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Adaptive transition rates in excitable membranes
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Adaptation of activity in excitable membranes occurs over a wide range of timescales. Standard 
computational approaches handle this wide temporal range in terms of multiple states and 
related reaction rates emanating from the complexity of ionic channels. The study described 
here takes a different (perhaps complementary) approach, by interpreting ion channel kinetics 
in terms of population dynamics. I show that adaptation in excitable membranes is reducible 
to a simple Logistic-like equation in which the essential non-linearity is replaced by a feedback 
loop between the history of activation and an adaptive transition rate that is sensitive to a 
single dimension of the space of inactive states. This physiologically measurable dimension 
contributes to the stability of the system and serves as a powerful modulator of input–output 
relations that depends on the patterns of prior activity; an intrinsic scale free mechanism for 
cellular adaptation that emerges from the microscopic biophysical properties of ion channels 
of excitable membranes.
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2002; Marom, 1994, 1998; Marom and Abbott, 1994; Marom and 
Levitan, 1994; Turrigiano et al., 1996).

Fifty years of extensive research into the kinetics of ionic chan-
nels show that both the closed and the inactive states of the above 
three-states scheme are actually sets of many states in any spe-
cifi c channel studied. The set of closed states is rather compact 
and is functionally proximal to the open state; it is compact in the 
sense that the involved states are strongly coupled by rapid voltage 
dependent transitions with a characteristic time scale at the range 
of milliseconds. In contrast, the set of inactive states is extended; 
it is composed of a large number of states that are coupled by 
weak voltage-dependent and voltage-independent transition rates 
with time scales ranging from milliseconds to many minutes. The 
emerging picture is summarized in the kinetic scheme below (e.g. 
Ellerkmann et al., 2001; Hille, 1992; Liebovitch et al., 1987; Marom, 
1998; Millhauser et al., 1988a,b; Uebachs et al., 2006):
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Here, the set of closed states is represented by a single entity, 
refl ecting the fact that transitions amongst them relax within mil-
liseconds. The wide range of inactivation time scales (beyond six 
orders of magnitude) makes the choice of how to represent the 
space of inactive states a more subtle issue. In Eq. 2 the space of 
inactive states is represented by a one-dimensional cascade of m 
transitions, without loss of generality (Millhauser et al., 1988a); 
note, however, that various forms of branching kinetics, with hier-
archical transition rates, are fully compatible with the arguments 
presented in this study.

It is quite clear that the apparent length (m) and internal 
structure of the inactivation cascade is largely constrained by the 
resolution and stability of physiological measurements; with the 
advancement of experimental techniques, more timescales are 
exposed, leading to interpretations that are expressed in terms of an 
ever-increasing number of coupled molecular states. Concordantly, 

INTRODUCTION
Cellular excitability is a fundamental physiological process (Hille, 
1992) whereby voltage-dependent changes in membrane ionic con-
ductance lead to an action potential, a threshold-governed transient 
in cross-membrane voltage, v. Hodgkin and Huxley (1952) formal-
ized a generic biophysical mechanism underlying the generation 
and propagation of action potentials. In this formalism, as well as 
in its later extensions, the fl ow of ions down their electrochemi-
cal gradients is modulated by the probability of ionic “channel” 
proteins to reside in the so-called open (i.e. conductive) state. 
Non-linearity arises from the voltage-dependent reaction rates 
governing the transitions of channels between the conductive and 
the non-conductive states. For membrane excitability under physi-
ological conditions, at least two populations of channel proteins 
are required, one that acts as an exciting force (sodium or calcium 
conductances) and the other as a restoring force (mostly potassium 
conductance). The analyses presented here are generally applicable 
to both types of conductances.

Two kinds of non-conductive states were proposed by Hodgkin 
and Huxley in their original work: closed and inactive. A generic 
three-state kinetic scheme (Hille, 1992) is shown below; transi-
tion rates pushing to the right are proportional to ev, whereas left-
directed transition rates are proportional to e−v:
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α and β are millisecond time scale voltage-dependent reactions, 
and are often one order of magnitude faster compared to k

f
 and 

k
b
. The transition rates between the open and inactive states are in 

most cases state-dependent rather than strongly voltage dependent, 
unlike the original Hodgkin-Huxley intuition (see Chapters 18–19 
in Hille, 1992, especially p. 622); this difference turns out to be 
critical for the capacity of channel populations to accumulate inac-
tivation by integrating short-term activities (Manevitz and Marom, 
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present  mathematical models of excitable cells may include dozens 
of coupled differential equations, each of which takes care of a 
limited range of state transitions. While serving as an inexhaustible 
source for high-resolution physiological experiments and compu-
ter simulations (e.g. Kleber and Rudy, 2004; Markram, 2006), the 
explanatory value and the mathematical aesthetics of the resulting 
high-dimensional models are open to question.

Here, an alternative framework is presented; an abstracted popu-
lation approach to the problem of ionic channel modeling. The 
approach is realistic in the sense of dealing with the richness of 
molecular time scales, yet it does not involve concrete accounting 
for each of an ever-increasing number of molecular degrees of 
freedom. The model is applied to address the impact of channel 
population distribution in the space of the inactive states on the 
dynamics of excitability in general, and activity-dependence over 
a wide range of time scales in particular.

RESULTS AND DISCUSSION
MODEL
The following analyses rely on a conjecture presented by Millhauser 
et al. (1988a,b), supported by recent experimental observations 
(Ellerkmann et al., 2001; Jones, 2006; Melamed-Frank and Marom, 
1999; Toib et al., 1998; Uebachs et al., 2006) and computer simula-
tions (Drew and Abbott, 2006; Gilboa et al., 2005; Lowen et al., 
1999). The basic idea behind the conjecture is that the immensity 
of the molecular degrees of freedom underlying cellular excit-
ability allows for a continuum approximation of the relations 
between activity and the effective rate that governs the dynam-
ics. Somewhat related ideas are exercised in the interpretation of 
physiological data obtained at different levels of organization and 
various excitable systems (Fairhall et al., 2001; French and Torkkeli, 
2008; Lowen et al., 1997; Lundstrom et al., 2008; Soen and Braun, 
2000; Teich, 1989).

Millhauser, Salpeter and Oswald conjectured that, microscopi-
cally, the effective rate of transition (denoted δ), from the chain of 
inactive, unavailable states (I

1
, I

2
,…,I

m
), to the cluster of available 

(Closed and Open) states, depends upon the depth of the inactive 
state that the channel occupies (Millhauser et al., 1988a,b). When 
the dynamics beyond the time scale of the single action potential 
is considered, the above chain-like kinetics (Eq. 2) are represented 
by the following abstraction:

A I I Im
δ

γ
( )1 2, ,...,

 
(3)

in which the set of available states (denoted by A) includes, besides 
the open state itself, all the states from which the channel may 
arrive to the open state within the time scale of a single action 
potential: the closed states and the very fi rst inactive states that 
are treated in the original Hodgkin and Huxley formalism for the 
action potential generation. In other words, a channel in A is avail-
able for conducting ions within the time scale of a single action 
potential. The right-hand term of Eq. 3 represents the pool of states 
from which transition to the open state within the time frame of 
an action potential is impossible.

Macroscopically, it is instructive to think of A in the context 
of G

max
, the maximal conductance (or number of ionic channels) 

in a unit area of membrane; in the original Hodgkin and Huxley 

 formalism, G
max

 is a structural constant that sets limits on the 
instantaneous (at the scale of milliseconds) input–output rela-
tions of the membrane. But when long-term effects are sought, 
the effective G

max
 might be treated as a dynamic variable, modu-

lated by (I
1
, I

2
,…,I

m
), a reservoir that pulls channels away from 

the system as a function of activity. Such defi ned, Eq. 3 describes 
a standard Hodgkin-Huxley “gate” variable (e.g. the “h” inacti-
vation gate). But this is where the Millhauser’s et al. conjecture 
makes a difference: let Z denote the depth of the inactive state 
that the channel occupies, such that 1 ≤ Z ≤ m; the larger the Z, 
the slower the δ, refl ecting the multiplicity of transitions along 
the path I

Z
 → I

1
. Millhauser et al. (1988a,b) showed that in the 

above scheme, multiplicity of inactive states entails a power-law 
scaling of δ with Z. Macroscopically, where a strongly coupled 
single type population of channels are considered, the value of δ 
is determined by the structure of O(Z), the distribution of chan-
nel molecules within the space of non-available states (Figure 1); 
this distribution defi nes the long-term (at the range of tens of 
milliseconds to minutes) input–output relations of the system. 
Thus, in contrast with standard Hodgkin-Huxley gates, δ does 
not have a uniquely defi ned characteristic time scale. Rather, its 
time scale is determined by the distribution of channels in the 
space of inactive states, which, in turn, is dictated by the history 
of activation.

Well-controlled experimental analyses using various kinds of 
homogeneous populations of ionic channels show that the above 
prediction of a power-law relation between Z and δ is valid under 
voltage-clamp conditions (Ellerkmann et al., 2001; Melamed-Frank 
and Marom, 1999; Toib et al., 1998; Uebachs et al., 2006). In these 
experiments, the channels are driven into the inactive chain by long 
lasting activation pulses; a power-law relation, δ ∝ −T D, was found 
between the duration of the activation pulse, T, and the effective 
recovery rate δ. During activation (i.e. refl ecting a boundary condi-
tion enforced by increased membrane voltages due to stimulation), 
Equation 2 entails a diffusion-like behavior of 〈Z〉 (Millhauser et al., 
1988a), the fi rst moment of O(Z), such that 〈 〉 ∝Z T  (Gilboa et al., 
2005). We may therefore write:

δ δ= −
0

2
Z

D

 (4)

with D being a non-negative number, interpreted as the dimen-
sion of the unavailable set of states and refl ects the constraints 
on the accessibility to these states (Bassingthwaighte et al., 1994; 
Liebovitch et al., 1987). The factor, δ0, is an offset that may be 
thought of as the recovery rate (δ) at Z = 1 or D = 0; for any D > 0, 
δ δ< 0.

As demonstrated both experimentally (e.g. Ellerkmann et al., 
2001; Toib et al., 1998; Uebachs et al., 2006) and numerically (e.g. 
Gilboa et al., 2005; Marom and Abbott, 1994), the state-dependency 
of inactivation (Eq. 1) fosters accumulation of slow inactivation 
by spike series or spike-like voltage pulse series, and entails scaling 
of recovery rates (Eq. 4).

Crucial for what follows is to note that while δ is determined by 
the statistics of a seemingly “hidden” distribution of a population of 
channels in the space of inactive states, unique and direct informa-
tion about the value of 〈Z〉 is given in the fraction of channels that 
remains in the cluster of available (A) states (Gilboa et al., 2005; 
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Millhauser et al., 1988a,b). This point is demonstrated in Figure 1; 
the relation of A to 〈Z〉 is:

A r Z= −β

 (5)

where r = 1 may be safely assumed (accounting for maximal avail-
ability when Z = 1).

Let us further reduce Eq. 3, by normalizing the total number of 
channels in the system such that P A P IZ

m
Z( ) ( )+ ∑ ==1 1, where P(x) 

denotes the fraction of channels residing in state x, and obtain:

A A
δ

γ
( )1−

 
(6)

Thus, the righthand term of Eq. 6, (1 − A), includes all the inactive 
states from which the open state is not accessible within the time 
scale of a single action potential; these are the unavailable states. 
Note that Eq. 6 directly translates to:

d

d

A

t
A A= − + −γ δ( )1

 
(7)

In what follows, γ, the rate of loss into the non-available set of 
states, is assumed to be determined by the frequency of above-
 threshold activations, which, in many excitable tissues, is quite 
narrowly distributed notwithstanding fl uctuations induced by 
external input. Thus, in our model γ is a measure of the activity 
or some monotonic function of it. A further assumption is made, 
that the compactness of the cluster of available states entails that 
the exact state within A in which the channel resides does not sig-
nifi cantly infl uence its characteristic time scale for the transition 
A A→ −( )1 , when long-term effects are considered. Moreover, 
in the present analysis the amplitude of activation (internally or 
externally-driven) is assumed suffi cient to induce an A A→ −( )1  
transition, which is insensitive to whether or not an action potential 
was evoked; the latter is a very reasonable assumption given known 
relations between threshold potential and  activation of exciting 
conductances in a wide range of physiological preparations.

The above set of physiologically plausible simplifying assump-
tions regarding γ proves useful below. But in some sense, γ embod-
ies the environment within which the simple system, A A( )1−
resides; hence, more complicated functions can be introduced, 
aimed at relating γ to the statistics of stimulation frequency and 
amplitude, the probabilities of obtaining action potentials at a given 
stimulation regimen, and various history-dependencies (see, for 
instance, discussion on discrete equation, below).

As shown above (Eq. 4), δ scales with the history of inputs to 
the cell, thus making the very nature of the system described in 
Eq. 6 sensitive to its own history of inputs. The impact becomes 
immediately apparent by rearranging Eq. 5, substituting Z in Eq. 4, 
and reducing Eq. 7 to:

d

d

A

t
A A AD= − + −/γ δ β

0
2 1( )

 
(8)

in which, under constant γ, the dynamics depend on one number, 
D, a measurable dimension of the inactive state space. Dividing 
by δ0, letting t t= δ0, γ γ δ= / 0 and noting that D D2 /β lead to a 
reduced, dimensionless form of Eq. 8:

d

d

A

t
A A AD= − + −γ ( )1

 
(9)

In simplifi ed channel models that are reduced from the classical 
Hodgkin and Huxley formalism, D → 0, but measurements in real-
istic channel proteins (Ellerkmann et al., 2001; Melamed-Frank 
and Marom, 1999; Toib et al., 1998; Uebachs et al., 2006) yielded 
D estimates ranging from 0.08 to 0.8, an order of magnitude apart, 
that has far reaching physiological implications, as shown below.

IMPLICATIONS
Dynamic Input–Output relations
Equation 8 implies a change of A, the fraction of channels that reside 
in the set of available-for-activation states, as a function of input 
statistics. The environment (electrical or chemical activations) is 

β

f/b

FIGURE 1 | Distributions of occupancy within the inactive cascade 

A I I Im→ ...1 2 ; computed for m = 50 using the generator matrix Q, 

where P(t) = P(0) exp(Qt), and P(t) is a vector of occupation probabilities. A 
refl ecting barrier was set such that channels are forced to diffuse into the 
inactive states cascade (i.e. the probability of I1 → A is set to zero). The depth of 
any given inactive state in the cascade is depicted on the X-axes (Z). The 
probability of channels to occupy each Z state depth is depicted on the Y-axis. 
Different distributions (colored) were induced by setting the refl ecting barrier for 
different time durations (10, 30, 100, 300, 1000, 3000 time units), from an initial 

condition where the probability of occupying the A state is 1. All transition rates 
pushing to the right (i.e. forward, depicted “f”) were set to 0.1. The forward-to-
backward (f/b) ratio of rates is set to unity in the main panel, and to 1.1 in the 
inset panel, demonstrating the sensitivity of the family of distributions to 
transition rates within the cascade. Right: A Log–Log plot of occupancy of A, the 
available set of states, as a function of the fi rst moment 〈Z〉 of the distribution of 
channels within the space of inactive states, for the two settings shown in the 
left panel; A Z∝ 〈 〉−β (see text). Inset of right panel shows the dependence of β 
on f/b ratio, calculated by a fi t to Eq. 5.
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embodied in γ, whereas the system (ionic channels) is embodied 
in the form of a single variable, that is D. As shown below, analysis 
of Eq. 8 leads to insightful conclusions about the nature of excit-
able membrane responses beyond the time scale of a single action 
potential in general, and response adaptation of neural activity in 
particular. But before such an analysis is presented, it is useful to 
say something more concrete about the meaning of A in general. At 
some point above, an analogy of A to an effective Hodgkin-Huxley 
G

max
 was offered; we are now in a position to further elaborate on 

this analogy: When A → 1, the effective G
max

 approaches the stand-
ard Hodgkin-Huxley G

max
, that is the maximal conductance that is 

physically available to the membrane when all membrane-residing 
channel proteins that are selective to the ion on question are open 
and conductive. Any other value of A (0 ≤ A ≤ 1, by defi nition), 
entails an effectively reduced G

max
; in other words, the maximal 

conductance available for a membrane when A < 1 is less than the 
maximum that is dictated by the physical number of channel pro-
teins residing in that membrane. To the extent that G

max
 determines 

the input–output relation of a given Hodgkin-Huxley realization, 
different values of A entail different input–output relations; hence, 
dynamics of A is dynamics in a space of possible input–output 
relations, a space of different Hodgkin-Huxley realizations. Such 
dynamics may, of course, be introduced by adding more and more 
Hodgkin-Huxley-like gates, each with a different uniquely defi ned 
time scale. Our aim here is to avoid such an approach and let these 
time scales and entailed dynamics be the result of a mathematically 
analyzable model rather than its determinants.

Population approach to the dynamics of excitability
In what follows, a population approach is adopted in order to study 
the impacts of D, the dimension of the unavailable space of channel 

states, on the dynamics of excitability. Analysis of the continuous 
model (Eq. 8) is presented, followed by biophysical arguments that 
justify analysis of a discrete form of the model (Eq. 10). Both analy-
ses indicate that D serves as a “buffer” that contributes to the stabil-
ity of the system: The continuous model shows that as D increases, 
the system is less sensitive to high frequency fl uctuations around 
its steady-state solution; the discrete form of the model shows that 
as D increases, the system becomes less susceptible to bifurcating 
response modes when activity rates are increased.

Equation 8 has the general form of a Logistic equation. In ret-
rospect, a relation to a Logistic equation should not come as a 
surprise, for what we are dealing with here is a constrained popu-
lation of channel proteins, with availability for further activation 
that is dominated by its own activation history. It is immediately 
clear that Eq. 8 has one stable solution A*, which is affected by both 
γ and D. The time scale of the system’s response to a disturbance 
around the equilibrium is determined by the fi rst derivative of the 
equation at A*: it increases with D (the dimension of the space of 
inactive states), as if the latter contributes to the stability of the 
system by “buffering” fast fl uctuations in rates of activity around 
A* (Figure 2).

The mathematics involved in logistic equations and networks of 
coupled equations is well developed; its implementations give rea-
sons to believe that phrasing Eq. 8, which results from a molecular 
level picture, in discrete (map) terms, might prove useful in analyses 
of single excitable cells and their networks. However, one must be 
very attentive to the justifi cation of such a path from continuous 
to discrete form, because of the qualitative nature of its impact 
on the entailed dynamics. In population models, mapping is used 
when there is no overlap between successive generations and so the 
growth occurs in discrete steps (Murray, 1993). As shown below, 
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FIGURE 2 | The four panels on the left demonstrate the effect of D and γ on 

the dynamics of Eq. 9, where f (A) = (1 – γ)A + AD(1 – A). Straight diagonals are 
depicted for convenient identifi cation of the steady-state solution, A*, where 

f(A) = A. The contour plot on the right shows the time constant of population 
response to perturbations around equilibrium, as a function of D and γ. Color 
scaling: values of time constant are depicted on contour lines.
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while a mathematically rigorous path from the continuous form of 
Eq. 8 to a discrete form is not immediately available, there are good 
biophysical reasons, supported by experimental results, to think 
in discrete terms in the context of an excitable cell, where transi-
tions between epochs that are characterized by different degrees 
of activity are abundant.

To phrase the model in a discrete form, we start by considering 
a long time series of action potentials, composed of various regions 
that may differ from each other in the intensity of activity – e.g., fi r-
ing rate (see Figure 3). Note that such time series are ubiquitous in 
excitable cells, where bursts of activity at various length superpose 
ongoing low-level activity. We divide the time series into epochs 
of activity; T

n
, the duration of epoch n, might be different from, 

or equal to T
n + 1

 (Figure 3). During the n-th epoch, within which 
activity is expressed in terms of action potentials, the rate of loss 
into the set of unavailable states, denoted Γ

n
, is a function of the 

intensity of activity (e.g., fi ring rate) along the n-th epoch (see, for 
instance, Figure 1C in Toib et al., 1998, or Figure 5 in Ellerkmann 
et al., 2001). What we learn from experimental voltage-clamp data 
(e.g. Ellerkmann et al., 2001; Jones, 2006; Melamed-Frank and 
Marom, 1999; Toib et al., 1998; Uebachs et al., 2006) allows for 
two assumptions to be made at this stage: (i) The time scale of entry 
into the unavailable set of states is in the order of many seconds, 
even tens of seconds. This experimental fi nding allows us to safely 
consider a condition in which Tn nΓ−1, while still be within the 
range of interest, that is far beyond the time scale of a single action 
potential. (ii) Recovery from the space of unavailable states is an 
exponential relaxation process with a uniquely defi ned time scale, 
also in the order of many seconds (up to tens of seconds), that 
depends on the depth of inactivation. Taken together with Eqs. 4 
and 5, this fi nding allows us to assume that, for T An n

D( )δ0
1− , the 

rate of recovery from the space of unavailable set of states, within 
an epoch, is a constant that depends on A

n
. Under these conditions, 

i.e. Tn nΓ−1 and T An n
D( )δ0

1− , the availability of channels at the 
end of epoch n, depicted A

n + 1
, becomes:

A T A T A An n n n n n
D

n+ +
= − + −⎡⎣ ⎤⎦1 01 1( ) ( )Γ δ  (10)

where [x]+ = max(0, x), ensuring that A ≥ 0. The above limits of T
n
, 

being much smaller compared to Γn
−1 and ( )δ0

1An
D − , ensure that the 

map is immuned to numerical instabilities due to discretization. 
In what follows, the implications of treating excitable membranes 
as Logistic maps on our understanding of neuronal adaptation are 
shown; extending the following reasoning to other excitable systems 
(e.g. cardiomyocites) is fairly straightforward.

Neuronal adaptation: Graceful vs. Complex
Adaptation of neuronal response patterns to ongoing stimulation 
is usually thought of in monotonic terms; that is – the longer or 
more intense (frequency or amplitude) the stimulation series is, 
the neuronal responsiveness tends to gracefully reduce or gracefully 
increase, depending on the involved conductance, e.g. sodium or 
potassium, respectively. But there are reports in the literature, show-
ing that adaptation to repeated stimuli may result in the emergence 
of intermittent, non-monotonic complex deterministic patterns of 
neuronal responses (e.g. Drew and Abbott, 2006; Gilboa et al., 2005; 
La Camera et al., 2006; Lowen et al., 1999; Manevitz and Marom, 
2002; Tal et al., 2001). The following analysis offers an explanation 
that links the dimension of inactivation space of states, to the nature 
of adaptive neuronal responses to repeated stimuli.

Let us consider a simple case of Eq. 10, where T and Γ are con-
stants – i.e., the case of periodic activations. Under these conditions 
Eq. 10 becomes:

A A cA An n n
D

n+ +
= − + −⎡⎣ ⎤⎦1 1 1( ) ( )Γ  (11)

where Γ Γ= T  is the fraction that inactivates during an epoch, and 
c T= δ0. In what follows, for convenience, the tilde symbol is omitted 
from the parameter Γ. The fraction inactivated during each epoch, 
Γ, contributes to the dynamics by linearly offsetting the map: as Γ 
increases, the slope of the map at A An n+ =1  becomes more nega-
tive, pushing the system towards instability and bifurcations. For 
0 < D < 1, as D increases it acts as a “buffer” that defers the occur-
rence of bifurcations for any A < 1. In fact, the lower bound of Γ

critical
 

for the occurrence of the fi rst bifurcation of A goes to infi nity as D 
approaches unity: The exact solution is arrived at by noting that at 
steady state (s), A

n+1
 = A

n
. Thus,

Γ s
DcA A= −−1 1( )  (12)

The fi rst derivative of Eq. 11 in respect to A is

1 11− + − −−cA cDA AD D ( ) Γ  (13)

which goes to −1 at the fi rst bifurcation point, where

A
D

c
D = + −( )2 Γ Γ

 
(14)

Since 0 1≤ ≤AD , the resulting inequality reduces to

2

1

2

1

−
−

≤ ≤
−

c

D D
Γcritical

 
(15)

at 0 < c < 2; that is, where T is within the range of, or smaller than 
δ0

1−  (the lower limit of recovery time scale), as D → 1, Γcritical → ∞.
Figure 4 demonstrates the above point; it shows examples of 

bifurcation diagrams, computed by iterating Eq. 11 in a range of Γ 
at three different D values. Deterministic transitions between dif-
ferent values of A occur as a function of the fraction inactivated (Γ) 
at each generation. Note that the sensitivity of the dynamics to the 
activity depends on D: Where the space of inactivated states is small, 
the value of D is small and the diagram bifurcates at a relatively low 
inactivation rate. As the chain of inactivated states becomes longer, 
D increases and buffers the dynamics, deferring the fi rst bifurca-
tion point to higher inactivation rates. Thus, the existence of long 
chains of inactivation states protects the system from bifurcations, 

Tn Tn+1

An An+1 An+2

FIGURE 3 | A scheme of a long time series of action potentials, composed 

of various regions that might differ from each other in the intensity of 

activity (e.g., fi ring rate). The time series is divided to epochs of activity; Tn, 
the duration of epoch n, might be different from, or equal to Tn + 1. An is the 
availability of channels at the beginning of the n-th epoch.
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allowing for a wider range of graceful adaptation of the availability 
of channels over long time scales (black curve of Figure 4). Since 
we have mapped the dynamics of A to dynamics in the space of 
possible input–output relations, deterministic transitions between 
multiple values of A, such as the bifurcations in Figure 4, entail 
instability of input–output relations and enrichment of neuronal 
response patterns to a given stimulation regime. The manifestation 
of these dynamics of A in neural activity depends, of course, on the 
concept one has in mind for what a neural input–output function 
is. Yet, in general, it is safe to say that in the case of graceful adapta-
tion (high D values), for each input frequency the system relaxes 
to one unique defi ned response mode; this is what the black curve 
of Figure 4 implies. Complex adaptation, that is bifurcation in the 
dynamics of A, means instability and non-monotonous exchange 
of response modes, for a given input frequency. This prediction 
of the model is strongly supported by measurements obtained in 
neural and cardiac preparations, as well as by concrete numeric 
simulations in which multiple timescales are manually introduced 
by additions of uniquely defi ned states and rates (e.g. Drew and 
Abbott, 2006; Gilboa et al., 2005; La Camera et al., 2006; Lowen et al., 
1999; Manevitz and Marom, 2002; Soen et al., 1999; Tal et al., 2001); 
the strength of the present approach is in its simplicity: it shows that 
the dynamic range of adaptation in excitable membranes is reduced 
to a simple equation in which the essential non-linearity is replaced 
by a feedback loop between the history of activation and an adaptive 
transition rate that is sensitive to a single physiologically measurable 
dimension. Obviously, the continuous model of Eq. 8 can never 
lead to bifurcating response patterns of the kind seen in the above 
referenced studies. However, such complexity may be introduced 
when interacting populations of different ionic channels, expressed 
as coupled continuous equations, are considered (e.g. DeFelice and 
Isaac, 1993; Soen et al., 1999 and references therein).

Distribution of D, development and adaptation
In the above analyses of excitability dynamics, beyond the time scale 
of a single action potential, a signifi cant emphasis is put on the 

value of D, the dimension of inactivated space of states; different 
values of D may cause very different long-term dynamics. As D 
increases, the system is less sensitive to high frequency fl uctuations 
around its steady-state solution, and becomes less susceptible to 
bifurcating response modes. Experimental measurements show 
that D has a wide range in various types of channels. This supports 
the richness of dynamics observed in different types of cells, and 
changes in excitability within a given cell along its developmental 
timeline. For instance, Toib et al. (1998) reported D = 0.8 for NaII 
(the neonatal form of cortical neuron sodium channel), D = 0.5 for 
NaIIA (the adult form of cortical sodium channel), and D = 0.1 for 
the A-type ShakerB potassium selective channel; Ellerkmann et al. 
(2001) reported sodium conductance D values that range from 0.3 
to 0.6 in hippocampal granule cells, hilar neurons and basket cells; 
Melamed-Frank and Marom (1999) reported D = 0.3 in the wild-
type skeletal muscle voltage-gated Na channel (SkM1), but D = 0.6 
in the SkM1 (T698M) mutant that is believed to cause Hyperkalemic 
periodic paralysis; Uebachs et al. (2006) reported scaling of recovery 
rates that is dramatically reduced in Ca(v)3.2 and Ca(v)3.3, but not 
Ca(v)3.1. These and related observations suggest that the dimen-
sionality of the space of inactive states is a powerful modulator of 
excitability dynamics that depends on the patterns of prior activity; 
a time scale free mechanism for cellular plasticity that emerges from 
the biophysical properties of channel subunits.

Recapitulation
There is a tendency, in recent years, to model excitability by account-
ing for all possible measurable variables and parameters. Indeed, the 
measurement techniques become increasingly precise, computers 
become increasingly strong, and the present state-of-the-art (espe-
cially in the discipline of neuroscience) brings to mind Borges com-
ment “On Exactitude in Science” (J. L. Borges, A Universal History 
of Infamy, Penguin Books, London, 1975; translated by Norman 
Thomas de Giovanni):

…In that Empire, the craft of Cartography attained such Perfection 
that the Map of a Single province covered the space of an entire 
City, and the Map of the Empire itself an entire Province. In the 
course of Time, these Extensive maps were found somehow wanting, 
and so the College of Cartographers evolved a Map of the Empire 
that was of the same Scale as the Empire and that coincided with 
it point for point…

The study described here takes a different (perhaps comple-
mentary) approach, by interpreting ion channel kinetics in terms 
of population dynamics. Notwithstanding obvious qualifi cations, it 
suggests that such an approach produces a mathematically tenable 
reduced model, which is based on a small number of experimentally 
measurable parameters, and with immediate physiological implica-
tions on our understanding of adaptation in excitable cells. The 
hope is that this approach will serve for analyses of excitability in 
point and extended systems; analyses that are realistic in the sense of 
dealing with the richness of molecular time scales, yet do not involve 
accounting for an ever-increasing number of molecular degrees of 
freedom. Current reduced models fall short in this respect.
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