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ABSTRACT: The scaling-up of electrochemical CO2 reduction requires circumventing the CO2 loss as carbonates under alkaline
conditions. Zero-gap cell configurations with a reverse-bias bipolar membrane (BPM) represent a possible solution, but the catalyst
layer in direct contact with the acidic environment of a BPM usually leads to H2 evolution dominating. Here we show that using
acid-tolerant Ni molecular electrocatalysts selective (>60%) CO2 reduction can be achieved in a zero-gap BPM device using a pure
water and CO2 feed. At a higher current density (100 mA cm−2), CO selectivity decreases, but was still >30%, due to reversible
product inhibition. This study demonstrates the importance of developing acid-tolerant catalysts for use in large-scale CO2 reduction
devices.

Electrochemical CO2 reduction represents a pathway to
achieve a circular chemical economy by synthesizing fuels

and chemicals from waste CO2.
1,2 One promising config-

uration is a zero-gap electrolyzer, with the CO2 reduction
catalyst loaded onto a gas-diffusion electrode (GDE) in direct
contact with a cation exchange membrane (CEM), bipolar
membrane (BPM), or anion exchange membrane (AEM).
Zero-gap structures have been proposed as a route to high
current densities and reduced manufacturing costs. Since the
catalyst is in close contact with the membrane, the membrane
strongly influences the local environment of the catalyst.
The majority of zero-gap studies have utilized AEM’s as a

high pH limits available protons to achieve selective CO2
reduction vs H2 evolution. While this improves selectivity, CO2
is also “scavenged” through reaction with hydroxide to form
(bi)carbonate, incurring high separation costs.3 In contrast,
BPM and CEM devices, where the catalyst is in contact with
the acidic surface of the cation exchange layer, can mitigate this
issue; however, H2 formation dominates due to the low pH.4

Recent work on metal catalysts has shown that selectivity for
CO2 reduction at lower bulk pH can be improved by a high
concentration of alkali metal cations5−7 with liquid electrolyte
GDE’s and through the use of a polymer buffering layer.8

Engineering the local pH shows promise, but detrimental
carbonate formation within the gas diffusion layer can still
occur. An alternative but yet understudied approach is to
develop catalysts that are intrinsically selective toward CO2
reduction in acidic environments.
Few studies have explored the use of molecular catalysts on

GDE’s for CO2 reduction, and the majority of these reports
have focused on porphyrin and phthalocyanine complexes of
Co and Fe at near neutral or high pH.9,10 To the best of our
knowledge there are no past studies on the use of molecular
catalyst modified GDE’s in acidic environments. Here we use
molecular electrocatalysts with selectivity to CO2 reduction in
acid environments in a zero-gap electrolyzer with a pure-water

fed BPM. We used a reverse-biased BPM instead of a simpler
CEM system as the sandwiched cation exchange layer/anion
exchange layer (CEL/AEL) of the BPM drives water
dissociation allowing the anode and cathode to be operated
at different pH’s. This is beneficial as we achieve the required
acidic environment at the cathode and an alkali environment at
the anode, which in future studies will allow us to use earth-
abundant oxygen evolution catalysts. Furthermore, studies on
BPM’s in CO2 reduction have shown low product crossover
rates.11−13 Hydrated CO2 is flowed at the cathode and
deionized H2O is flowed at the anode. Alkaline solutions are
commonly used at the anode due to the lower overpotential for
oxygen evolution and higher solution conductivity. However,
we used pure water which is (i) preferable for scaling up due to
low corrosiveness14,15 and (ii) it avoids the presence of cations
(e.g., K+) apart from H+ which will reach the cathode through
co-ion transport,16 changing the local pH and complicating the
analysis of the role of the molecular catalyst.
Figure 1 shows the zero-gap cell assembly using a

commercial BPM (Fumasep). The molecular catalysts studied
here are [Ni(Cyc)]2+ (Cyc = cyclam = 1,4,8,11-tetraazacyclo-
tetradecane) and its derivative with a pendant carboxylic acid
group [Ni(CycCOOH)]2+ (CycCOOH = 1,4,8,11-tetraazacy-
clotetradecane-6-carboxylic acid) which are spray coated onto
carbon paper with microporous layers to form the GDE
structure (at a loading of 1 mg cm−2 with Nafion solution as
binder and ion-transporter, for details see the Supporting
Information). [Ni(Cyc)]2+ and its derivatives have been
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studied extensively17−24 in homogeneous systems and shown
to have a high CO selectivity in aqueous systems at pH 2−5,
with [Ni(CycCOOH)]2+ being particularly active at lower
pH’s.23,25 The selectivity at a low pH is proposed to be due to
a high CO2 binding constant and a low pKa of the reduced NiI

center.18,19 There are only two prior reports of Ni cyclam-
based catalysts immobilized onto a GDE,26,27 and one with the

catalyst in a flow cell25 none of which used an acidic or zero-
gap configuration.
Figure 2A shows X-ray photoelectron spectroscopy (XPS)

data from the Ni 2p region, with overlapping contributions
from F Auger signals (from the polytetrafluoroethylene
(PTFE) coating on the GDE and Nafion, at 835.0, 862.2,
and 882.1 eV). The Ni 2p3/2 (856.6 eV) and Ni 2p1/2 (873.8
eV) peaks confirm the presence of [Ni(Cyc)]2+ on the GDE.
The satellite peaks of Ni 2p3/2 at 862.3 and 866.2 eV, and Ni
2p1/2 at 879.4 and 883.8 eV could not be resolved in the
[Ni(Cyc)]2+ on the GDE surface. Figures 2B−D, S1, and S2
show the scanning electron microscopy (SEM) images and
corresponding Ni Kα and F Kα energy dispersive X-ray
spectroscopy (EDX) elemental mapping of [Ni(Cyc)]2+ on a
GDE. There were no visible aggregates on the carbon paper
substrate and the Ni elemental mapping indicated that the
complex was evenly distributed, although smaller aggregates
(∼1−100 nm scale) cannot be ruled out.
We conducted chronopotentiometry of the zero-gap cell

from 2.5 to 100 mA cm−2 for the two molecular catalysts and
benchmarked against a commercial Ag nanoparticle catalyst
GDE. Ag has been widely studied and is one of the most
effective heterogeneous catalyst for CO production.28−30 The
Faradaic efficiency and full cell voltages are shown in Figure
3A,B. When Ag was the cathode catalyst, H2 was the dominant
product at all current densities, in-line with past studies of Ag
with an acidic electrolyte.4,31 The Faradaic efficiency for CO
on Ag was very low (10 ± 9%) at 12.5 mA cm−2 and it
increased slightly with current density, reaching a maximum of
23 ± 9% at 50 mA cm−2. The increase in CO selectivity with

Figure 1. Zero-gap cell with a bipolar membrane

Figure 2. (A) XPS Ni 2p spectrum of [Ni(Cyc)]2+ on GDE (green), [Ni(Cyc)]2+ powder (red), and bare GDE (black). (B) SEM image of
[Ni(Cyc)]2+ on GDE and corresponding (C) F Kα and (D) Ni Kα EDX maps.
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current density can be explained by the expected increase in
the local pH at the electrode surface.32−34 CO2 reduction (and
H2 evolution) consumes protons, therefore the proton activity
in the boundary layer of the electrolyte is lowered, decreasing
H2 evolution.
In contrast, the molecular catalysts achieved significantly

higher CO Faradaic efficiency across the current range studied
here. The maximum CO Faradaic efficiency reached was 63%
± 7 at 25 mA cm−2 for [Ni(Cyc)]2+ and 48% ± 1 at 50 mA
cm−2 for [Ni(CycCOOH)]2+. The cell voltages were similar
(∼2.8−5.0 V) across all three cathode catalysts. Although
[Ni(CycCOOH)]2+ has been reported to achieve higher CO
selectivity than [Ni(Cyc)]2+ on a Hg electrode in aqueous
solution at a low pH,25 in this zero-gap configuration its
selectivity was higher only at the highest current density (100
mA cm−2). This may be due to the different nature of the
substrate (carbon paper versus Hg). Furthermore, the
measured CO selectivity is the result of complex interplay
between the local pH environment, intrinsic CO selectivity,

and the sensitivity to CO which was not studied in previous
low-current reports.
The performance of molecular catalysts in the acidic

environment of our BPM cell is comparable to or exceeds
recent results in the literature in which the cathode is in direct
contact with the CEL side of the BPM; however, in all these
cases an elevated local pH has been engineered. Yan et al. used
a modified BPM designed to be near neutral (pH ∼5) on the
CEL side, and reached ∼30% CO FE at ∼50 mA cm−2.11

Salvatore et al. investigated the effect of a solid-supported static
buffer layer between a Ag cathode and a BPM, and reported a
CO FE ∼ 10% at 100 mA cm−2, increasing to ∼65% with an
intermediary buffer layer that would raise the local pH at the
cathode.13

The CO partial current density (Figure 3C) shows that the
activity of the molecular catalysts leveled off, especially for
[Ni(Cyc)]2+. We estimate a lower limit for the electroactive
coverage of [Ni(Cyc)]2+ to be 1.5 ± 0.2 × 10−8 mol cm−2

through cyclic voltammetry in acetonitrile (Figure S3). Some
uncertainty remains due to different solvent penetrations from
using acetonitrile, but this coverage of [Ni(Cyc)]2+on a GDE is
2 orders of magnitude greater than for planar electrodes.25

However, it is only a small fraction of the deposited catalyst
(Figure S4), suggesting that future work to obtain a higher
dispersion of the catalyst could enhance the CO partial current
density.
We next considered the possibility of catalyst inhibition by

CO formation or catalyst degradation. The change in CO
selectivity with time for [Ni(Cyc)]2+ is shown in Figure 4A. A
constant current measurement at 25 mA cm−2 was conducted
for 1 h, then the applied current was paused for 1 h with CO2
and H2O continuing to flow, then constant 25 mA cm−2 was
resumed for 1 h. The initial CO selectivity was 71%, which
decreased to 31% after operating for 1 h. The CO selectivity
recovered after the pause, but decreased again with continued
operation. A similar experiment with Ag showed no
appreciable change in CO:H2 selectivity with time, suggesting
that the change is not due to local pH (Figure S5). A test with
different wait times on a single sample (Figure 4B) shows that
84% of the initial CO selectivity of [Ni(Cyc)]2+ can be
recovered after a pause of 15 min, and the extent of recovery
increases with increasing pause duration.
XPS and EDX postelectrolysis show a substantial loss of Ni

from the GDE (Figure S6,7); however, Ni loss as the main
deactivation pathway is not consistent with the recovery of
selectivity. Instead, we consider inhibition of [Ni(Cyc)]2+ by
the product CO, which can reversibly form an inactive
[Ni(Cyc)(CO)]1+ species (Figure 4C).35 In an aqueous
solution, the CO binding constant of Ni(Cyc)1+ is reported
to be 4 orders of magnitude higher than its CO2 binding
constant (7.5 × 105 versus 16 M−1).36−39 Therefore, the
inactive [Ni(Cyc)(CO)]1+ can accumulate at the CO
concentrations (∼2−3%) under the highest current density
in this study. Another possible concurrent deactivation/
recovery pathway is the desorption and readsorption of
[Ni(Cyc)]2+.
Since the extent of CO inhibition is proportional to the local

CO concentration, the decline in selectivity can be mitigated
by optimizing the reaction conditions (Figures 5 and S8). In
each of these experiments, the measurement was conducted in
30 min segments with a 1 h pause in between each segment to
allow the CO-inhibited species to recover. In Figure 5A
(conducted in the sequence 20, 40, 80, 10, 20 sccm), the

Figure 3. (A) Initial Faradaic efficiency for CO and H2, (B) full cell
potential, and (C) CO partial current density at various total current
densities with the cathode catalyst as Ag (black), [Ni(Cyc)]2+ (red),
or [Ni(CycCOOH)]2+ (blue).
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decline in CO FE decreased with increasing CO2 flow rate,
consistent with decreased CO inhibition due to dilution by
CO2. In Figure 5B (conducted in the sequence 25, 12.5, 100,
50, 25 mA cm−2), there was a general trend of faster decline in
CO selectivity at higher current density, which would generate
more CO. However, the trend is possibly convoluted by a

further inactivation process, because a faster rate of
deactivation at 25 mA cm−2 occurs after going to the highest
currents (i.e., most reducing conditions). It is known that
under very reducing conditions40 [Ni(Cyc)(CO)]1+ is
irreversibly reduced to insoluble Ni0 compounds.35 Never-
theless, the results here suggest that at least part of the
selectivity limitations can be overcome, for example by
optimizing the reaction conditions to avoid irreversible
deactivation or by pulsed operation.
In conclusion, the use of [Ni(Cyc)]2+-based molecular

catalysts was demonstrated for the first time in a zero-gap CO2
electrolyzer with a BPM, demonstrating improved selectivity
for CO2 reduction compared to metallic Ag catalysts up to 100
mA cm−2. This is a rare example of a device using only
humidified CO2 and pure water as feedstocks. We also showed
the reversible behavior of CO inhibition, only apparent at high
current density, which underscores the importance of catalytic
tests under realistic conditions. Our results demonstrate the
viability of developing CO2 GDE’s that are intrinsically
selective in an acidic environment.
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