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Abstract: One of the challenges to the management of severe asthma is the poor therapeutic response
to treatment with glucocorticosteroids. Compounds derived from marine sources have received
increasing interest in recent years due to their prominent biologically active properties for biomedical
applications, as well as their sustainability and safety for drug development. Based on the patho-
biological features associated with glucocorticoid resistance in severe asthma, many studies have
already described many glucocorticoid resistance mechanisms as potential therapeutic targets. On
the other hand, in the last decade, many studies described the potentially anti-inflammatory effects
of marine-derived biologically active compounds. Analyzing the underlying anti-inflammatory
mechanisms of action for these marine-derived biologically active compounds, we observed some
of the targeted pathogenic molecular mechanisms similar to those described in glucocorticoid (GC)
resistant asthma. This article gathers the marine-derived compounds targeting pathogenic molecular
mechanism involved in GC resistant asthma and provides a basis for the development of effective
marine-derived drugs.

Keywords: marine-derived compounds; glucocorticoid-resistant; severe asthma; drug development;
biomedical applications

1. Introduction

Asthma is a chronic inflammatory disease of the lower airways characterized by
airway hyperresponsiveness and remodeling, leading to wheeze, cough, chest tightness,
and difficulty in breathing. The prevalence of asthma is still increasing, while the potential
risk factors for asthma seems to make equal contributions [1]. Although among the
population of adults with asthma only 3% to 10% are classified as suffering from severe
asthma [2,3], the costs of healthcare per patient are higher than those for stroke, type 2
diabetes, or chronic obstructive pulmonary disease (COPD) [4]. According to the current
guidelines [5], difficult-to-control asthma is asthma that is uncontrolled despite treatment
with high-dose inhaled glucocorticoids (ICS) combined with long-acting β2-agonists or
other controllers, or that requires such treatment to maintain good symptom control and
reduce exacerbation; severe asthma is considered a subset of difficult-to-control asthma
that is uncontrolled despite adherence to maximal optimized Step 4 or Step 5 therapy and
treatment of contributory factors, or that worsens when high-dose treatment is reduced.
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Glucocorticoid resistance in the main challenge of severe asthma. A common feature
of patients with severe asthma is their poor response to high doses of ICS and then systemic
glucocorticoids (GCs). This inadequate response is called steroid-unresponsive or GC
resistance. These patients, however, may respond well to β2-adrenergic agonist-mediated
vasodilation; but if after 2 weeks of appropriate-dose steroid treatment the improvements
in forced expiratory volume in 1 s (FEV1) are <15%, then the asthma is defined as GC
resistant [6–8].

Compounds derived from marine sources have received increasing interest in recent
years due to their prominent biologically active properties for biomedical applications, and
to their being a new and safe source for drug development [9–13]. New compounds were
recently reviewed and proposed as potential treatments for different diseases, such as can-
cer [14], cardiovascular diseases [15], rheumatoid arthritis [16], neurological diseases [17],
and others.

Many marine-derived biologically active compounds target pathogenic molecular
mechanisms common to those described in GC-resistant asthma; therefore, we sought in
this review to gather the marine-derived compounds targeting the pathogenic molecular
mechanism involved in GC resistant asthma and to provide a basis for the development of
effective marine-derived drugs.

2. Pathobiological Features Associated with Glucocorticoid Resistance

In practice, the diagnosis of GC resistance in asthma is based on the clinical history
and evaluation of respiratory function after sufficient steroid treatments. Often, patients
receive increasing doses of steroids for extended periods, until it is recognized that this is
ineffective for treating their severity of asthma. The toxic side effects of long-term high-dose
steroids are well known for increasing susceptibility to infections, cardiovascular disease,
hyperglycemia, and osteoporosis. Although there are currently no clinically accepted
biomarkers or phenotypes for resistance, some studies identified asthma phenotypes
associated with GC resistance [5,18,19], as depicted in Table 1.

Table 1. Degree of Glucocorticoid Resistance and Corresponding Asthma Phenotypes.

Degree of Glucocorticoid
Resistance Asthma Phenotypes Pathobiologic Features

Severe corticosteroid
resistance

Obesity-related asthma Absence of Th2 specific response
Increased oxidative stress

Neutrophilic asthma Increased Th-17 response
(increased IL-8, neutrophilia)

Late-onset eosinophilic
asthma

Increased IL-5
Eosinophilia

Moderate corticosteroid
resistance

Early-onset allergic asthma Increased Th2 specific response
Presence of antigen-specific IgE

Exercise-induced asthma

Increased Th2 specific response
Increased mast

cells degranulation
Increased CysLTs

Th, T helper lymphocyte; Ig, Immunoglobuline; IL, interleukin; CysLTs, cystenyl leukotrienes.

3. Mechanisms of Glucocorticoid Resistance as Potential Therapeutic Targets
3.1. Mechanisms of Action of Glucocorticoids

Although the topic has been extensively reviewed by Keenan et al. [20] and many
others [7,21–23], before delving into the altered cellular and molecular basis of signaling
that leads to GCs resistance, it is important to review the heterogenous mechanisms of
action by which GCs exert their downstream effect.

GCs have been extensively used in many diseases for a long time, but their molecular
mechanisms of action are still not completely understood. GCs bind on the intracellular
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glucocorticoid receptors (GRs) of the target cell. There are two major variants of GRs
with different C-terminal domains: GR-α, and GR-β. GR-α isoform-bind to GCs and
affect GR signaling pathways through various post-translational modifications, such as
phosphorylation, acetylation, and other modifications [24], while GR-β is unable to bind
to GCs and cannot affect GC-induced modification. GR-β probably regulates GC activity,
antagonizes GR-α isoform, and regulates GR-α/β heterodimers [25,26].

Genomic mechanisms are mediated by binding to GRs in the cytoplasm and further
translocation of the GC/GR complex into the nucleus, while non-genomic mechanisms are
mediated through specific interaction with GRs, or nonspecific interactions with the cell
membrane [27]. Intracytoplasmic GRs present in inactive forms, in a protein complex, and
attached to a chaperone protein. The dissociation of GR and the dissociation of chaperone
protein upon activation allow the translocation of GR into the nucleus [28]. Inside the
nucleus, the GC/GR complex regulates up to 20% of genes expressed by immune cells by
trans-repressing inflammatory genes and stimulating the transcription of anti-inflammatory
genes, leading to the reduced activation, recruitment, and survival of inflammatory and
epithelial cells [29–31]; it also regulates mRNA stability [32] and the immunomodulatory
function of smooth muscle cells and airway remodeling in asthma [33].

High concentrations of GCs exert non-genomic actions; inhibit the degranulation of
mast cells through the stabilization of the plasma membrane or through a reduction in
[Ca2+] elevation [34]; and promote anti-inflammatory effects through negative interference
with MAPK signaling pathways [35].

3.2. Glucocorticoids Resistance: Cellular and Molecular Basis

Decreased GC responsiveness can be inherited or acquired. In the case of inherited
decreased GC responsiveness, GC insensitivity most probably is not caused by a singular
genetic mutation and involves a range of genetic variations. Some of the involved genes
have already been determined [36–38] and are not the aim of our study.

The research into specific studies dedicated to GC resistance revealed the following
responsible mechanisms:

• Deficient binding between the GC and the GR or between the GR complex and DNA
may be a cause [39].

• Increased antagonism is determined either by increased GR-β expression [40] or by
diminished GR-α expression [41]. This can be explained by the IL-2/IL-4-induced
suppression of GR-α (and not GR-β) expression in peripheral blood mononuclear
cells (PBMCs) [42]. Additionally, IL-2 and IL-4 can synergistically reduce (via the
p38MAPK pathway) nuclear translocation and binding affinity in T-cells (reversible
by a p38 inhibitor) [43]. Furthermore, IL-17 and IL-23 cytokines were reported to
significantly upregulate GR-β [42].

• Inflammation or oxidative stress has the potential to negatively affect GC signaling [22].
• The expression of various anti-inflammatory genes induced by GCs can be reduced

through GR phosphorylation by, for example, p38 mitogen-activated protein kinase
(MAPK) and by the reduced activity of histone deacetylase 2 (HDAC2) [43,44].

• The upregulation of certain cytokines, such as IL-2, IL-4, and IL-13, was detected in
the lungs of patients with GC unresponsiveness [45–47]; in vitro, the overexpression
of these cytokines was associated with the phosphorylation of GR and a decrease in
nuclear translocation in inflammatory cells through the activation of p38 mitogen-
activated protein kinase [48]. p38MAPK activity was demonstrated to be higher in
alveolar macrophages from patients with impaired response to GCs compared to
‘responders’. Furthermore, the expression of MKP-1 (DUSP1 gene), an endogenous
inhibitor of the MAPK pathway, was significantly diminished in alveolar macrophages
after GCS exposure, leading to an increase in p38MAPK activity [49]. Furthermore,
p38MAPK inhibitors, such as AZD7624 or SB203580, have recently been investigated
in corticosteroid-resistant asthmatic populations [50,51].
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• Increased HDAC activity using theophylline, PI3K, and p38 MAPK inhibitors demon-
strated beneficial effects [52–54], especially in glucocorticoid-resistant asthmatic smok-
ers, where increased antagonism of the GR-α resulted from a reduced ratio of GR-α to
GR-β isoforms [55]. Moreover, reduced total HDAC activity in PBMCs isolated from
prednisone-dependent asthmatics compared to ICS-maintained moderate asthmatics
and healthy volunteers was reported [56].

• GC resistance has been associated with Haemophilus influenzae, Chlamydia pneumoniae,
Influenza A virus (IAV), rhinovirus, and Respiratory syncytial virus (RSV) infections [57–61].
The molecular mechanism proposed for glucocorticoid insensitivity in rhinovirus-
infected primary human bronchial epithelial cells is the activation of NF-κB and c-Jun
N-terminal kinase, which leads to a decrease in GR-α nuclear translocation [62]. The
influence of NF-κB activity on GC resistance has also been confirmed by research on
the blockade of this pathway [63,64].

• Using mouse models of steroid-resistant asthma driven by bacterial (Chlamydia and
Haemophilus influenzae) and viral (influenza and RSV) respiratory tract infections,
Kim et al. demonstrated that steroid insensitivity can be induced through PI3K-mediated
phosphorylation and the nuclear translocation of pAKT [65].

• By upregulating miR-9 expression in pulmonary macrophages, IFN-γ can increase GR
phosphorylation and, consequently, inhibit GR nuclear translocation in experimental
models of steroid-resistant airway hyperresponsiveness [66].

• In a study of human fetal airway smooth muscle cells, TNF-α and IFN-γ cytokines
were shown to sustain GC resistance by promoting the Nuclear factor-κB (NF-κB)
pathway and Stat1 phosphorylation [67]. TNF-α also demonstrated the potential to
activate the c-Jun N-terminal kinase (JNK), which directly phosphorylated GR-α at
Ser226 and inhibited GRE-binding [68].

• The nitrosylation of the glucocorticoid receptor at the HSP90 (chaperone) binding site
can be caused by high levels of nitric oxide generated in situ as a result of eosinophilic
inflammation. This can decrease its affinity with chaperone proteins that protect it
from cytoplasmic degradation. The binding affinity to GCs (ligand) in structural cells,
such as fibroblasts, can also be reduced by nitrosylation [69]. In conclusion, asthmatics
with persistent airway eosinophilia with increased localized nitric oxide production
and possibly increased remodeling may develop GC resistance through the repeated
nitrosylation of GR.

• Increased NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome/IL-1β ac-
tivation contributed to glucocorticoid resistance in murine models of steroid-resistant
allergic airway disease [70].

• The Th2 cytokines IL-13 and IL-5 each possess the ability to induce diminished GR-
binding affinity. The effect of hydrocortisone in suppressing LPS-induced IL-6 pro-
duction by monocytes was demonstrated to be significantly hindered when the cells
were primed by IL-13 [71]. Additionally, IL-5-primed eosinophils were unresponsive
to GS-induced apoptosis (via synergistic upregulation of nuclear-factor IL-3 due to
a cross-talk between GCS-induced trans-activation signaling and IL-5 antiapoptotic
pathway) [72].

• The adoptive transfer of Th17 cells in mice resulted in the development of steroid
insensitivity, and Th17 cells and IL-17A levels are frequently associated with CG
resistance in asthmatic patients [73–75]. Accordingly, the expression of GR-β has been
reported to increase Th17 responses [76]. In the obesity phenotype of asthma, the
associated steroid resistance may be induced by IL-17 produced by the pulmonary
type 3 innate lymphoid cells [77]. The role of IL-7 in GC resistance has been confirmed
by the augmentation of dexamethasone anti-inflammatory action in diesel exhaust
particle-induced neutrophilic steroid insensitivity secondary to anti-IL-17 therapy [78].

• Bhavsar et al. showed that dexamethasone could not suppress the lipopolysaccharide
(LPS)-induced release of pro-inflammatory cytokines [49]. This finding was supported
by Li et al., who simulated an airway infection in a mouse model of steroid-resistant
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asthma through the concomitant administration of LPS + IFNγ; consequently, PP2A
activity (that induced JNK) was attenuated and led to the phosphorylation of GR-α at
Ser226, thereby hindering glucocorticoid receptor nuclear translocation in pulmonary
macrophages [66].

• LPS promoted a shift from Th2-derived airway eosinophilic inflammation to Th17-drived
neutrophilic inflammation in an ovalbumin-sensitized murine asthma model [79].

• Dysregulated IL-10 production is associated with GC insensitivity. This is probably
due to impaired IL-10 production, according to Hawrylowicz et al., who compared
in vitro stimulated T lymphocytes from corticosteroid-resistant asthmatic with dexam-
ethasone to T lymphocytes from steroid-sensitive asthmatics [80].

• The induction of Th2/Th17 responses in fungus-exposed patients has the potential
to develop GC resistance [65]. More precisely, in neonatal mice, Aspergillus alternata
exposure induced IL-33 dependent GC resistant asthma, mediated by ILC2 and Th2
cells [81]. The suggested mechanism underlying glucocorticoid insensitivity is the
activation of p38-MAPK in CD4 + T cells and induction of phosphorylation of GR by
IL-33 [82].

GCs also produce pro-inflammatory effects under stress conditions [83]. Table 2 de-
picts the potential targeted molecular and immunopathogenic mechanisms in glucocorticoid-
resistant severe asthma.

Table 2. Potential targeted mechanisms in glucocorticoid-resistant severe asthma.

Molecular Targets Pharmacological Effect References

Decrease in activity of MAPK Decrease in GR phosphorylation
Increased ratio of GR-α to GR-β isoforms [43,44,48–55]

Increase of activity of HDAC Decrease in GR phosphorylation
Increased ratio of GR-α to GR-β isoforms [43,44,52–54,56]

Decrease in activation of JNK Decrease in GR phosphorylation
Increase in GR-α nuclear translocation

[68]
[62]

Nitric oxide decrease Decrease in nitrosylation of GR at HSP90 (chaperone binding site) [69,84]

Decrease inactivation of NF-κB Increase in GR-α nuclear translocation [62–64,67]

Decrease in oxidative stress Multiple [22]

Downregulation of Th2

IL-4
Increase in GR-α expression and nuclear translocation

Increase in GR binding affinity in T-cells
Decrease in GR phosphorylation

[40–43,45–48]

IL-5 Increased GR binding affinity [71,72]

IL-13 Decrease in GR phosphorylation
Increased GR binding affinity

[45–48]
[71]

Downregulation of non-Th2

IL-17 Decrease in GR-β expression [42,76,77]

IL-23 Decrease in GR-β expression [42]

IFN-γ

Decreased GR phosphorylation and stimulation of GR
nuclear translocation

Increase in GR-α nuclear translocation (through downregulation
of NF-κB)

[66]
[67]

TNF-α

Increase in GR-α nuclear translocation (through downregulation
of NF-κB)

Decrease in GR-α phosphorylation at Ser226 and the inhibition of
GRE-binding (through downregulation of JNK)

[67]
[68]
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Table 2. Cont.

Molecular Targets Pharmacological Effect References

IL-33 Decreased GR phosphorylation [81,82]

IL-1β Unknown [70]

Inhibition of inflammatory response shift:
Th2 to Th17 †

Decreased GR phosphorylation and stimulate GR
nuclear translocation

Increase in GR-α nuclear translocation (through downregulation
of NF-κB)

Decrease in GR-α phosphorylation at Ser226 and the inhibition of
GRE-binding (through downregulation of JNK)

[49,66]

MAPK, Mitogen-activated protein kinase; GR, glucocorticoid receptor; HDAC, histone deacetylase; JNK, c-Jun N-terminal kinase;
HSP90, heat shock protein; NF-κB, Nuclear factor-κB; †, inhibition of inflammatory response shift from Th2-derived airway eosinophilic
inflammation to Th17-drived neutrophilic inflammation (through inhibition of LPS-induced release of pro-inflammatory cytokines).

4. Potentially Therapeutic Effect of Marine-Derived Biologically Active Compounds
in Severe Asthma

Experimental studies with marine compounds demonstrating their effectiveness in
in vitro or in vivo models of bronchial asthma are scarce [84–88]. On the other hand, recent
studies revealed the significant potential of marine compounds to interfere with molecular
mechanisms similar to those involved in GC-resistant asthma. Therefore, a standardized
inclusion–exclusion criterion was implemented, aiming to justify the current review. The
literature search queries were performed until September, 2021. We included and analyzed
all the original articles from PubMed and Scopus databases, with marine compounds that
potentially target these molecular mechanisms; we excluded reviews and generalized or
irrelevant studies (results illustrated in Table 3).

Some of these compounds from different marine sources are well characterized and
have well-defined structures (Table 4), while others are extracts with complex compositions.

4.1. Cellular Signal/Corticoresistance

Fucosterol, a phytosterol from the marine brown algae Padina boryana, demonstrated
anti-inflammatory effects through its dose-dependent downregulation of pro-inflammatory
cytokines (IL-1β, IL-6 and TNF-α) and of the Nrf2/HO-1 pathway [89].

Mojabanchromanol (MC), a chromanol isolated from the brown algae Sargassum
horneri, demonstrated anti-oxidant effects through the attenuation of particulate matter-
induced oxidative stress, the reduction of the ROS-mediated phosphorylation of MAPK
extracellular signal-regulated kinase 1/2 (Erk1/2) and of c-JNK, and the inhibition of the
secretion of pro-inflammatory cytokines (IL-6, IL-1β and IL-33). The authors proposed that
mojabanchromanol be developed as a therapeutic agent against particulate matter-induced
airway inflammatory responses [84].

Sargachromenol, isolated from Sargassum horneri, demonstrated anti-inflammatory
effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, by reducing the
nitric oxide (NO); and in intracellular reactive oxygen species (ROS), by decreasing the
mRNA expression levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and by
inhibiting the activation of NFκB and MAPK signaling [90].
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Table 3. Potential targeted mechanisms in glucocorticoid-resistant severe asthma.

Compound Specie Origin Class

Molecular Targets
References
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Simple compounds

Fucosterol Padina boryana brown
algae phytosterol x x x x x [89]

Mojabanchromanol Sargassum horneri brown
algae chromanol x x x x x [84]

Sargachromenol Sargassum horneri brown
algae chromenol x x x [90]

Fucoidan Saccharina japonica brown
algae polysaccharides x x x x [91]

3,4,5,5-Tetramethyl-4-
(3′-oxopentyl)-2-
cyclohexen-1-one

Ulva fasciata Deliles green
algae sesquiterpenoids x [92,93]

4-hydroxy-2,3-
dimethyl-2-nonen-4-

olide
Ulva pertusa green

algae extract x [94]

(E)-9-Oxooctadec-10-
enoic-acid and

(E)-10-Oxooctadec-8-
enoic-acid

Gracilaria verrucosa red algae fatty acids x x x [95]

cyclo(L-Pro-D-Val),
cyclo(L-Pro-L-Tyr),
cyclo(L-pro-D-Leu)

Bacillus sp. HC001,
Piscicoccus sp. 12L081 bacteria diketopiperazine x x x [96]
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Table 3. Cont.
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Molecular Targets
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Cycloprodigiosin Pseudoalteromonas
dentrificans bacteria prodigiosin x x [97,98]

C-Phycocyanin Nostoc Muscorum
Cyanobacteria bacteria Polypeptide x [99,100]

Phenazines 1,2 Streptomyces sp. bacteria aromatic secondary
metabolites x x x [101–104]

Griseusrazin A Streptomyces griseus bacteria pyrazine-type
molecules x x x x [103,105]

G rassystatin A Lyngbya confervoides bacteria linear
decadepsipeptide x [106]

Ogipeptins A-D Pseudoalteromonas sp.
SANK 71903 bacteria cyclic peptides x x [107]

pyrenocine A Penicillium paxilli fungus phytotoxins x x [108]

(−)-1S-myrothecol and
(+)-1R-myrothecol

Myrothecium sp.
BZO-L062 fungus alkylresorcinol x [109]

Chrysamides A–C
Penicillium

chrysogenum
SCSIO41001

fungus dimeric nitrophenyl
trans-epoxyamides x [110]

Brevicompanine E Penicillium sp. fungus diketopiperazine
derivatives x x x x x x [111]
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Table 3. Cont.

Compound Specie Origin Class

Molecular Targets
References
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Polyoxygenated Sterols
& bolinaquinone Dysidea sp. fungus sterols x [112,113]

Hirsutanol A Chondrostereum sp.
NTOU4196 fungus Sesquiterpene

compound x x x [114]

Oscarellin Oscarella stillans sponge anthralinic acids x x x [115]

Lobocrassin B Lobophytum crassum coral diterpenoids x x [116]

Carijoside A Carijoa sp. soft coral Steroid glycoside x [117]

Klyflaccisteroid J Klyxum flaccidum soft coral steroidal derivatives x [118]

Klyflaccisteroid K-M Klyxum flaccidum soft coral steroidal derivatives x [119]

Rossinones A & B Aplidium
speciesascidian

marine
animals

Terpene derived
metabolite x [120]

6-bromoisatin Dicathais orbita gastropod
mollusc

brominated indole
derivatives x x [121]

Didemnin B Trididemnum solidum ascidia depsipeptides x x [122,123]
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Splenocins A-I Streptomyces sp. bacteria depsipeptides x x x x [124]

Sinulerectol A & B Sinularia erecta soft coral cembranoid x [125]

Complex composition

Sargassum horneri
extract Sargassum horneri brown

algae extract x x x x x [126]

Sargassum horneri
(Turner) ethanol extract

Sargassum horneri
(Turner) C. Agardh

brown
algae extract x x x x x [127]

Sargassum horneri
(Turner) ethanol extract Sargassum horneri brown

algae extract x x x x [128]

Sargassum horneri
ethanol extract Sargassum horneri brown

alga ethanol extract x x x x x [86]

Sargassum horneri
(Turner) C. Agardh

ethanol extract

Sargassum horneri
(Turner) C. Agardh

brown
algae ethanolic extract x x x x x [129]

Sargassum hemiphyllum
methanol extract

Sargassum
hemiphyllum

brown
alga methanol extract x x [130]

Sulfated
polysaccharide Saccharina japonica brown

algae polysaccharides x x x x x x [131]
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Sulfated
polysaccharide Sargassum fulvellum brown

algae polysaccharides x x x x [132]

Exopolysaccharide
(EPCP1-2)

Crypthecodinium
cohnii microalgae polysaccharide x x [133]

Cyanobacterial
lipopolysaccharide

Oscillatoria
planktothrix FP1 bacteria lipopolysaccharides x x [134–136]

Spirulina extract Arthrospira platensis
(Spirulina) bacteria lipoproteins x x [137,138]

Arctoscopus japonicus
egg extracted lipids Arctoscopus japonicus fish fatty acid x x x x x x [139]

Apostichopus japonicus
extract Apostichopus japonicus marine

animals extract x x x x [88]

†, inhibition of inflammatory response shift from Th2-derived airway eosinophilic inflammation to Th17-drived neutrophilic inflammation (through inhibition of LPS-induced release of pro-inflammatory
cytokines).
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Table 4. Chemical formula of marine drugs with potential use in glucocorticoid-resistant severe asthma.

Compound Chemical Structure
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Table 4. Cont.

Compound Chemical Structure
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Table 4. Cont.

Compound Chemical Structure
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Table 4. Cont.
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Table 4. Cont.
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Table 4. Cont.

Compound Chemical Structure
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Table 4. Cont.

Compound Chemical Structure
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secretion of pro-inflammatory cytokines (IL-6, IL-1β and IL-33). The authors proposed 
that mojabanchromanol be developed as a therapeutic agent against particulate matter-
induced airway inflammatory responses [84]. 

Sargachromenol, isolated from Sargassum horneri, demonstrated anti-inflammatory 
effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, by reducing the 
nitric oxide (NO); and in intracellular reactive oxygen species (ROS), by decreasing the 
mRNA expression levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and by in-
hibiting the activation of NFκB and MAPK signaling [90]. 

Fucoidan, purified from Saccharina japonica, reduced the production of NO, and 
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4-olide, moderately inhibited the release of the pro-inflammatory cytokines IL-12 p40 and 
IL-6 from bone marrow-derived dendritic cells, as well as signal transduction by inhibit-
ing phosphorylation of NF-kB, and, thus, warranted further study to evaluate its potential 
as a “therapeutic agent for inflammation-associated maladies” [94]. 
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Fucoidan, purified from Saccharina japonica, reduced the production of NO, and
downregulated the expression of the MAPK (including p38, ENK and JNK) and NF-κB
(including p65 and IKKα/IKKβ) signaling pathways in a zebrafish experiment [91].

Using free-radical-scavenging assays antioxidant properties were discovered for the
sesquiterpenoids in green algae Ulva fasciata Deliles [92,93].

An extract from Korean marine alga Ulva pertusa, 4-hydroxy-2,3-dimethyl-2-nonen-4-
olide, moderately inhibited the release of the pro-inflammatory cytokines IL-12 p40 and
IL-6 from bone marrow-derived dendritic cells, as well as signal transduction by inhibiting
phosphorylation of NF-kB, and, thus, warranted further study to evaluate its potential as a
“therapeutic agent for inflammation-associated maladies” [94].

Two fatty acids, (E)-9-Oxooctadec-10-enoic-acid and (E)-10-Oxooctadec-8-enoic-acid,
isolated from Gracilaria verrucosa, inhibited the production of inflammatory biomarkers,
including NO, IL-6, and TNF-α, by suppressing the nuclear translocation of NF-kB and the
phosphorylation of STAT1 in LPS-stimulated RAW264.7 cells [95].

Three diketopiperazine derivatives, cyclo(L-Pro-D-Val), cyclo(L-Pro-L-Tyr), and cyclo(L-
pro-D-Leu), derived from two marine bacteria, Bacillus sp. HC001 and Piscicoccus sp. 12L081,
demonstrated anti-inflammatory effects through the inhibition of p38 MAPK activation
and the downregulation of TNF-α, IL-6, NF-kB, and ERK1/2 [96].

Cycloprodigiosin, an analog of prodigiosin obtained from Pseudoalteromonas dentrificans,
inhibited TNF- α induced NF-kB activation, in HeLa, U373, and COS7 cell lines [97,98].

C-Phycocyanin from Nostoc Muscorum cyanobacteria is a pigment with antioxidant
potential [99,100].

Pyrenocine A, produced from the marine-derived fungus Penicillium paxilli, produces
immunosuppressive effects through the inhibition of pro-inflammatory mediators (TNF-α
and PGE2) and inhibits the expression of genes related to NFκB activation in macrophages
stimulated with LPS [108].

Two new components, (−)-1S-myrothecol and (+)-1R-myrothecol, isolated from the
deep-sea fungus Myrothecium sp. BZO-L062, presented anti-inflammatory and antioxidant
activities [109].

Oscarellin, an anthranilic acid derivative isolated from Oscarella stillans, a Philippine
sponge, strongly inhibits LPS-induced TNF-α and IL-6 production in murine macrophage
RAW264.7. These changes are associated with the inactivation of c-Jun NH2-terminal
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kinase (JNK), extracellular signal-regulated kinase (ERK), activator protein-1 (AP-1), and
NF-kB, and the activation of activating transcription factor-3 (ATF-3) [115].

Lobocrassin B, an extract from the soft coral Lobophytum crissum, inhibited the pro-
duction of TNF-α and NF-κB, an important transcription factor responsible for cytokine
production, in mouse dendritic cells [116].

Didemnin B (Depsipeptides) was extracted and isolated from Trididemnum solidum; it
exhibited strong anti-inflammatory and immunosuppressive activity through the inhibition
of iNOS and NF-kB [122,123].

Sargassum horneri ethanol extract, from an edible brown marine algae, demonstrated
anti-inflammatory effects mediated by the phosphorylation of MAPK p38, extracellular
signal-regulated kinase 1/2 (Erk1/2), and c-JNK, to induce the particulate matter-induced
mRNA expression of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6), lung epithelial cell
derived-chemokines (IL-8, MCP-1, and chemokine (CCL5), and to suppress the mRNA ex-
pression of particulate matter-induced pro-allergic cytokines thymic stromal lymphopoietin
(TSLP) and IL-33 [126].

Sargassum horneri (Turner) C. Agardh ethanol extract (SHE), obtained from the brown
algae Sargassum horneri, demonstrated anti-inflammatory and cytoprotective effects on
macrophage cells as a model for alveolar lung cells, probably via the p38 MAPK path-
way and Nrf2/HO-1 expression. The extract inhibited the production of inflammatory
mediators (iNOS, COX-2, and PGE2) and pro-inflammatory cytokines (IL-1β, IL-6, and
TNF-α) [127].

Another ethanol extract with a commercial grade of 70%, separated from Sargassum horneri,
demonstrated similar effects: it significantly repressed the secretions of inflammatory cy-
tokines and reduced protein expression in PGE2, TNF-α, IL-6, IL-1β, NF-κB, and MAPKs
from PM-activated macrophages [128].

A sulfated polysaccharide with a sulfate content of 9.07% from Saccharina japonica
showed significant inhibition of NO and PGE2 production via the downregulation of iNOS
and COX-2 expression. The polysaccharide also suppressed TNF-α and (IL)-1β production
via the NF-κB and MAPK signal pathways in LPS-induced RAW cells [131].

A sulfated polysaccharide isolated from Sargassum fulvellum demonstrated a significant
and concentration-dependent decrease in the production levels of NO, TNF-α, PGE2, IL-6,
and IL-1β in LPS-treated RAW 264.7 macrophages [132].

The fatty acids from the Arctoscopus japonicus egg of a cold-water marine fish presented
anti-inflammatory effects through the suppression of the expression of iNOS, COX-2, IL-1β,
IL-6, and TNF-α, and a reduction in the phosphorylation levels of NF-κB p-65, p38, ERK1/2,
and JNK, key components of the NF-κB and MAPK pathways [139].

4.2. Cytokine Levels
4.2.1. Th2 Cytokines

The whole culture extract of a marine-derived actinomycete strain, culture CNQ431,
identified as a Streptomyces sp., demonstrated potent suppression of Th2 cytokines IL-5 and
IL-13, but also the production of the dendritic cell-associated cytokines IL-1 and TNF-α,
indicating immunosuppressive effects on both the APCs (i.e., dendritic cells) and the Th2
cells in a mouse splenocyte assay [124].

An ethanol extract from Sargassum horneri, obtained from a brown alga, was found to
have antioxidant, anti-inflammatory, and anti-allergic effects in a BALB/c mouse model
of asthma sensitized with ovalbumin. IL-4, IL-5, and IL-13 were found to be decreased in
the lungs of PM-exacerbated asthmatic mice. Concomitantly, the Th17 cell response, the
expression of responses of relevant effector cytokines, IL-17a and Th2/Th17, were also
decreased [86].

A methanol extract of Sargassum hemiphyllum, a brown seaweed, inhibited the increase
of TNF-α-induced NF-kB protein levels, the transcription factor of TNF-α, and IL-8 and
TNF-α release, suggesting an inhibitory effect on atopic allergic reactions [130].
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Exopolysaccharide EPCP1-2, an extracellular polysaccharide extracted from
Crypthecodinium cohnii, has significant potential to inhibit macrophage proliferation, as well
as to downregulate the expression of TLR4, TAK1, MAPKs, and NF-κB protein. It acts as an
anti-inflammatory agent through macrophage suppression on the RAW 264.7 macrophage
cell line and is a potent regulatory MAPK, and NF-κB signaling pathways [133].

Spirulina extract (Immulina®), a high-molecular-weight polysaccharide extract from
the cyanobacterium Arthrospira platensis (Spirulina), showed anti-inflammatory and in-
hibitory effects in an induced allergic inflammatory response and on histamine release from
RBL-2H3 mast cells. It also has the potential to inhibit the IgE-antigen-complex-induced
production of TNF-α, IL-4, leukotrienes, and histamine, and showed promising effects
with respect to the relief of allergic rhinitis symptoms [137,138].

A component of this extract, n-hexane, a fatty-acid-rich fraction, ameliorated allergic
airway inflammation in a mouse model of ovalbumin-induced asthma: eosinophil infiltra-
tion and goblet cell hyperplasia were significantly reduced around the airways, and the
concentrations of Th2-related cytokines (IL-4, IL-5, and IL-13) and Th17-related cytokines
(IL-17) were significantly decreased in the spleen and bronchoalveolar lavage fluid [88].

Phlorotannins isolated from brown algae, Eckolonia cava, exhibited anti-allergic activi-
ties through the inhibition of degranulation: the tested compounds suppressed the binding
between IgE and FcεRI receptors [140].

Reticulol, a polyketide isolated from Graphostroma sp. MCCC 3A00421 deep-sea
hydrothermal sulfide deposits from the Atlantic Ocean, showed potent inhibition of de-
granulation with an IC50 value of 13.5 µM [141].

Three compounds isolated from the deep-sea-derived marine Williamsia sp. MCCC
1A11233 (CDMW), CDMW-3, CDMW-5, and CDMW-15, demonstrated antiallergic activity
due to the block of mast-cell-dependent passive cutaneous anaphylaxis in IgE-sensitized
mice and to the decrease of degranulation and histamine release in immunoglobulin E
(IgE)-mediated rat basophilic leukemia (RBL)-2H3 cells [142].

An extract of Apostichopus japonicus, obtained from a sea cucumber, showed anti-
oxidant and anti-inflammation effects in mice with ovalbumin-induced asthma. The
hyper-responsiveness of airways was significantly lower, the number of eosinophils in the
lungs was decreased, and T regulatory cells significantly increased in the mesenteric lymph
nodes [143].

Peridinin and fucoxanthin, carotenoids isolated from Symbiodinium sp., a symbiotic
dinoflagellate, and from Petalonia fascia, a brown alga, respectively, were shown to suppress
allergic inflammatory responses through the inhibition of delayed-type hypersensitivity in
mice, and to reduce the number of eosinophils in both the ear lobe and peripheral blood.
The inhibitory effect of peridinin was higher than that of fucoxanthin [144].

4.2.2. Th17/Non Th2 Cytokines

Two novel phenazines, obtained from marine-derived Streptomyces sp., showed anti-
inflammatory potential and inhibited the production of LPS-induced NO, TNF-α-induced
NFkB activity [101–104].

Griseusrazin A, a pyrazine derivative produced from marine Streptomyces griseus,
inhibited the production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in
LPS-stimulated cells and suppressed iNOS [103,105].

Grassystatin A, obtained from the cyanobacterium Lyngbya confervoides, inhibited the
upregulation of IL-17 and interferon-γ (INF-γ) in response to antigen presentation, reduced
T cell proliferation in a dose-dependent manner, and inhibited the upregulation of IL-17
and IFN-γ in response to antigen presentation [106].

Ogipeptins A-D, obtained from the culture broth of the Japanese marine Gram-
negative bacterium Pseudoalteromonas sp. SANK 71903, decreased TNF-α release by human
U937 monocytic cells [107].
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Three chrysamides, A–C, dimeric nitrophenyl trans-epoxyamides obtained from the
deep-sea-derived fungus, Penicillium chrysogenum SCSIO41001, suppressed the production
of proinflammatory cytokine IL-17 [110].

Brevicompanine E, isolated from a deep ocean sediment-derived fungus, Penicillium sp.,
was found to inhibit LPS-induced TNF-α, IL-1β, iNOS and COX-2 production in microglia
and LPS-induced IκBα degradation, NF-κB nuclear translocation, and Akt, c-Jun NH2-
terminal kinase (JNK) phosphorylation [111].

Bolinaquinone, a polyoxygenated sterol derived from Dysidea sp., inhibited neu-
trophilic infiltration and IL-1β and PGE2 levels [112,113].

Hirsutanol A (HA), isolated from a red alga-derived fungus, Chondrostereum sp.
NTOU4196, significantly attenuated the levels of TNF-α, IL-6, and IL-1β in LPS-treated
THP-1 cells [114].

Carijoside, a steroid glycoside extracted from Carijoa sp., inhibited the superoxide
anion generation and elastase release by human neutrophils [117]. On the other hand,
rossinones A and B, terpene-derived metabolites of the Aplidium speciesascidian family of
Polyclinidae, inhibited only the superoxide production [120].

Klyflaccisteroid J, a steroid isolated from the Formosan soft coral Klyxum flaccidum,
demonstrated suppression of N-formyl-methionyl-leucylphenyl-alanine/cytochalasin B
(fMLP/CB)-induced superoxide anion generation and elastase release in human neutrophils
in vitro [118]. New steroids, klyflaccisteroids K–M, also isolated from Klyxum flaccidum,
demonstrated the suppression of superoxide anion generation and elastase release [119].

A brominated indol isolated form the gastropod mollusk Dicathais orbita, 6-bromoisatin,
inhibited inflammation in a murine model of LPS-induced acute lung injury by significantly
reducing TNF-α and IL-1β production and associated lung damage [121].

Sinulerectol A and Sinulerectol B, as extracts isolated from the marine soft coral
Sinularia erecta, showed anti-inflammatory activities in neutrophil pro-inflammatory re-
sponses [125].

Sargassum horneri (Turner), a C. Agardh ethanolic extract with 70% ethanol lyophilized
at −40 ◦C, obtained from a brown alga, showed antioxidant and anti-inflammatory effects
through a dose-dependent reduction of the mRNA level of cytokines, including IL-1β, and
pro-inflammatory genes, such as iNOS and COX-2, in LPS-stimulated macrophage activa-
tion. In addition, the anti-inflammatory effects were obtained by inhibiting ERK, p-p38 and
NF-κB phosphorylation and by the release of IL-1β in LPS-stimulated macrophages [129].

A cyanobacterial lipopolysaccharide, isolated from Oscillatoria planktothrix FP1, demon-
strated anti-inflammatory effects through the inhibition of LPS-induced IL-1β, TNF-α, and
IL-8 production [134–136].

5. Conclusions

In recent years, efforts have been made to understand the mechanisms underlying GC
resistance. To overcome GC resistance, which is frequently associated with high doses of GC
treatment, there is an urgent need for more specific targeted therapies. Natural compounds
have been demonstrated to be effective against various pathological mechanisms through
a variety of pathways. Some of these mechanisms were also shown to be involved in
GC resistance. This paper reviewed the marine compounds potentially acting on the
mechanisms involved in GC-resistant severe asthma. The article provided a basis for the
development of effective marine-derived drugs as new and safe sources for the potential
treatment of glucocorticoid-resistant severe asthma.
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