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Purpose: Retinitis pigmentosa (RP) is the most common form of inherited blindness, caused by progressive
degeneration of photoreceptor cells in the retina, and affects approximately 1 in 3,000 people. Over the past decade,
significant progress has been made in gene therapy for RP and related diseases, making genetic characterization
increasingly important. Recently, high-throughput technologies have provided an option for reasonably fast, cost-
effective genetic characterization of autosomal recessive RP (arRP). The current study used a single nucleotide
polymorphism (SNP) genotyping method to exclude up to 28 possible disease-causing genes in 31 non-consanguineous
Australian families affected by arRP.
Methods: DNA samples were collected from 59 individuals affected with arRP and 74 unaffected family members
from 31 Australian families. Five to six SNPs were genotyped for 28 genes known to cause arRP or the related disease
Leber congenital amaurosis (LCA). Cosegregation analyses were used to exclude possible causative genes from each of
the 31 families. Bidirectional sequencing was used to identify disease-causing mutations in prioritized genes that were
not excluded with cosegregation analyses.
Results: Two families were excluded from analysis due to identification of false paternity. An average of 28.9% of
genes were excluded per family when only one affected individual was available, in contrast to an average of 71.4% or
89.8% of genes when either two, or three or more affected individuals were analyzed, respectively. A statistically
significant relationship between the proportion of genes excluded and the number of affected individuals analyzed was
identified using a multivariate regression model (p<0.0001). Subsequent DNA sequencing resulted in identification of
the likely disease-causing gene as CRB1 in one family (c.2548 G>A) and USH2A in two families (c.2276 G>T).
Conclusions: This study has shown that SNP genotyping cosegregation analysis can be successfully used to refine and
expedite the genetic characterization of arRP in a non-consanguineous population; however, this method is effective
only when DNA samples are available from more than one affected individual.

Retinitis pigmentosa (RP) is the most common form of
inherited blindness, with a total prevalence of approximately
1 in 3,000 to 1 in 4,000 people [1,2]. RP is an inherited
retinal disease caused by degradation of rod and cone
photoreceptor cells, leading to a progressive loss of vision.
Inheritance of RP typically follows a Mendelian pattern,
although rare digenic and mitochondrial forms also exist
[3-5].

Recently, there has been significant progress in several
gene therapies for RP and related diseases, in particular
retinal pigment epithelium-specific 65 kDa protein (RPE65)
gene therapy for treatment of Leber congenital amaurosis
(LCA) in humans [6-11], two mouse models of aryl
hydrocarbon receptor interacting protein-like 1 (AIPL1)
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gene therapy [12], and retinitis pigmentosa GTPase
regulator (RPGR) gene therapy in canine models of X-
linked RP [13]. For gene therapies such as these to be
generally applicable, the disease-causing gene must be
identified in each case. Therefore, genetic characterization is
becoming increasingly important for identifying candidate
individuals for gene therapy.

Autosomal recessive retinitis pigmentosa (arRP) is
extremely genetically heterogeneous, with more than 35
causative genes identified (RetNet, accessed 8 May 2012).
However, none of these genes are major causative genes,
with most causing less than 1% of cases. Currently, direct
sequencing of all known arRP causative genes, exceeding
100 kilobase pair (kb) of coding sequence alone, is
generally not a readily feasible option. Therefore, high-
throughput technologies are vital for genetic
characterization of arRP.

Pomares et al. recently developed a novel high-
throughput technique that uses a combination of single
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nucleotide polymorphism (SNP) genotyping and
cosegregation analysis to narrow the search for disease-
causing genes in families affected by arRP, autosomal
dominant RP (adRP), or LCA [14,15]. Non-discarded genes
can then be further analyzed, such as by DNA sequencing.
Additionally, all genes may be discarded in some cases,
highlighting families in which to search for novel disease-
causing genes.

The families with arRP studied by Pomares and
colleagues [14,15] are mostly consanguineous (35/54 and
7/7 consanguineous families present in the 2007 and 2010
studies, respectively), allowing exclusion of genes by either
lack of cosegregation with the disease or lack of
homozygosity-by-descent. The current study aims to
determine the efficiency of gene exclusion based on lack of
cosegregation but not lack of homozygosity-by-descent in
31 non-consanguineous Australian families affected by
arRP.

METHODS
Subjects: All research participants for this study were
sourced via the Australian Inherited Retinal Disease
Register (AIRDR). Fifty-nine arRP affected individuals and
74 unaffected family members from 31 Australian families
were selected, including 25 families with European
Caucasian ancestry, three of Eastern Asian descent, two
with Mediterranean ancestry, and one of Jewish descent.
Informed consent was obtained from all participants in
accordance with Sir Charles Gairdner Hospital Human
Research Ethics Committee approval guidelines (Human
Ethics Approval Number 2001–053).
DNA collection and isolation: Either blood (30 ml EDTA)
or saliva samples (2 ml; Oragene DNA Self-Collection kit
OG-500; DNA Genotek Inc., Ottawa, Canada) were
collected from each patient. DNA was extracted from buffy
coat using the previously described salting out method
[16-18] and from saliva samples using the manufacturer’s
recommendations. Samples were stored at −40 °C in a
cryofacility operated by the Western Australian DNA Bank.
Single nucleotide polymorphism genotyping: Six SNPs for
each of 28 genes known to cause arRP or the related
disease, LCA, were identified for genotyping based on the
work of Pomares and colleagues, who selected SNPs based
on the informativity criteria according to dbSNP and
SNPbrowser (2007), proximity to the gene, distribution
throughout the gene and flanking regions, and presence in
different haplotypic blocks [14,15]. These SNPs were used
to develop a customized SNP genotyping assay on a
SEQUENOM MassARRAY platform (San Diego, CA;
Appendix 1). Four assays could not be optimized and were
omitted from the study (rs1002098, lecithin retinol
acyltransferase [LRAT]; rs717571, progressive rod-cone
degeneration [PRCD]; rs10788333, retinal G protein

coupled receptor [RGR]; and rs4982436, retinitis
pigmentosa GTPase regulator interacting protein 1
[RPGRIP1]).

The following genes were analyzed: ATP-binding
cassette, sub-family A (ABC1), member 4 (ABCA4), AIPL1,
centrosomal protein 290 kDa (CEP290), ceramide kinase-
like (CERKL), cyclic nucleotide gated channel alpha 1
(CNGA1), cyclic nucleotide gated channel beta 1 (CNGB1),
crumbs homolog 1 (CRB1), cone-rod homeobox (CRX),
guanylate cyclase 2D, membrane (retina-specific)
(GUCY2D), Leber congenital amaurosis 5 (LCA5), LRAT, c-
mer proto-oncogene tyrosine kinase (MERTK), nuclear
receptor subfamily 2, group E, member 3 (NR2E3), neural
retina leucine zipper (NRL), phosphodiesterase 6A, cGMP-
specific, rod, alpha (PDE6A), phosphodiesterase 6B, cGMP-
specific, rod, beta (PDE6B), PRCD, retinal degeneration 3
(RD3), retinol dehydrogenase 12 (all-trans/9-cis/11-cis)
(RDH12), RGR, rhodopsin (RHO), retinaldehyde binding
protein 1 (RLBP1), retinitis pigmentosa 1 (RP1), RPE65,
RPGRIP1, S-antigen; retina and pineal gland (arrestin)
(SAG), tubby like protein 1 (TULP1), and Usher syndrome
2A (autosomal recessive, mild) (USH2A). Each subject was
genotyped, with all MassARRAY experiments performed
using a 384-well Applied Biosystems’ GeneAmp 9700
thermocycler (Foster City, CA) at the Australian Genome
Research Facility (Brisbane, Australia).
Haplotyping and cosegregation analyses: Genotypes
produced from the assays were used to determine
haplotypes and perform cosegregation analyses. Each
individual was manually haplotyped for five or six SNPs for
each of the 28 genes. Genes were then excluded or included
as possible disease-causing genes for each family depending
on cosegregation of haplotypes with the disease. Genes were
also included in cases of lack of informativeness.
Statistical analyses: Linear regression was used to assess
associations between family structure variables and the
proportion of genes excluded out of the 28 genes analyzed.
The number of affected and unaffected individuals
analyzed, availability of maternal and paternal DNA, and
total number of individuals in the sibship were analyzed
univariately and multivariately. Variables that were
significant at the 5% level following backwards elimination
were retained in the final model. To estimate the potential
costs of subsequent sequencing after SNP genotyping
cosegregation analysis, we assumed a direct relationship
between gene transcript size and genotyping costs (DNA
Sequencing Costs). The data from this study were analyzed
using the statistical package R (version 2.11.1) [19].
Sequencing of candidate genes: Eleven candidate families
most suitable for further investigation by direct sequencing
and mutational screening of coding and flanking intronic
regions of non-excluded genes were selected based on 1) the
number of genes excluded by SNP genotyping
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cosegregation analyses, 2) the availability of published
primers, and 3) the size of the non-excluded genes. Ten
genes were then selected for sequencing analysis in these
families, including CNGA1, CRB1, LRAT, NR2E3, NRL,
PDE6A, RHO, RLBP1, RPE65, and USH2A (short isoform
only; exons 1–21). DNA from all affected individuals was
directly sequenced for up to four genes still potentially
implicated following cosegregation analysis (Figure 1).

Primers were manufactured by Geneworks (Adelaide,
Australia). Primer sequences (which were similar to
previously published sequences [20-30]) and PCR
conditions are available upon request. PCRs were
undertaken using HotStarTaq Plus Master Mix (Qiagen,
Hilden, Germany), and products were purified using the
ExoSAP-IT method (USB Corporation, Cleveland, OH)
according to the manufacturer’s instructions.

Samples were sequenced with dual direction
sequencing on an ABI Prism 3730 48-capillary sequencer
(Macrogen, Seoul, Korea) using the dideoxy nucleotide
chain termination method [31]. Products were organized
into contigs by amplicon and aligned with reference coding
sequences in Sequencher 4.10.1 (Gene Codes Corporation,
Ann Arbor, MI). Differences between the products and

reference sequences were investigated using the NCBI SNP:
GeneView database, the Human Gene Mutation Database
(HGMD), and previously published work.

RESULTS
Identification of false paternity: Following haplotyping
analysis, false paternity was identified in two pedigrees due
to inconsistencies between paternal alleles and haplotypes
inherited by the children. In both families, 22 of the 28
genes analyzed displayed inconsistencies with identity by
descent. However, both families had six genes that were
haplotyped without any indication that the paternal DNA
sample was not that of the biologic father. These two
families were omitted from further analysis.
Haplotyping and cosegregation analyses: Figure 1 displays
a summary of the loci excluded for each pedigree following
SNP genotyping cosegregation and sequencing analyses. In
one family, all genes were discarded (Family V), and in
some families, such as Family D, only LCA-specific genes
remain (Figure 1).

After haplotyping and cosegregation analyses were
completed in the remaining 29 pedigrees, the mean number
of candidate disease-causing genes excluded was 17.5

Figure 1. Gene exclusion results for each family. Summary of genes excluded from each family (highest to lowest number excluded)
showing the number of affected and unaffected individuals analyzed, genes discarded with the SNP genotyping method (black) or
sequencing analyses (blue), as well as non-discarded genes (white), LCA-specific genes (gray), and the number of genes excluded with
SNP genotyping analyses. Likely mutations identified with DNA sequencing are shown in red.
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(standard deviation [SD]: 7.4; range: 3–28). Each gene was
excluded from an average of 17 families, ranging from 11 to
23 (Figure 1). There was a marked difference in the number
of genes that could be excluded in families based on the
number of affected individuals analyzed (Figure 2), with a
mean proportion of 0.290 of genes excluded for families
with only one affected individual analyzed, compared to
0.898 excluded when three or more affected individuals
were analyzed.

Linear regression revealed a significant association
between the proportion of genes excluded and the affected
individuals analyzed (p<0.0001), the unaffected individuals
analyzed (p=0.0472), and the total number of individuals in
sibship (p=0.0296). The parameter estimates, standard
errors, and associated p values are displayed in Table 1.
Associations were then tested multivariately and the number
of affected individuals analyzed was found to be the only
variable significantly associated with the proportion of
genes excluded (p<0.0001).
Mutation identification: Sequencing analyses of several
non-discarded genes in 11 selected families resulted in
likely disease-causing mutations being identified in three
families (3/11=0.27). In each of these three families, a
mutation was identified heterozygously in a non-discarded
gene, but a second disease-causing mutation has yet to be
identified.

In Family H, the known disease-causing variant CRB1
c.2548 G>A (p.Gly850Ser) was identified heterozygously in

both affected individuals. Likewise, a likely pathogenic
USH2A variant, c.2276 G>T (p.Cys759Phe), was identified
heterozygously in all affected individuals from Families F
and G. The affected individuals from Families F and G all
share one USH2A haplotype: CCTGCA (rs7519402,
rs4253963, rs2669053, rs2034960, rs301760, and
rs1544299). This haplotype was also identified in affected
individuals from Families J and AF, for which USH2A was
not excluded through intrafamilial cosegregation analysis.

The first 230 bp of CRB1 exon 2 were not successfully
sequenced, and therefore cannot be excluded from harboring
a pathogenic mutation in Family H. Similarly, only the first
21 exons of USH2A, encoding the short isoform of the
usherin protein, were directly sequenced.

DISCUSSION
In our cohort of non-consanguineous families, the SNP
genotyping cosegregation method of gene exclusion
successfully excluded approximately 90% of disease loci
when at least three affected family members were
genotyped (Figure 2). This success rate fell to below 30% in
families for which only one affected individual was
analyzed. The number of families in which each gene was
excluded also varied, ranging from exclusion in 11–23
families (Figure 1). This result is likely to be due to the lack
of informativity of some of the SNPs in the Australian
population, with a higher frequency of inconclusive results
in genes with the lowest exclusion rates, such as PDE6B,
RD3, RP1, and USH2A. These exclusion rates may be

Figure 2. Proportion of genes excluded
according to the number of affected
individuals analyzed. Boxplot showing
the proportion of genes excluded with
the single nucleotide polymorphism
genotyping cosegregation method,
grouped according to the number of
affected individuals analyzed. Shown
on the boxplot are quartiles, the range
of values for each group (whiskers),
and the median values for each group
(bold horizontal bars).
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improved by selecting the most informative SNPs for the
population of interest.

Overall, our gene exclusion rate for non-
consanguineous arRP families with more than one affected
individual analyzed was similar to that reported by Pomares
and colleagues [14]. Hence, in a non-consanguineous
population this method appears to be effective only in a
non-consanguineous population when used in families for
which DNA samples are available from more than one
affected individual, resulting in excluding the majority of
candidate genes in these families. Subsequent sequencing
analyses in 11 families resulted in the likely disease-causing
gene being identified in three families. CRB1 was one of six
genes not discarded by SNP genotyping cosegregation
analyses in Family H, with a heterozygous c.2548 G>A
(p.Gly850Ser) mutation identified in CRB1 in both affected
individuals.

The c.2548 G>A change results in a missense amino
acid mutation of a highly conserved glycine residue, which
is completely conserved between the nine laminin A G-like
domains of human CRB1, mouse Crb1, and Drosophila Crb
[32]. The Gly850Ser mutation has been identified in
individuals affected with RP [32,33], but not in 372
ethnically matched control individuals [32] or in 360
population controls [33]. This variant is predicted by
PolyPhen-2 to be pathogenic, with the maximum score of 1
for the HumDiv and HumVar prediction models.
Interestingly, a second disease-causing mutation has not yet
been identified in Family H. A mutation may be present in
exon 2 or the untranslated regulatory region or CRB1, which
has not been fully sequenced.

A likely disease-causing mutation was also identified in
Family F and Family G, with all affected individuals from
both families heterozygous for the USH2A c.2276 G>T
(p.Cys759Phe) variant. The cysteine residue at position 759
is highly conserved and is predicted to be crucial for protein
structure through the formation of a disulfide bridge within
the LE-motif of the usherin protein [34]. This variant is
predicted by PolyPhen-2 to be “probably damaging,” with
scores of 1 and 0.999 for the HumDiv and HumVar
prediction models, respectively. The Cys759Phe variant is
widely considered disease causing [34-42]; however,
functional studies need to be performed to confirm this.
USH2A is therefore considered the likely disease-causing
gene in Family F and Family G, with a second disease-
causing mutation still to be identified. Due to the extensive
size of the USH2A gene, only exons 1–21 have been
sequenced to date. A second disease-causing mutation could
exist within exons 22–73 of the USH2A gene in these
families. These exons may be further analyzed to search for
a second disease-causing mutation.

Overall, the genetic findings from sequencing analyses
in Families F, G, and H provide support for the SNP

genotyping cosegregation method, but need to be confirmed
by identifying a second disease-causing mutation in each
case. Our results demonstrate that the SNP genotyping
cosegregation technique could be readily implemented
clinically for the genetic characterization of non-
consanguineous populations. This technique will allow for
rapid and relatively cheap determination of disease-causing
loci in families affected by arRP and other genetically
heterogeneous inherited diseases. Studies such as this may
help identify individuals eligible for gene therapy trials,
such as the RPE65 human trials [7-9], as well as families in
which to search for novel disease-causing genes.

The issue of misattributed paternity is pertinent to
genetic studies such as this, in which results are often based
on an analysis of parental DNA samples. Misattributed
paternity rates have been reported to range from <1% to
30% in different populations [43-46]; however, the general
non-paternity rate was estimated by Cerda-Flores and
colleagues to be 11.8% [43]. In our study population, 6.5%
(2/31) of the haplotyped families were found to have false
paternity. Although this finding is consistent with previous
studies, this issue of false paternity is not likely to alter the
value of using this SNP genotyping cosegregation method to
interrogate non-consanguineous populations. If, however,
this method were used on only a small number of candidate
genes, there would be a greater risk of misattributed
paternity going undetected.

Since we commenced our study, several newly
identified genes have been implicated in arRP, such as
chromosome 2 open reading frame 71 (C2ORF71),
chromosome 8 open reading frame 37 (C8ORF37),
dehydrodolichyl diphosphate synthase (DHDDS), eyes shut
homolog (Drosophila) (EYS), interphotoreceptor matrix
proteoglycan 2 (IMPG2), male germ cell-associated kinase
(MAK), retinol binding protein 3, interstitial (RBP3),
tetratricopeptide repeat domain 8 (TTC8), and zinc finger
protein 513 (ZNF513; RetNet; accessed 8 May 2012). To
keep this method up-to-date and clinically applicable, these
genes need to be incorporated into the SNP genotyping
pipeline. The current cost of the SNP genotyping method is
about US$150 per person to genotype a cohort of 100
individuals using the method described herein. To
incorporate 5–10 newly identified genes by the set-up of at
least two additional multiplexes, the cost would be about US
$175 per person. Naturally, the ultimate cost saved by
excluding loci using this cosegregation technique depends
on the size of the candidate gene excluded (Figure 1).
Nonetheless, we estimate that excluding more than 89%,
70%, or 30% of the potential loci studied here would result
in an approximate seven-, 4.8-, or threefold savings in direct
genotyping costs, respectively.

In families in which all genes are discarded by SNP
genotyping cosegregation analyses, such as Family V in the
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current study, whole exome or whole genome analyses can
be pursued to identify novel disease-causing genes. A next-
generation sequencing approach should also be considered
for families such as Families A, D, and E, which have only
LCA-specific genes remaining and are unlikely to be
affected with LCA based on age of onset and other
phenotypic information.

These next-generation methods are becoming essential
for identifying new disease-causing genes, but remain
expensive for analyzing and excluding a small number of
candidate loci, even as costs fall below that set for the
elusive “thousand dollar genome.” Thus, the SNP
genotyping method is currently economically competitive;
however, the cost of keeping this method up-to-date must be
considered. Alternative approaches for genetic
characterization may eventually be more cost-effective,
especially with progress in whole-genome screening and the
likely escalation in discovery of novel disease-causing
genes. Nonetheless, as the rate of identifying disease-
associated loci slows, keeping a disease-specific genotyping
array updated will be less of a burden.

In summary, the SNP genotyping cosegregation method
of gene exclusion is a useful means for rapidly screening
and excluding candidate loci in a non-consanguineous
population. Improved methods for genetic characterization
of RP and related diseases are vital for identifying disease-
causing genes and the subsequent application of gene
therapies. The rapid progression of technology and
identification of disease-causing genes is assisting in
developing potential therapies and providing encouraging
prospects for studying and treating this debilitating retinal
disease.
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Appendix 1. Primers.

Primers used by Australian Genome Research Facility
(Brisbane, Australia) for genotyping five or six single
nucleotide polymorphisms (SNPs; rs accession numbers
shown) for 28 genes known to cause autosomal recessive
retinitis pigmentosa and/or Leber congenital amaurosis.
Both forward and reverse primers have a 5′ 10mer tag to
alter the mass and is non-binding to the template DNA.

Some iPlex extension primers contain 5′ tags to alter the
mass of the probe, which are non-binding to the template
DNA and are represented by lower case nucleotides.
Abbreviations: Tm, primer melting temperature. To access
the data, click or select the words “Appendix 1.” This will
initiate the download of a compressed (pdf) archive that
contains the file.
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