusion (60’) CTL MMZ T4

LVSP (mmHg) 95.44 ± 6.839 91.67 ± 5.672 88.91 ± 5.588

LVEDP (mmHg) 54.21 ± 4.676 36.40 ± 5.631* 77.54 ± 6.823*

LVDP (mmHg) 41.74 ± 7.203 55.27 ± 9.185 11.37 ± 1.574*

Max. dP/dt (mmHg/s) 1700 ± 135.1 1497 ± 213.4 1032 ± 103.9*

Min. dP/dt (mmHg/s) -1286 ± 74.02 -1111 ± 101.8 -913.8 ± 79.95*

LVSP = left ventricle systolic pressure; LVEDP = left ventricle end-diastolic pressure; LVDP = left ventricle developed pressure; max. dP/dt = maximal

derivative of pressure; min. dP/dt = minimal derivative of pressure. Data are mean ± S.E.M. N = 4–6 per group.

*P < 0.05 vs. CTL group.

https://doi.org/10.1371/journal.pone.0190355.t004
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relaxation velocities reached the lowest levels among thyrotoxic rat hearts (Table 4, P< 0.05

vs. CTL group). These findings suggest that TH excess not only worsened IR-induced myocar-

dial contracture, but also impaired the recovery of contractility properties, a condition known

as myocardial stunning.

In contrast, acute and short-term exposure to T3 have been reported to improve IR-

induced myocardial stunning in isolated rat hearts [18,19]. The increased glucose uptake

induced by TH has been shown to elicit cardioprotection against doxorubicin toxicity, and

this change might also elicit cardioprotection against IR injury, as evidenced by previous data

[44]. At low doses or short-term exposure, TH might induce compensated cardiac hypertro-

phy and moderate increases on myocardial mechanical properties, consistent with TH positive

inotropic and lusitropic effects [18]. However, long-term exposure to supraphysiological con-

centration of TH can elicit remarkable increases in ATP and oxygen consumption, which

might turn thyrotoxic hearts more vulnerable to IR damage [45–47]. Conversely, hypothyroid

hearts exhibited decreased metabolic rate which might be convenient in a condition marked

by low bioavailability of oxygen and metabolic fuels such as ischemia [11,48]. Indeed, it has

been postulated that the decreased myocardial conversion of T4 into T3 after AMI might be an

adaptation to the new metabolic demand [49]. In keeping with this hypothesis, infarct size was

decreased among hypothyroid rat hearts at approximately 45% compared to euthyroid rat

hearts (Fig 2, P< 0.05 vs. CTL group). Furthermore, previous experimental data demonstrated

reduced myocardial creatine kinase release in response to IR, which can be associated to

decreased myocardial damage [20,21].

Fig 2. Measurement of infarct size. Percentage of infarcted area in relation to total ventricular area of CTL

(black box), MMZ (white box) and T4 (striped box). Representative images of TTC-stained heart slices are

shown beneath each graph box. Data are expressed as Mean ± S.E.M. *P < 0.05 vs. CTL group. N = 5–6 per

group.

https://doi.org/10.1371/journal.pone.0190355.g002
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The pathophysiological mechanisms involved in the opposite effects induced by TH excess

and deficiency in the progression of IR injury remain unclear. However, pre-clinical studies

have correlated the regulation of cellular metabolism and mitochondrial respiratory chain

activity to reactive oxygen species (ROS) production and oxidative damage elicited by TH

excess [45,50–54]. In a condition of redox imbalance, antioxidant enzyme provide defense

against oxidative damage by promoting ROS clearance. Interestingly, catalase, SOD2 and

GPX1 mRNA expression level (Fig 3) was down-regulated in thyrotoxic rat-hearts at 46.0%

(P< 0.05 vs. CTL group), 37.6% (P> 0.05 vs. CTL group), and 51% (P> 0.05 vs. CTL group),

respectively. On the other hand, SOD1 and GPX1 mRNA expression levels were up-regulated

at 93.0% and 52.9% (Fig 3, P> 0.05 vs. CTL group), respectively, in hypothyroid rat-hearts. As

previously demonstrated, SOD1, SOD2 and GPX knockout mice are more vulnerable to IR-

induced damage and cell death [55–57]. On the other hand, overexpression of SOD and cata-

lase have been correlated to post-ischemic mechanical improvements and decreased organ

damage [58,59]. Previous data have also correlated decreased levels of GPX, coenzyme Q9 and

Q10 to increased levels of lipid and proteins oxidative damage in thyrotoxic hearts [51–54].

Although myocardial oxygen level drops significantly after the onset of ischemia, residual

Fig 3. Antioxidant enzymes mRNA expression. SOD1 (a), SOD2 (b), GPX1 (c), GPX3 (d) and catalase (e)

mRNA expression levels were measured in heart samples of CTL (black boxes), MMZ (white boxes) and T4

(striped boxes) groups. Data are expressed as Mean ± S.E.M. *P < 0.05 vs. CTL group. N = 5–6 per group.

https://doi.org/10.1371/journal.pone.0190355.g003
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oxygen level remains at approximately 3–5 Torr, which enables the production of ROS at sub-

lethal concentration [60–62]. Nevertheless, abrupt reestablishment of myocardial oxygen level

at the onset of reperfusion further increases ROS production [60]. At high concentrations,

ROS can induce oxidative damage and contribute to the opening of mitochondrial permeabil-

ity transition pore and release of pro-apoptotic molecules, contributing to infarct expansion

[17,63]. Conversely, experimental studies have demonstrated that mitochondrial ROS produc-

tion and leak at complexes I and III are reduced in hypothyroid hearts, resulting in protection

against oxidative damage [45,64,65]. Therefore, redox status might play a pivotal role in the

switch between increased and decreased susceptibility to myocardial IR injury elicited by TH

excess and deficiency, respectively.

It remains unclear, though, how cardiac antioxidant defense was down-regulated by thyro-

toxicosis. Clinical studies have reported decreased antioxidant enzymes expression levels in

hyperthyroid patients, which can be restored by antithyroid drug therapy [66,67]. However,

several data have demonstrated that hyperthyroidism can be followed by increased expression

levels of antioxidant enzymes, as a compensatory mechanism to increased ROS production

[51–54]. Noteworthy, thyrotoxic rat-hearts were also exposed to IR in the present study, sug-

gesting that thyrotoxicosis might be followed by decreased expression levels of antioxidant

enzymes particularly in conditions of physiological challenge. In addition, these findings also

suggest that secondary effects, instead direct transcriptional effect of TH receptors, might play

important roles in thyrotoxicosis-induced redox imbalance. Indeed, it has been demonstrated

that hyperthyroidism can elicit autonomic imbalance, severe insulin resistance and unbal-

anced adipokine bioavailability, including decreased circulating levels of vaspin, while visfatin

and resistin levels can be increased, irrespective of changes on body weight [68–70]. Together,

these metabolic abnormalities can elicit cardiomyocyte pro-inflammatory changes and mito-

chondrial dysfunctions, which can ultimately aggravate redox imbalance and IR damage

[71,72].

Taken together, the present findings demonstrated that long-term exposure to TH excess

or deficiency distinctly affected the progression of myocardial IR injury. Whereas post-ische-

mic recovery of mechanical properties was slightly improved and infarct size decreased by TH

deficiency, myocardial stunning was worsened was increased in thyrotoxic rat-hearts. These

findings were correlated to decreased expression of catalase in the condition of TH excess.

However, additional studies will be necessary to investigate the role of redox imbalance and

cardiac remodeling in the opposite effects induced by TH deficiency or excess in the suscepti-

bility to IR injury.
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