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The ANGPTL3-4-8 model, a molecular
mechanism for triglyceride trafficking

Ren Zhang

Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University,
540 East Canfield Street, Detroit, MI 48201, USA

Lipoprotein lipase (LPL) is a rate-limiting enzyme for hydrolysing circulating

triglycerides (TG) into free fatty acids that are taken up by peripheral tissues.

Postprandial LPL activity rises in white adipose tissue (WAT), but declines

in the heart and skeletal muscle, thereby directing circulating TG to WAT

for storage; the reverse is true during fasting. However, the mechanism for

the tissue-specific regulation of LPL activity during the fed–fast cycle has

been elusive. Recent identification of lipasin/angiopoietin-like 8 (Angptl8), a

feeding-induced hepatokine, together with Angptl3 and Angptl4, provides

intriguing, yet puzzling, insights, because all the three Angptl members are

LPL inhibitors, and the deficiency (overexpression) of any one causes

hypotriglyceridaemia (hypertriglyceridaemia). Then, why does nature need

all of the three? Our recent data that Angptl8 negatively regulates LPL activity

specifically in cardiac and skeletal muscles suggest an Angptl3-4-8 model:

feeding induces Angptl8, activating the Angptl8–Angptl3 pathway, which

inhibits LPL in cardiac and skeletal muscles, thereby making circulating TG

available for uptake by WAT, in which LPL activity is elevated owing to

diminished Angptl4; the reverse is true during fasting, which suppresses

Angptl8 but induces Angptl4, thereby directing TG to muscles. The model

suggests a general framework for how TG trafficking is regulated.
1. Lipoprotein lipase
Triglycerides (TG), the main form of lipids to store and provide energy to

the body, are essential to human life. To allow TG to circulate in the blood

system, lipids are emulsified by proteins, forming lipoproteins. Chylomicrons

and very-low-density lipoprotein (VLDL) are the two major TG-rich lipoprotein

classes. Following a meal, chylomicrons are formed from dietary TG in mucosal

cells within the villi of the duodenum, and reach the bloodstream through

the lymphatic system. During fasting, VLDL is produced in the liver by TG syn-

thesis, and is secreted directly into the bloodstream. These TG-rich lipoproteins

transport and distribute TG to various tissues for either storage or oxidation to

generate energy. In capillaries of these tissues, TG hydrolysis and uptake of the

resulting fatty acids are largely dependent on a single enzyme, lipoprotein

lipase (LPL) [1–5].

The discovery of LPL stemmed from a serendipitous observation made by

Hahn, more than seven decades ago, that heparinized plasma cleared diet-

induced lipaemia in dogs, but heparin by itself did not have this effect, indicating

that heparin injection released a factor that cleared fat in the plasma [6]. As Hahn

[6] noted ‘This phenomenon was so striking, even in the instances where the

degree of lipemia was such that the plasma was suggestive of light cream’. This

heparin-released clearing factor was later identified as LPL [7], because its acti-

vation depends on apolipoprotein C2, a component of lipoproteins, including

VLDL, high-density lipoproteins (HDL) and chylomicrons [1–5].

LPL is a rate-limiting enzyme for hydrolysing TG presenting in circulating

lipoproteins, generating free fatty acids that are taken up by peripheral tissues

[8], including the heart [9–11], muscle [12–14] and fat [4]. LPL is abundantly

expressed in the heart and skeletal muscle, which mainly depend on fatty
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acid oxidation for energy production, and in white adipose

tissue (WAT), which stores energy by re-synthesis of TG from

absorbed fatty acids [15]. In both humans and mice, deficiency

of LPL results in severe hypertriglyceridaemia [16–18].

Because of the critical role that LPL plays in lipoprotein metab-

olism and tissue-specific substrate delivery and utilization, LPL

activity is carefully orchestrated in a tissue-specific manner

to meet the energy demands of various tissues at different

nutritional statuses. For instance, feeding upregulates LPL

activity in WAT but downregulates its activity in the heart

and skeletal muscle; the reverse is true during fasting [4]. It is

generally accepted that most physiological variations in LPL

activity, such as during the fed–fast cycle, are determined by

post-translational mechanisms involving interacting proteins,

including apolipoproteins and members of angiopoietin-like

protein family (Angptl) [4].
0272
2. GPIHBP1
LPL hydrolyses TG in TG-rich lipoproteins on the surface of

capillaries of peripheral tissues, including the heart, skeletal

muscle and WAT; however, LPL is not expressed by capillary

endothelial cells, but is produced by the parenchymal cells, myo-

cytes and adipocytes [3]. Therefore, LPL must be transported

across endothelial cells to the luminal surface of capillaries. An

important discovery regarding LPL biology is that an endo-

thelial cell protein glycosylphosphatidylinositol-anchored high

density lipoprotein binding protein 1 (GPIHBP1) transports

LPL into capillaries, where LPL remains anchored to the capil-

lary wall by GPIHBP1 [19–21]. In Gpihbp1 knockout (KO)

mice, LPL is mislocalized to the interstitial spaces surround-

ing myocytes and adipocytes, and the KO mice exhibit severe

hypertriglyceridaemia (chylomicronaemia) [20,21]. In humans,

GPIHBP1 loss-of-function mutations result in familial chylomi-

cronaemia [22–25]. Without GPIHBP1, LPL cannot reach the

capillary lumen, and TG-rich lipoproteins do not bind to the

lumen of capillaries [19]. GPIHBP1 is, therefore, required for

LPL to function on the capillary surface and is a key platform

for the lipolytic processing of TG-rich lipoproteins [26–28].
3. Angptl3 and Angptl4
Angptl3 and Angptl4 are well-established inhibitors of LPL

[29]. The first hint for involvement of Angptl proteins in lipid

metabolism was from the study of KK/San mice, which exhibit

extremely low serum TG levels. By performing positional clon-

ing, Koishi et al. [30] identified a loss-of-function mutation in

Angptl3 in these mice, suggesting that the low TG level is due

to Angptl3 deficiency. Angptl3 is a circulating factor secreted

from the liver, where it is specifically expressed [30]. Further-

more, Angptl3 overexpression, either by adenovirus infection

or by recombinant protein i.v. injection, rescues the low TG phe-

notypes of KK/San mice, and leads to hypertriglyceridaemia in

wild-type mice [30]. Consistently, deletion of Angptl3 in mice

lowers serum TG and cholesterol levels [29,31].

Mechanistically, Angptl3 increases circulating TG levels by

inhibiting LPL activity. In mice lacking Angptl3, the clearance

rate of VLDL-TG was increased, whereas VLDL-TG synthesis

or secretion was not affected [32]. Angptl3 has two functional

domains, an N-terminal coiled-coil domain and a C-terminal

fibrinogen-like domain. Angptl3 is proteolytically cleaved

by proprotein convertases via recognition at the position
221–224 to yield the N-terminal domain, which is sufficient

and necessary for LPL inhibition [33,34]. An Angptl3 mono-

clonal antibody binding to the N-terminal domain,

consistently, lowers serum TG levels in mice and monkeys

[35,36]. In Angptl3 KO mice, LPL activity as well as VLDL-TG

incorporation are increased in oxidative tissues, including

heart, muscle and brown fat [37].

Angptl4 was identified as a novel Angptl family member

induced by fasting via the peroxisome proliferator-activated

receptor (PPAR) in adipocytes [38–40]. Angptl4 is a potent

LPL inhibitor [29,41], and plays an important role in regulating

LPL activity under conditions of fasting and exercise [42]. Simi-

lar to the domain structure of Angptl3, Angptl4 is cleaved at

the conserved proprotein convertase recognition sequence at

position 161–164, RRKP, to release the N-terminal coiled-coil

domain, which potently inhibits LPL [43,44]. Different mech-

anisms by which Angptl4 inhibits LPL have been proposed

[45–48]. The N-terminal domain of ANGPTL4 irreversibly

inhibits LPL activity by disrupting its dimerization, converting

the enzyme into inactive monomers [47,48]. Using a cell-

culture system to examine LPL complexed to GPIHBP1 on

the endothelial cell surface, Chi et al. [46] showed that

Angptl4 can bind and inactivate LPL complexed to GPIHBP1

and that inactivation of LPL by Angptl4 greatly reduces the

affinity of LPL for GPIHBP1.

Mice injected with a monoclonal antibody against the

Angptl4 N-terminal domain exhibit phenotypes similar to those

of Angptl4-null mice, such as low plasma TG levels [35,49].

Indeed, Angptl4-null mice exhibit lower plasma TG and

increased post-heparin plasma LPL activity; conversely, injection

of recombinant Angptl4 or its transgenic overexpression increases

plasma TG [29,41]. Angptl4 appears to inhibit LPL in an adipose-

specific manner [50,51]. For instance, by cold exposure, the

amount of labelled TG incorporated into WAT and BAT was

altered in Angptl4 KO mice, whereas TG incorporation into

muscle was comparable between KO and wild-type mice [50].

Sequence variations of ANGPTL3 and ANGPTL4 are

robustly linked to lipid profiles by genome-wide association

studies (GWAS). In humans, homozygotes or compound

heterozygotes for loss-of-function mutations of ANGPTL3

cause familial combined hypolipidaemia, characterized by a

reduction of all lipoprotein classes, such as VLDL, LDL and

HDL [52,53]. The E40K substitution in ANGPTL4 is associated

with lower plasma TG and HDL-C concentrations [54,55]. Re-

sequencing of protein-coding regions showed that 1% of the

Dallas Heart Study (DHS) population and 4% of those

participants with a plasma TG in the lowest quartile have

loss-of-function mutations in ANGPTL3, ANGPTL4 or

ANGPTL5 [56].
4. Lipasin/Angptl8
The functional roles in lipid metabolism of a previously

uncharacterized gene, Gm6484, were discovered and reported

by multiple groups in 2012, under various names, such as RIFL

[57], lipasin [58], Angptl8 [59] and betatrophin [60]. In October

2015, the HUGO gene nomenclature committee [61] assigned

the official name of this gene as ANGPTL8 (human) and

Angptl8 (mouse), which are adopted in the current review.

Active research on Angptl8 in the past years has provided criti-

cal information on its function, mechanism of action and

therapeutic potential [62,63].
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We overexpressed Angptl8 in the mouse liver using

adenovirus through tail vein injection, and Angptl8 overexpres-

sion led to dramatically increased serum TG levels [58].

Quagliarini et al. [59] found that overexpressed Angptl8

increased serum TG levels in an Angptl3-dependent manner.

Mice lacking Angptl8 consistently exhibit lower TG levels

owing to enhanced plasma TG clearance by having increased

post-heparin LPL activity [64,65]. We recently found that

Angptl8 KO mice have higher LPL activity specifically in car-

diac and skeletal muscles [66]. This result suggests that

Angptl8 negatively regulates LPL activity in these two tissues.

Furthermore, Angptl8 is a therapeutic target because its neutral-

ization with a monoclonal antibody (epitope being E97IQVEE)

lowers serum TG levels [66].

Angptl8 expression is highly enriched in the liver, WAT and

BAT [57–59]. Furthermore, Angptl8 expression is reduced by

fasting, and is highly induced by feeding in both liver and

adipose tissues [57–59]. In brown fat, Angptl8 is upregulated

by cold exposure [67]. Using mice lacking different isoforms

of sterol regulatory element-binding protein (Srebp), Angptl8

was shown to be induced by feeding independent of

Srebp [59]. AMP-activated protein kinase was shown to sup-

press LXR/SREBP-1 signalling-induced Angptl8 expression

in HepG2 cells [68]. Angptl8 is highly regulated during adipo-

genesis, and its knockdown significantly suppresses adipocyte

differentiation [57]. Additionally, Angptl8 is upregulated by

thyroid hormone and modulates autophagy [69].

In humans, ANGPTL8 sequence variations have been

demonstrated to be associated with lipid profiles by GWAS.

Three ANGPTL8 SNPs are strongly associated with lipid

profiles. The first SNP, rs2278426, represents a nucleotide

transition (C versus T, from CGG to TGG) that results in a

non-synonymous amino acid change, from arginine (R) to

tryptophan (W) at residue 59. Quagliarini et al. [59] found

that the 59W variant is associated with lower LDL-C and

HDL-C levels in various ethnic groups. Consistently, in a

study composed of 4361 Mexicans, Weissglas-Volkov et al.
found that WW homozygotes had 14% lower HDL-C than

RR homozygotes. African Americans in the DHS had 15%

lower LDL-C in WW homozygotes than in RR homozygotes

[70]. The second SNP, rs145464906, represents a nucleotide

transition (C versus T, from CAG to TAG) that results in a

premature stop codon at residue 121, and therefore a truncated

ANGPTL8 is generated by this SNP. The carriers of this

presumably partial loss-of-function mutation with European

ancestry were 10 mg dl21 higher in HDL-C and 15% lower

in TG levels [71]. The third SNP, rs737337, has also been

found to be associated with HDL-C levels [28], and this SNP

is located in the upstream region of the ANGPTL8 transcription

start site [72].

Circulating levels of ANGPTL8 in human physiology and

pathology have been an area of active investigation. The circu-

lating levels of ANGPTL8 in humans were found to be

decreased by overnight fasting [59] and increased 2 h following

a defined meal [73]. Circulating ANGPTL8 levels were found

to increase in type 2 diabetes [73–80], gestational diabetes

[81–83], obese children with insulin resistance [84] and type

1 diabetes [78,85]. Nevertheless, the relationship between circu-

lating levels of ANGPTL8 and diabetes and obesity remains

inconclusive [86,87]. ANGPTL8 levels were also found to be

associated with other metabolic conditions [88–96].

Therefore, overwhelming evidence from both loss- and

gain-of-function studies in mice as well as human GWAS
has demonstrated that Angptl8 is a feeding-induced

hepatokine that is a potent regulator of lipid metabolism.
5. The Angptl3-4-8 model
TG are directed to WAT for storage after feeding, and to the

heart and skeletal muscle for oxidation to generate energy

during fasting. It is now clear that the process of TG trafficking

is critically determined by LPL. After feeding, LPL activity rises

in WAT but declines in muscles; conversely, during fasting, LPL

activity declines in WAT but rises in muscles. Nevertheless, the

mechanism for regulating tissue-specific LPL activity during

the fed–fast cycle remains largely unknown.

The discoveries of Angptl3 and Angptl4 have offered signifi-

cant insights into this process, as both are potent LPL inhibitors.

However, based on Angptl3 and Angptl4 only, the LPL regu-

lation among WAT, the heart and skeletal muscle cannot be

explained. The discovery of Angptl8 seems to complete the

player set for LPL regulation, but it is puzzling that all the

three Angptl members are LPL inhibitors, and that deficiency

(overexpression) of any one of them results in hypotriglyceridae-

mia (hypertriglyceridaemia). Then why does nature need all of

the three Angptl members for regulating LPL activity? Our find-

ing that Angptl8 negatively regulates LPL activity specifically in

the heart and skeletal muscle immediately suggested a model by

which TG trafficking regulation is explained by Angptl3,

Angptl4 and Angptl8 (Angptl3-4-8 model; figure 1) [66].

According to this model, Angptl8 activates Angptl3, in an

endocrine manner, to inhibit the activity of LPL in the heart

and skeletal muscle, whereas Angptl4, involving intracellular

and circulating species, inhibits LPL activity in WAT. Fasting

upregulates Angptl4 but downregulates Angptl8, and conse-

quently LPL activity in WAT is reduced but in muscles is

increased, and therefore TG are directed to muscles for oxi-

dation. Conversely, food intake downregulates Angptl4 but

upregulates Angptl8, and consequently LPL activity in

WAT is increased but in muscles is reduced, thereby directing

circulating TG to WAT for storage (figure 1) [66].

Several provocative findings should be noted. In 1964,

Eagle & Robinson [97] demonstrated that in WAT, blocking

the transcription using actinomycin increases LPL activity

during fasting. Consistently, Olivecrona and co-workers [98]

showed that expression of a gene needs to turn on to down-

regulate adipose LPL activity. Now, it has become clear that

this hypothesized fasting-induced protein that inhibits WAT

LPL is Angptl4. By studying a wide array of mouse strains,

Ben-Zeev et al. [99] suggested that separate genes regulate

LPL activity in adipose tissue and in the heart. Importantly,

Olivecrona and co-workers [100] found that, similar to adipose

tissue, a transcription-dependent mechanism is involved in

modulating heart LPL activity. Following actinomycin D injec-

tion, postprandial LPL activity in the heart was increased.

Therefore, they proposed that feeding induced a protein that

inhibits postprandial cardiac LPL activity [100]. It is likely

that this hypothesized feeding-induced protein is Angptl8.
6. Angptl8 and Angptl3 function in the
same pathway

Current evidence supports a notion that Angptl8 and Angptl3

function in the same pathway, that is, Angptl8 inhibits LPL, in



(a)

(b)

Figure 1. The ANGPTL3-4-8 model. ANGPTL8, ANGPTL3 and ANGPTL4 regulate triglyceride (TG) trafficking by inhibiting lipoprotein lipase, in a tissue-specific
manner, under different nutritional statuses. The level of ANGPTL3 is stable, regardless of nutritional status, but it requires activation by ANGPTL8. Fasting induces
ANGPTL4, which inhibits LPL in WAT to direct circulating TG to cardiac and skeletal muscles for oxidation (a); conversely, feeding induces ANGPTL8, activating the
ANGPTL8 – ANGPTL3 pathway, which inhibits LPL in cardiac and skeletal muscles to direct circulating TG to WAT for storage (b).
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an Angptl3-dependent manner, in cardiac and skeletal

muscles, whereas Angptl3, although being abundant in the

circulation regardless of nutritional status, needs to be acti-

vated by Angptl8, which is induced by feeding. By jointly

considering the Angptl3-4-8 model and phenotypes of mice

deficient in Angptl8 or Angptl3, we can obtain further insights

into the relationship between the two Angptl members.

Angptl8 KO mice exhibited higher LPL activity in cardiac

and skeletal muscles in the fed state, suggesting that Angptl8

is required for LPL inhibition in these tissues [66]. This result

was obtained in mice with abundant Angptl3, suggesting

that in the absence of Angptl8, Angptl3 does not effectively

suppress LPL in these tissues. In other words, Angptl3

requires Angptl8 to be functionally active to inhibit LPL in

cardiac and skeletal muscles.

Angptl3 KO mice exhibited higher LPL activity in cardiac

and skeletal muscle in the fed state [37], suggesting that

Angptl3 is required for LPL inhibition in these tissues. This

result was obtained in the fed state, that is, Angptl8 was abun-

dant, suggesting that Angptl8 required Angptl3 to inhibit

muscle LPL. Consistently, hepatic Angptl8 overexpression in

mice dramatically increased serum TG levels [58], but this

increase was abolished in the Angptl3 KO mice [59].

It was shown that Angptl8 interacts with Angptl3, and

enhances Angptl3 cleavage, releasing the N-terminal domain,

which potently inhibits LPL [59]. This result leads to multi-

ple possibilities for the mechanisms of how Angptl8 and

Angptl3 function. One possibility is that Angptl8 enhances

Angptl3 cleavage, releasing the N-terminal domain, which in

turn targets muscle LPL, but Angptl8 itself remains in the cir-

culation. Another possibility is that the two proteins form a
complex that translocates to muscle capillaries to inhibit LPL.

The latter seems more likely for the following reasons.

Angptl8 KO mice did not exhibit reduced levels of the

Angptl3 N-terminal domain [65], and thus Angptl8 is not

required for Angptl3 cleavage. Furthermore, in mice with

Angptl8 overexpression circulating Angptl3 levels were

reduced [59], supporting the notion that exogenous Angptl8

formed complexes with Angptl3, which, in turn, translocated

into the capillaries in the heart and skeletal muscle, resulting

in lowered levels of circulating Angptl3.

Both Angptl8 and Angptl3 are secreted by the liver into

the circulation, and are not expressed in the heart and skeletal

muscle, and thus are likely to work in an endocrine manner.

Taken together, these results strongly suggest that Angptl8,

induced by feeding, binds and activates Angptl3 to inhibit

LPL in cardiac and skeletal muscles, in an endocrine manner.
7. Explanation of triglyceride levels in mice
with altered expression of Angptl8,
Angptl3 or Angptl4 by the Angptl3-4-8
model

A striking phenotype in Angptl8 KO mice is that refeeding

decreases serum TG levels [65,66] (figure 2c). This striking phe-

notype is nicely explained by the model. According to the

Angptl3-4-8 model, in Angptl8 KO mice, LPL activity in

the heart and skeletal muscle remains active in both fasting

and fed states. However, in the fasting state abundant Angptl4

inhibits WAT LPL, while following refeeding Angptl4 is



(a)

(b)

(c)

(d)

Figure 2. Changes in triglyceride levels in Angptl8-deficient or overexpressing mice explained by the Angptl3-4-8 model. (a) In the fed state, Angptl8-null mice
have high LPL activity in both WAT and muscles, resulting in lower circulating TG levels. (b) Conversely, in the fasting state, Angptl8-overexpressing mice have low
LPL activity in both WAT and muscles, resulting in dramatically higher circulating TG levels. (c,d) TG levels in Angptl8 KO (c) and overexpressing (d ) mice. Mice were
fasted for 24 h or re-fed for 4 h following the fast. Panels (c,d) are reproduced from data in figure 3 of [66] with permission of Scientific Reports. Data are presented
as mean+ s.e.m. N ¼ 6 – 8 per group. KO, knockout; WAT, white adipose tissue. *p , 0.05; #p , 0.01.
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diminished, resulting in higher WAT LPL activity, enhanced

WAT fatty acid uptake, enhanced circulating TG clearance and

thus lower serum TG levels.

In the fed state, Angptl8 KO mice also have low levels of

Angptl4, resulting in higher activity of LPL in both WAT and

muscles, and therefore circulating TG are effectively hydro-

lysed and taken up by both WAT and muscles, leading to

hypotriglyceridaemia [65,66] (figure 2a,c). In the fasting state,

because Angptl4 is induced, WAT LPL inhibition is retained,

and therefore circulating TG levels showed no significant differ-

ence from those of wild-type mice (table 1 and figure 2c). In the

case of Angptl8 overexpression, in the fed state, because LPL

activity in WAT is still high in the absence of Angptl4, the

elevation of circulating TG is modest. In the fasting state, how-

ever, LPL in both WAT and muscles is inhibited, resulting in

striking elevation of circulating TG (figure 2b,d).

In the Angptl3 KO mice, in the fed state, induced Angptl8

cannot inhibit muscle LPL because this inhibition is Angptl3-

dependent, and therefore LPL activity is high in both WAT

and muscles, resulting in hypotriglyceridaemia, whereas in

the fasting state, inhibition of LPL by Angptl4 is retained,

and therefore the hypotriglyceridaemia phenotype is relatively

modest [37].

In Angptl4 KO mice, in the fasting state, LPL activity in

both WAT and muscle is high, resulting in hypotriglyceridae-

mia. In the fed state, inhibition of LPL in muscles is retained,
and therefore the low TG phenotype is relatively modest

compared with that in the fasting state [29,51]. In the case

of Angptl4 overexpression, in the fed state, LPL activity in

both WAT and muscles is low, and therefore hypertriglyceri-

daemia results, whereas in the fasting state, we hypothesize

that the hypertriglyceridaemia would be relatively modest

because the low Angptl8 and associated high LPL activity

in muscles would result in muscle uptake of TG-derived

fatty acids (figure 3).
8. Limitations of the Angptl3-4-8 model
The Angptl3-4-8 model, obviously, is not a perfect one. First,

the model does not explain the functional role of Angptl8 in

adipose tissues. In WAT, Angptl8 expression is strongly

induced by feeding [57]. However, WAT LPL activity is upre-

gulated by feeding as well [51]. In Angptl8 KO mice, we

found that WAT LPL activity was not affected [66]. Further-

more, in Angptl8 KO mice, uptake of VLDL-TG by WAT was

decreased [65]. These results are inconsistent with a role of

Angptl8 in inhibiting WAT LPL. Therefore, Angptl8 in WAT

may be involved in functions independent of LPL, such as

adipogenesis [57]. Likewise, in BAT, LPL activity is upregu-

lated by cold exposure, whereas Angptl8 is also upregulated

[67]. Therefore, we hypothesize that Angptl8 may have



(a)

(b)

Figure 3. Changes in triglyceride levels in Angptl4 deficient or overexpressing mice explained by the Angptl3-4-8 model. (a) In the fasting state, Angptl4-null mice
have high LPL activity in both WAT and muscles, resulting in lower circulating TG levels. (b) Conversely, in the fed state, Angptl4 overexpressing mice have low LPL
activity in both WAT and muscles, resulting in dramatically higher circulating TG levels.

Table 1. Serum triglyceride levels and LPL activity in mice with altered Angptl8 expression [66]. �, increased; �, decreased; 2, unchanged; ^, slightly increased.

Angptl8 levels

serum triglycerides
LPL activity in cardiac and
skeletal muscles LPL activity in WAT

fed fasting fed fasting fed fasting

deficiencya � — � — — —

overexpressionb ^ � — � c — —
aAngptl8 knockout.
bMice with adenovirus-Angptl8 injection.
cOnly in the heart.
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LPL-independent functions in both WAT and BAT. Although it

has been well established that Angptl8 is a circulating factor

secreted from the liver, it should be noted that, thus far, there

has been no evidence to suggest that Angptl8 is also secreted

from adipose tissues. It is likely that Angptl8 in WAT and

BAT functions in a non-endocrine manner.

Angptl3 KO mice exhibited elevated LPL activity in WAT,

in addition to increased postprandial LPL activity in oxi-

dative tissues [37]. This result suggests that Angptl3 may

also play a role in inhibiting LPL in WAT. Because the

Angptl3 level is not nutritionally regulated, it is possible

that Angptl3 is a general LPL inhibitor needed by both

Angptl4 and Angptl8. However, currently, there has been
no evidence showing Angptl4 and Angptl3 can interact to

regulate LPL.

Angptl4 has a relatively wide expression pattern, including

expression in skeletal muscle and the heart [4]. In Angptl4

KO mice, however, in response to cold exposure, TG incorpor-

ation was altered specifically in adipose tissues, but not in

muscles [50], consistently with the Angptl3-4-8 model. The

contributions of intracellular versus circulating Angptl4, as

well as Angptl4 expressed in non-adipose tissues, to LPL

inhibition are unclear.

To fully prove the model, it is necessary to examine tissue-

specific uptake of labelled TG in Angptl8 and Angptl4 KO mice

during the fed–fast cycle. Future models will probably
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incorporate functional roles of Angptl8 and Angptl3 in WAT,

Angptl4 in non-WAT tissues and other factors involved in

LPL regulation, such as apoA-V and apoC-III [101].
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9. Perspective
Since the discovery of Angptl8 in 2012 [57–59], significant

progress has been made in elucidating the functional role,

mechanism of action and therapeutic potential of this protein

[62,63]. With the Angptl8 discovery, a model of how TG traf-

ficking is coordinated at various nutritional states emerged

[66]. Although the Angptl3-4-8 model still leaves much

room to be improved, it provides a framework that links

Angptl3, Angptl4, Angptl8 and LPL. Below are some

outstanding questions to address.

9.1. Mechanism of action
The mechanism of LPL inhibition by Angptl8 remains obscure.

One possible mechanism of action is that Angptl8 enhances

cleavage of Angptl3, releasing the N-terminal domain, which,

in turn, inhibits LPL. Another possibility is that Angptl8

binds to Angptl3, forming a complex that inhibits LPL in the

heart and skeletal muscle. The two scenarios are distinct in

that in the former Angptl8 does not translocate to the heart

and skeletal muscle, but stays in the circulation only, whereas

in the latter Angptl8 is physically located in these tissues and

has interactions with Angptl3 and/or LPL. As discussed in

§6, the second scenario seems more likely; however, direct

experimental evidence, such as immunohistostaining showing

the presence of Angptl8 and Angptl3 on the surface of

capillaries in the heart and skeletal muscle, is lacking.

A related question is: what is the mechanism ensuring

tissue specificity of LPL inhibition by the Angptl8–Angptl3

pathway in cardiac and skeletal muscles, and by Angptl4 in

WAT? Because Angptl8 and Angptl3 are likely to function in

an endocrine manner, it is almost certain that they encounter

LPL in capillaries of peripheral tissues, in which LPL is

anchored by GPIHBP1 to the capillary endothelial lumen.

GPIHBP1 has been shown to play an important role in

mediating inhibition of Angptl proteins on LPL [46,102]. How-

ever, the roles of GPIHBP1 on Angptl8- and Angptl3-mediated

inhibition of LPL and on establishing their functional tissue

specificity remain unknown.

9.2. Transcriptional regulation
Angptl8 is strongly induced by feeding and suppressed by fast-

ing. As we pointed out, levels of Angptl8 and Angptl4 show

opposite changes in response to various stimuli, such as fast-

ing, feeding, insulin resistance and cold exposure [62,63,67].

Likewise, a recent report showed that glucagon receptor antag-

onists upregulate Angptl4, while downregulating Angptl8,

and that the induction of adipose Angptl4 specifically pro-

motes pancreatic a-cell proliferation [103]. This reciprocal

regulation is critical to balance the abundance of Angptl8

versus Angptl4 to regulate cellular processes in different phys-

iological and pathological settings. Because Angptl8 is

expressed in liver and adipose tissues, it is likely that transcrip-

tion factors mediating Angptl8 transcription are different in the

two tissues. The carbohydrate-responsive element-binding

protein (ChREBP), a glucose-responsive transcription factor
[73], and PPARg [57] were suggested to mediate Angptl8

transcription. However, the identity of transcription factors

and their binding sites in the Angptl8 promoter region have

not been clearly delineated. Another question is that Angptl8

protein during fasting must be degraded quickly, but the

degradation pathway and its regulation remain elusive. Eluci-

dation of the identity of transcription factors mediating

Angptl8 transcription is critical in understanding the nutri-

tional regulation of Angptl8, as well as the reciprocal

regulation of Angptl8 versus Angptl4.
9.3. Functions in adipose tissues
Angptl8 is strongly upregulated in WAT following food

intake [57,58]. Angptl8 is abundant in mouse BAT, and is

highly upregulated by cold exposure [67]. In both cases, LPL

activity is increased, and therefore it is likely that Angptl8

has LPL-independent functions in adipose tissues. Angptl8 is

upregulated during adipocyte differentiation, and its knock-

down impairs adipogenesis in 3T3-L1 cells [57]. However,

the functional roles of Angptl8 in WAT and BAT in vivo
remain unclear.
9.4. Human pathology
Accumulating evidence suggests that circulating ANGPTL8 is

elevated in diabetes [73–85,104]. Diabetes is often associated

with diabetic dyslipidaemia, characterized by hypertriglyceri-

daemia, lower HDL-C and postprandial lipaemia [105]. The

direct implication of the ANGPTL3-4-8 model is that when

ANGPTL8 is increased, LPL activity will be suppressed in the

heart and skeletal muscle, resulting in accumulation of TG in

the circulation (hypertriglyceridaemia). Then, is ANGPTL8 a

contributing factor in causing diabetic dyslipidaemia? We

have shown that an Angptl8 monoclonal antibody lowers

serum TG in mice. Can ANGPTL8 inhibition be a therapeutic

approach to treat diabetic dyslipidaemia?

Homozygous or compound heterozygous loss-of-function

mutations in ANGPTL3 and ANGPTL4 have been identified

in humans, providing valuable information on human pathol-

ogy [56]. However, homozygous loss-of-function mutations

have not been found in ANGPTL8. Searching the ExAC data-

base [106], which is based on exome sequencing results of

more than 60 000 human subjects, revealed no ANGPTL8

homozygous null mutations. According to phenotypes of

Angptl8 KO mice, it is unlikely that null mutations are lethal.

Therefore, with the expansion of exome databases, identification

of homozygous null mutations of ANGPTL8 is possible, and

will provide critical information on the pathophysiology of its

functions in humans.
10. Concluding remarks
The partitioning of TG to specific tissues according to

nutritional states is a fundamental biological process, and

the elucidation of the molecular mechanism of TG trafficking

will have profound implications for understanding metabolic

disease. The ANGPTL3-4-8 model suggests that the three

Angptl members are a key in balancing the partitioning of

circulating TG between WAT and oxidative tissues. Breaking

this balance may lead to obesity, lipotoxicity or



rsob.royalsocietypublishing.org
Open

Biol.6:150272

8
hypertriglyceridaemia, representing excess TG in WAT,

non-adipose tissues and plasma, respectively.

Inhibition of each of the three Angptl members, based on

small molecular inhibitors or monoclonal antibodies, has tre-

mendous therapeutic potential in treating dyslipidaemia. Of

note, clinical trials evaluating an ANGPTL3 monoclonal anti-

body are ongoing (trial https://trialbulletin.com/lib/entry/

ct-02265952; trial https://trialbulletin.com/lib/entry/ct-017

49878; trial https://trialbulletin.com/lib/entry/ct-02107

872). The ANGPTL3-4-8 model suggests that the key to the

concept of LPL-based therapeutic strategy is the balance.

The goal should not be to inhibit, e.g., ANGPTL3 to the maxi-

mum extent, which may lead to lipotoxicity, but to reduce its

activity to a specific level, so that abnormal TG trafficking

associated with pathological conditions is corrected.

Since the discovery of LPL seven decades ago, signifi-

cant progress has been made in elucidating the functional

role of LPL in regulating TG trafficking. Recent discovery of

lipasin/ANGPTL8 results in an ANGPTL3-4-8 model,
which provides a molecular mechanism by which tissue-

specific LPL activity is regulated during the fed–fast cycle.

Specifically, feeding induces ANGPTL8, activating the

ANGPTL8–ANGPTL3 pathway, which inhibits LPL in car-

diac and skeletal muscles, thereby making circulating TG

available for uptake by WAT, in which LPL activity is elev-

ated owing to diminished ANGPTL4; the reverse is true

during fasting, which suppresses ANGPTL8 but induces

ANGPTL4, thereby directing circulating TG to muscles. The

model may provide significant insights into the understanding

of TG metabolism and metabolic disease.
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