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Abstract

PR-Set7/Set8/KMT5a is a chromatin-modifying enzyme that specifically monomethylates lysine 20 of histone H4
(H4K20me1). In this study we attempted to identify PR-Set7-interacting proteins reasoning that these proteins would
provide important insights into the role of PR-Set7 in transcriptional regulation. Using an unbiased yeast two-hybrid
approach, we discovered that PR-Set7 interacts with the UBC9 E2 SUMO conjugating enzyme. This interaction was
confirmed in human cells and we demonstrated that PR-Set7 was preferentially modified with SUMO1 in vivo. Further in
vitro studies revealed that UBC9 directly binds PR-Set7 proximal to the catalytic SET domain. Two putative SUMO consensus
sites were identified in this region and both were capable of being SUMOylated in vitro. The absence of either or both SUMO
sites did not perturb nuclear localization of PR-Set7. By employing whole genome expression arrays, we identified a panel of
genes whose expression was significantly altered in the absence of PR-Set7. The vast majority of these genes displayed
increased expression strongly suggesting that PR-Set7 predominantly functions as a transcriptional repressor. Importantly,
the reduction of UBC9 resulted in the consistent derepression of several of these newly identified genes regulated by PR-
Set7. Our findings indicate that direct interaction with UBC9 facilitates the repressive effects of PR-Set7 at specific target
genes, most likely by SUMOylating PR-Set7.
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Introduction

The eukaryotic genome is organized and packaged in the

nucleus into a structure known as chromatin, composed of DNA

and DNA-associated proteins. The nucleosome is the fundamental

repeating subunit of chromatin consisting of 146 bp of DNA

wrapped around an octamer of the canonical histone proteins

H2A, H2B, H3 and H4. The N-terminal tails of the histones

protrude from the nucleosome to interact with the nuclear

environment [1]. Certain amino acids within these histone tails

are targets for various post-translational modifications, such as

acetylation, phosphorylation and methylation, that are created by

distinct chromatin-modifying enzymes [2]. Increasing evidence

indicates that specific histone modifications play important roles in

DNA-templated processes including transcriptional regulation,

DNA repair, replication and recombination.

PR-Set7/Set8/KMT5a is a histone modifying enzyme that

specifically and selectively monomethylates lysine 20 of histone H4

(H4K20me1) [3,4,5,6]. Previous reports demonstrated that PR-

Set7 and H4K20me1 are essential as depletion of PR-Set7 results

in aberrant chromosomal abnormalities and embryonic lethality

[7,8,9,10]. These phenotypes are likely caused, in part, by cell

cycle defects as several recent findings indicate that PR-Set7 has

important roles in mammalian cell cycle progression

[11,12,13,14,15]. In addition to the cell cycle, PR-Set7 and

H4K20me1 are also involved in the transcriptional regulation of

specific genes. Both were originally postulated to function in

transcriptionally repressive pathways as immunofluorescence

microscopy studies demonstrated that they are typically excluded

from actively transcribed chromatin [5,16]. However, subsequent

genome-wide and gene-specific studies demonstrated that the

H4K20me1 modification was enriched in the 59 end of many

actively transcribed genes suggesting a role for PR-Set7 in

activation pathways [17,18,19]. Due to these apparently conflict-

ing reports, it currently remains unclear how PR-Set7 functions in

the regulation of specific genes. Since chromatin-modifying

enzymes are usually components of large multi-protein complexes,

we reasoned that the identification of PR-Set7-interacting proteins

would lead to important insights into the function of PR-Set7 in

transcriptional regulation.

In this report, we employed an unbiased yeast two-hybrid

approach to discover that PR-Set7 directly binds the UBC9 E2

SUMO conjugating enzyme. UBC9 functions to covalently modify

specific proteins with a 100 amino acid small ubiquitin-related

modifier (SUMO) peptide (reviewed in [20]). There are four

different SUMO forms (1–4) and, once conjugated to the target

protein, are capable of creating multi-peptide chains. A diverse

array of substrate proteins are known to be SUMOylated in vivo

and, in many cases, the covalent addition of SUMO can

dramatically alter the localization and function of the modified

protein. Although these substrate proteins are involved in different

biological pathways, they usually share a conserved SUMO
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consensus motif, YKxE/D (where Y is bulky hydrophobic

residue, K is the target of SUMOylation and x is any amino

acid), that is directly recognized by UBC9. We identified two

putative SUMO consensus motifs within PR-Set7 and demon-

strated that each can be SUMOylated in vitro. Although the

absence of these SUMO sites did not affect the nuclear localization

of PR-Set7, the reduction of UBC9 resulted in the derepression of

several newly identified genes regulated by PR-Set7. Collectively

these findings indicate that UBC9 is necessary to facilitate the full

repressive effects of PR-Set7, most likely by directly SUMOylating

PR-Set7.

Results

Identification of UBC9 as a PR-Set7-interacting protein by
yeast two-hybrid

A yeast two-hybrid screen using full length human PR-Set7 was

used as bait to screen a human HeLa cDNA library for putative

PR-Set7-interacting proteins (Figure 1A). The number of positive

yeast colonies isolated from the screen was unexpectedly limited,

most likely due to the slow growth phenotype of the AH109 yeast

strain expressing full length PR-Set7. The slow growth phenotype

was directly due to the catalytic SET domain: a bait plasmid

containing only the C-terminal192–352 of PR-Set7 was lethal

whereas a bait plasmid containing only the N-terminal1–191 of PR-

Set7 did not alter cell growth or viability (data not shown).

One of the positive clones isolated from the screen encoded the

first 126 amino acids of the human UBC9 (UBE2I) SUMO E2

conjugating enzyme (Figure 1A). Co-expression of the recovered

pGADT7-AD-UBC9 plasmid with the Gal4-DBD-PR-Set7 bait

plasmid in yeast confirmed the interaction due to activation of the

HIS3, ADE2 and lacZ/MEL1 reporter genes present in the

indicator yeast strain. Furthermore, growth of the UBC9 and PR-

Set7 co-transformants on selective medium verified the interaction

as the various control co-transformants failed to survive

(Figure 1B). Similar results were observed when using the PR-

Set7 N-terminal1–191 bait plasmid indicating that that catalytic

SET domain is dispensable for UBC9 interaction.

To verify UBC9 and PR-Set7 interaction in yeast, co-

immunoprecipitations were performed using HA-tagged UBC9

and Gal4-DBD-tagged PR-Set7 plasmids. As shown in Figure 1C,

full length Gal4-DBD-PR-Set7 co-precipitated in the HA-UBC9

bound fraction compared to the controls. Collectively, these results

demonstrate that UBC9 specifically and directly interacts with PR-

Set7 in yeast and that the interaction occurs on the N-terminal

portion of PR-Set7.

PR-Set7 and UBC9 transiently interact in human cells
To determine if PR-Set7 interacts with endogenous UBC9 in

human cells, a FLAG-tagged full length PR-Set7 or a FLAG-null

(negative control) plasmid were transfected into HEK 293 cells

followed by immunoprecipitations using a UBC9 antibody.

Western analysis of the material indicated that FLAG-PR-Set7,

but not FLAG-null, bound endogenous UBC9 albeit weakly

(Figure 2A). Consistent with this finding, recent structural and

kinetics studies demonstrated that UBC9-substrate interactions,

such as with p53, dissociate rapidly suggesting that UBC9

interaction with PR-Set7 is also relatively transient [21].

Therefore, we reasoned that the addition of a crosslinking reagent

to the experiments would capture this potential transient

interaction. To test this, HEK 293 cells were first co-transfected

with a Myc-tagged UBC9 and either the FLAG-PR-Set7, FLAG-

p53 (positive control) or FLAG-null (negative control) plasmids.

Cells were then treated with the bismaleimidohexane (BMH)

crosslinking reagent prior to FLAG-immunoprecipitations. As

predicted, Western analysis demonstrated that UBC9 binding to

PR-Set7 was markedly increased in the BMH treated cells

compared to untreated cells (Figure 2B). Furthermore, analysis

of the unbound and bound fractions suggests that UBC9

preferentially binds PR-Set7 compared to the p53 positive control.

Importantly, PR-Set7 failed to bind the HP1b negative control

even in the presence of BMH. Collectively, these findings indicate

that PR-Set7 specifically interacts with UBC9 in human cells.

The N-terminal portion of PR-Set7 is required for direct
interaction with UBC9

To confirm that UBC9 and PR-Set7 directly interact, in vitro

binding assays were performed. Full length recombinant His-S-

tagged PR-Set7 and GST-tagged UBC9 proteins were expressed

and purified from bacteria (Figure 3A). Following their incubation,

PR-Set7 was immunoprecipitated using an S-tag antibody prior to

Western analysis of the bound material. As shown in Figure 3B,

recombinant PR-Set7 bound GST-UBC9 but not GST alone

demonstrating a direct interaction between PR-Set7 and UBC9 in

vitro. In a reciprocal experiment, in vitro translated 35S-labeled full

length PR-Set7 was incubated with GST-UBC9 or GST alone

prior to a GST pull down. Autoradiography of the SDS-PAGE

fractionated input and bound material confirmed that PR-Set7

directly binds UBC9 in vitro (Figure 3C).

To determine the region of PR-Set7 required for binding

UBC9, similar GST-UBC9 pull downs were performed following

incubation with either recombinant His-tagged N-terminal1–191 or

C-terminal192–352 fragments of PR-Set7 (Figure 1A). Western

analysis of the bound material indicated that only the N-terminal

portion of PR-Set7 is required for direct interaction with UBC9

(Figure 3D), consistent with the yeast two-hybrid results

(Figure 1B).

SUMO1-selective modification of PR-Set7
UBC9 functions as a SUMO E2 conjugating enzyme by directly

binding and modifying target substrates [22,23]. Due to its newly

discovered interaction with PR-Set7, we hypothesized that PR-

Set7 could be a potential target for SUMOylation. To determine if

PR-Set7 could be covalently modified by SUMO in vivo, HEK 293

cells were co-transfected with an HA-tagged null or PR-Set7

plasmid and either FLAG-tagged SUMO1 or SUMO3 plasmids.

Following N-ethylmalemide (NEM) treatment, a cysteine protease

inhibitor used to preserve the SUMOylation of cellular proteins,

lysates were collected and used for immunoprecipitations. Western

analysis of the HA-bound material revealed two slow migrating

bands in the HA-PR-Set7 sample containing FLAG-SUMO1

(Figure 4A). The estimated molecular weight of the bands suggests

that PR-Set7 can be modified with either one (16) or four (46)

SUMO1 moieties. In contrast, slow migrating bands were not

detected in either the negative control (HA-null and FLAG-

SUMO1) or FLAG-SUMO3 indicating that PR-Set7 is specifically

modified with SUMO1 in these experiments.

PR-Set7 is SUMOylated at K110 and K131 in vitro
UBC9 typically binds and modifies the consensus motif YKxD/

E, where Y is a nonpolar amino acid [23]. Sequence analysis of

PR-Set7 revealed two major putative SUMOylation sites in the N-

terminal portion of PR-Set7 that could potentially bind UBC9

(Figure 4B). Both putative SUMO sites, K110 and K131, are

conserved in PR-Set7 orthologues in higher vertebrates suggesting

that modification of these residues could be biologically significant.

Based on our findings we hypothesized that only the N-terminal

UBC9 Binds PR-Set7 to Promote Gene Repression

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e22785



portion of PR-Set7 would be covalently modified by SUMO1. To

test this, recombinant full length PR-Set7 and the N-terminal1–191

and C-terminal192–352 fragments of PR-Set7 were used as

substrates in in vitro SUMOylation reactions. Briefly, similar molar

amounts of recombinant PR-Set7 proteins were incubated with

either His-tagged wild type SUMO1 or a conjugation-deficient

SUMO1 mutant in the presence of an E1 activating enzyme and

the UBC9 E2 conjugating enzyme. Following incubation, the

samples were fractionated by SDS-PAGE prior to Western

analysis. In both the PR-Set7 full length and N-terminal1–191

samples, a slower migrating PR-Set7 band corresponding to one

SUMO1 addition was consistently detected but was not observed

Figure 1. Yeast two-hybrid screen identifies UBC9 as a PR-Set7-interacting protein. (A) Schematic representation of the different Gal4-DBD-
PR-Set7 bait proteins used for the yeast two-hybrid screen and the recovered AD-UBC9. (B) The indicated plasmids were co-transformed into AH109
yeast strain and grown on medium lacking: tryptophan and leucine (DDO), and histidine (TDO) and adenine with addition of X-alpha-galactosidase
(QDO). Growth on TDO and QDO indicates interaction between PR-Set7 and UBC9. (C) Western analysis of HA-immunoprecipitations from yeast co-
transformants expressing the indicated plasmids using PR-Set7 and UBC9 antibodies on the input (In), unbound (U) and bound (B) fractions.
doi:10.1371/journal.pone.0022785.g001
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in the C-terminal191–352 PR-Set7 sample (Figure 4C). Importantly,

these bands were not detected in both the full length and N-

terminal1–191 PR-Set7 samples when the SUMOylation-incompe-

tent SUMO1 mutant was used in the reactions. These findings

indicate that the PR-Set7 N-terminal1–191 fragment can be

covalently modified with SUMO1 in vitro.

Figure 2. UBC9 transiently interacts with PR-Set7 in cells. (A) HEK 293 cell lysates expressing FLAG-PR-Set7 or FLAG-null were
immunoprecipitated with an UBC9 antibody. Western analysis of the input (In) and bound (B) fractions were analyzed using FLAG or UBC9 antibodies.
(B) HEK 293 cells co-transfected with the indicated plasmids were crosslinked using 10 mM BMH prior to FLAG-immunoprecipitations. Western
analysis was performed using Myc or FLAG antibodies on the input (In), unbound (U) and bound (B) fractions.
doi:10.1371/journal.pone.0022785.g002

Figure 3. UBC9 directly binds the N-terminal region of PR-Set7. (A) The indicated recombinant fusion proteins were expressed in E. coli, purified by
affinity chromatography and fractionated by SDS-PAGE. (B) Purified recombinant S-tag-PR-Set7 was incubated with GST-UBC9 or GST alone prior to an S-tag
immunoprecipitation. Western analysis of the bound material was performed using UBC9 and His antibodies. (C) 35S-labeled PR-Set7 was incubated with
GST-UBC9 or GST alone prior to GST pull downs. PR-Set7 binding was determined by autoradiography. Western analysis of the input (In) and bound (B)
fractions were performed using GST antibodies to confirm equal loading. (D) Purified recombinant His-tagged N- and C-terminal PR-Set7 proteins were
incubated with GST-UBC9 or GST alone prior to GST pull downs. Western analysis of the bound fractions was performed using His and GST antibodies.
doi:10.1371/journal.pone.0022785.g003
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To determine if the two putative UBC9 consensus sites were

required for SUMOylation of PR-Set7, both lysines were mutated to

arginine (K110/131R) by site-directed mutagenesis. Recombinant

wild type PR-Set7 and K110/131R mutant proteins purified from

bacteria were used as substrates in the SUMOylation reactions

described above. Western analysis of the SDS-PAGE fractionated

samples revealed a slower migrating band corresponding to one

SUMO1 addition to wild type PR-Set7 (Figure 4D). In contrast, this

band was hardly detected in the K110/131R mutant suggesting that

either K110 or K131 was the predominant SUMOylated site. To

determine this, single lysine to arginine mutations were created for

each site and recombinant proteins were purified for use in the

SUMOylation assay described above. Unexpectedly, we found that

both the K110R and K131R mutants could accept a single SUMO1

moiety (Figure 4D). These findings indicate that K110 or K131 of

PR-Set7 are single SUMO1 acceptor sites and that SUMOylation of

one of these sites precludes SUMOylation of the other site in vitro.

The K110 and K131 SUMO sites are not required for
nuclear localization of PR-Set7

Since previous studies demonstrated that SUMOylation of

other chromatin-modifying proteins, such as the Aurora-B kinase

and HDAC4 deacetylase, was required for their nuclear

localization, we hypothesized that SUMOylation was also required

for PR-Set7 nuclear localization [24,25]. If this were the case, we

reasoned that the PR-Set7 K110/131R mutants would display

defects in nuclear accumulation compared to wild type PR-Set7.

To test this hypothesis, a GFP-tagged null or wild type PR-Set7

were transfected into HEK 293 cells. Consistent with our previous

findings, visualization of GFP by immunofluorescence microscopy

confirmed that PR-Set7 was predominantly localized to the

nucleus compared to GFP alone (Figure 5) [15]. Similar studies

were performed with the GFP-tagged PR-Set7 mutants: K110R,

K131R and K110/131R double mutant. Contrary to our

hypothesis, all PR-Set7 mutants displayed nuclear accumulation

similar to that of wild type PR-Set7 (Figure 5). These results

indicate that PR-Set7 K110 and K131 are dispensable for

targeting PR-Set7 to the nucleus.

Depletion of PR-Set7 results in the increased expression
of specific genes

Although PR-Set7 and H4K20me1 were originally visualized in

nuclear regions excluded of RNA polymerase II [5,16], a recent

genome-wide study in human CD4+ cells demonstrated that

Figure 4. PR-Set7 is selectively modified by SUMO1 in cells and SUMOylated at K110 or K131 in vitro. (A) HEK 293 cells were co-transfected
with the indicated expression plasmids. Cell extracts were prepared in the presence of NEM 2 days post-transfection, followed by immunoprecipitations
using an anti-HA antibody. HA-bound samples were fractionated by SDS-PAGE prior to Western analysis using anti-FLAG or anti-HA antibodies. (B) Two
putative PR-Set7 SUMOylation sites, one perfect and one partial, were identified using SUMOsp 2.0 [40]. ClustalX was used to align the sequence
surrounding the putative SUMO sites of PR-Set7 in various organisms. Conserved residues are shaded and red asterisks mark K110 and K131. (C)
Recombinant wild type PR-Set7, N-terminal (aa1–191) or C-terminal (aa192–352) fragments were used as substrates in in vitro SUMOylation assays.
Reactions were fractionated by SDS-PAGE gel followed by Western analysis using anti-His and anti-SUMO1 antibodies. Asterisk (*) denotes an unknown
contaminating protein. (D) Recombinant wild type PR-Set7, K110R, K131R or K110/131R double mutant were used as substrates in in vitro SUMOylation
assays. Reactions were fractionated by SDS-PAGE followed by Western analysis using anti-PR-Set7 antibodies.
doi:10.1371/journal.pone.0022785.g004
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enrichment of H4K20me1 at the 59 end of genes strongly

correlates with highly expressed genes [17]. Therefore, it remained

unclear if PR-Set7 and H4K20me1 function in gene activation or

repressive pathways. To directly address this, we identified a panel

of putative PR-Set7-regulated genes by first transfecting HeLa cells

with a PR-Set7 shRNA plasmid or a null shRNA control plasmid.

Whole cell lysates and total RNA were collected four days later to

avoid potential indirect effects of the G2 cell cycle arrest observed

at seven days following PR-Set7 shRNA transfection [7].

Depletion of PR-Set7 was confirmed by Western analysis in the

PR-Set7 shRNA HeLa cells. Whole genome expression from two

independent biological replicates of control and PR-Set7 shRNA

samples was determined using Illumina BeadChip expression

arrays. Computational comparison of the averaged expression of

control versus experimental samples revealed 43 genes whose

expression was significantly altered in cells lacking PR-Set7 (.2-

fold, p,0.005) (Table 1). Of these, only 2 genes displayed

decreased expression: PR-Set7 and HERPUD1, which was found to

be a false positive. The remaining 41 genes displayed increased

expression. Quantitative RT-PCR of 10 of these genes confirmed

7 whose expression was significantly increased (p,0.05) in the

absence of PR-Set7 (Figure 6). These findings strongly suggest that

PR-Set7 functions predominantly in the repression of specific

genes regardless of their basal transcriptional state, consistent with

our previous reports [26,27].

UBC9 facilitates PR-Set7-mediated gene repression
Since both PR-Set7 and UBC9 were previously demonstrated

to play a role in transcriptional repressive pathways, we

hypothesized that PR-Set7 interaction with UBC9 was required

for maintaining the transcriptional repression of genes regulated

by PR-Set7 [26,28]. The identification and confirmation of several

PR-Set7-regulated genes made it possible to test this hypothesis

directly (Figure 6). HEK 293 cells were transfected with the

control shRNA plasmid or the PR-Set7 shRNA plasmid and

samples were collected four days later. Both quantitative RT-PCR

and Western analysis demonstrated that the PR-Set7 transcript

and protein were nearly ablated in the PR-Set7 shRNA cells

compared to null (Figure 7A). Quantitative expression analysis of

three PR-Set7-regulated genes, NFKBIZ, VAMP1, and UBE2L6,

Figure 5. The K110 and K131 SUMOylation sites are dispensable for nuclear localization of PR-Set7. HEK 293 cells transfected with GFP-
PR-Set7 wild type, K110R, K131R or K110R/K131R mutants (green) were fixed, stained with DAPI (blue) and visualized using a Zeiss Axio Imager
upright fluorescence microscope.
doi:10.1371/journal.pone.0022785.g005
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Table 1. Genes whose expression change .2-fold in cells lacking PR-Set7.

Genes Up-Regulated in the Absence of PR-Set7

Gene Name Probe ID Avg. log2D(Null/PR-Set7 shRNA) Avg. Fold D p-value

CSAG3A 4010095 23.415 10.666 0

CSAG2 6900377 22.99 7.945 0

LOC653297 5670563 22.773 6.835 0

LOC643425 5860504 22.352 5.105 0

HES5 6590300 22.127 4.368 0

UBE2L6 2070170 22.103 4.296 1.00E-05

EPSTI1 5700725 22.072 4.205 0

MAFA 5090241 21.997 3.992 1.00E-05

PRIC285 5960343 21.834 3.565 0

FLJ20035 7610053 21.72 3.294 0

NFS1 7570411 21.71 3.272 0.00166

REC8L1 70541 21.675 3.193 0

CDA 5090372 21.671 3.184 4.00E-05

FLJ11000 4670414 21.533 2.894 0

MGC4677 6350189 21.529 2.886 0.00109

LOC442578 3710711 21.518 2.864 0.00021

CALCB 2230053 21.478 2.786 7.00E-05

SAMD9 1240142 21.432 2.698 1.00E-05

CD24 610437 21.386 2.614 6.00E-05

CYP4X1 3290048 21.276 2.422 1.00E-05

HERC6 6860482 21.189 2.280 2.00E-04

LOC619383 6220112 21.182 2.269 4.00E-05

ANKRD19 2480040 21.163 2.239 0.00013

LOC440157 4280093 21.158 2.231 0.00034

ARL14 3400209 21.138 2.201 0.00182

FRAS1 270358 21.131 2.190 0.0016

LOC132241 4200551 21.126 2.183 0.00077

C21orf58 2070220 21.122 2.176 5.00E-05

HOXC8 4640059 21.098 2.141 7.00E-05

HS.154336 7040731 21.07 2.099 0.00242

LOC642477 4570041 21.063 2.089 0.00499

NRBP2 4490142 21.043 2.061 1.00E-05

NFKBIZ 2470348 21.037 2.052 0.00015

DHRS1 1470017 21.031 2.043 0.00033

C14orf153 7160747 21.03 2.042 0.0047

KIAA1641 4570075 21.02 2.028 0.0012

VAMP1 6650639 21.017 2.024 0.00103

HS.514745 4610041 21.012 2.017 0

ADM 5670465 21.01 2.014 0.00013

MCOLN2 5490068 21.009 2.013 8.00E-05

EPDR1 6400044 21.004 2.006 0.00022

Genes Down-Regulated in the Absence of PR-Set7

Gene Name Probe ID Avg. log2D(Null/PR-Set7 shRNA) Avg. Fold D p-value

HERPUD1 4570458 1.186 0.440 7.00E-05

SETD8 2350735 1.938 0.261 0

doi:10.1371/journal.pone.0022785.t001
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confirmed that each was significantly increased in the absence of

PR-Set7 (Figure 7B). In contrast, altered expression of the negative

control gene, CBR1, was not observed [26]. The expression of the

18S rRNA normalization control gene was consistent between all

samples and the expression of other housekeeping genes were also

unaltered in the PR-Set7 shRNA cells compared to control, as

previously reported [26]. These findings indicate that PR-Set7 is

required for the observed transcriptional repression of NFKBIZ,

VAMP1, and UBE2L6 in HEK 293 cells consistent with our

findings in HeLa cells (Figure 6).

To determine if UBC9 was also required for the repression of

the newly identified PR-Set7-regulated genes, HEK 293 cells were

transfected with a null shRNA plasmid or a UBC9 shRNA

plasmid that was previously reported to deplete cells of UBC9

[29]. Both quantitative RT-PCR and Western analysis confirmed

a marked reduction of the UBC9 transcript and protein in the

UBC9 shRNA cells compared to null (Figure 7C). Quantitative

expression analysis of the PR-Set7-regulated genes, NFKBIZ,

VAMP1, and UBE2L6, revealed that each was significantly

derepressed in the UBC9 shRNA cells, although not to the same

levels as observed in the PR-Set7 shRNA cells (Figure 7D).

Importantly, altered expression of the CBR1 negative control gene

was not observed. Collectively, these findings indicate that UBC9

is required for the full repressive effects of PR-Set7-regulated

genes.

Discussion

In this study we sought to gain new insights into the role of PR-

Set7 in transcriptional regulation by identifying and characterizing

PR-Set7-interacting proteins. Using an unbiased yeast two-hybrid

screen, we discovered that the UBC9 E2 SUMO conjugating

enzyme directly binds PR-Set7 (Figure 1). Co-immunoprecipita-

tion experiments confirmed that PR-Set7 and UBC9 interact in

human cells although their binding appeared to be weak (Figure 2).

It was previously shown that other UBC9-interacting proteins also

display fairly weak interaction by co-immunoprecipitations

[30,31]. The addition of the protein cross-linking reagent, BMH,

in these experiments greatly enhanced the detectable interaction

between PR-Set7 and UBC9; even better than the p53 positive

control. These findings indicate that PR-Set7 and UBC9 directly

bind in human cells and strongly suggests that their interaction is

transient.

The binding of UBC9 suggested that PR-Set7 is a target for

SUMOylation in vivo. We found that PR-Set7 is preferentially

modified with SUMO1 in human cells and that two evolutionarily

conserved SUMO consensus sites adjacent to the catalytic SET

domain, K110 and K131, were the primary sites of SUMOylation

in vitro (Figure 4). Unexpectedly, our findings suggest that

SUMOylation of one of these lysines precludes SUMOylation of

the neighboring lysine. The significance of this observation

Figure 6. Depletion of PR-Set7 results in the derepression of specific human genes. Quantitative RT-PCR expression analysis of putative
PR-Set7-regulated genes (Table 1) from control shRNA (black) or PR-Set7 shRNA (gray) transfected HeLa cells. Results are plotted relative to 18S
expression and normalized to control shRNA levels (y-axis). Error bars represent the standard error from three independent biological replicates. The
student t-test was used to determine statistically significant changes at p,0.05(*). Seven of 10 identified genes significantly up-regulated in the
absence of PR-Set7 by the expression arrays (Table 1) were validated whereas the only identified down-regulated gene was a false positive.
doi:10.1371/journal.pone.0022785.g006
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remains unknown. It also remains unknown if K110 or K131 is the

predominant SUMO1 acceptor site in vivo or if SUMOylation of

each individual site functions separately in a distinct biological

context. Further studies are required to resolve this. It is interesting

to note that PR-Set7 accepts only a single SUMO1 moiety in vitro

whereas the co-immunoprecipitation experiments demonstrate

that PR-Set7 can accept one or four SUMO1 peptides. These

results suggest that PR-Set7 may be SUMOylated at additional

lysines other than K110 and K131 in vivo. Alternatively, a single

PR-Set7 SUMO acceptor site may contain all four SUMO1

peptides as SUMO1 is capable of forming polymeric chains

[32,33]. If this is the case, it is likely that additional nuclear factors,

such as an E3 ligase, are required for the polymeric SUMO1

modification of PR-Set7 in vivo since these components were not

present in the in vitro assays. Additional investigation is necessary to

resolve these possibilities.

Based on previous reports of other SUMOylated chromatin-

modifying enzymes, we hypothesized that SUMOylation may

affect PR-Set7 function by altering its ability to localize in the

nucleus [24,25]. Contrary to the hypothesis, we found that the

absence of either or both SUMO acceptor sites, K110 and K131,

did not result in any detectable changes in the cellular distribution

of PR-Set7 (Figure 5). These findings indicate that K110 and

K131 and their potential covalent modifications are dispensable

for targeting PR-Set7 to the nucleus. However, we cannot

definitively conclude that SUMOylation of PR-Set7 has no effect

on its localization as there may be additional PR-Set7 SUMO

acceptor sites that have yet to be identified.

It was recently reported that UBC9-dependent SUMOylation

of the heterochromatin-associated proteins, Swi6 and Chp2, was

required for transcriptional repression and the maintenance of

heterochromatin stability in fission yeast [34]. Based on these

findings, we hypothesized that UBC9 may function to similarly

enhance the transcriptional repressive effects of PR-Set7. By

employing expression arrays, we identified genes whose expression

was significantly altered in the absence of PR-Set7 (Table 1). Our

findings revealed that the vast majority of these genes displayed

increased expression in cells lacking PR-Set7 strongly suggesting

that PR-Set7 predominantly functions as a transcriptional

repressor, consistent with our previous findings [16,26,27,35].

Importantly, reduction of UBC9 by RNAi resulted in the

significant derepression of a subset of genes regulated by PR-

Figure 7. Reduction of UBC9 results in derepression of PR-Set7-regulated genes. HEK 293 cells were transfected with a null shRNA plasmid
or shRNA plasmids designed to reduce PR-Set7 or UBC9 levels. Quantitative RT-PCR and Western analysis were performed to validate the reduced
transcript and protein, respectively, of PR-Set7 (A) or UBC9 (C). Quantitative RT-PCR was performed to analyze the expression levels of three newly
identified PR-Set7-regulated genes or the CBR1 negative control gene in null shRNA (black bar), PR-Set7 shRNA (B) or UBC9 shRNA (D) cells (grey bar).
Results were normalized to 18S expression and plotted as the fold increase relative to null shRNA. Three technical replicates were used to generate
standard deviations and statistical significance was calculated using the student-T test (asterisks are p#0.05). Similar results were obtained in
independent biological replicates.
doi:10.1371/journal.pone.0022785.g007
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Set7 (Figure 7). The UBC9 RNAi cells did not achieve the levels of

derepression observed in the PR-Set7 RNAi cells, however, this

may be due to the inability to completely remove endogenous

UBC9 by RNAi in these experiments. Regardless, our findings

demonstrate that UBC9 is required to facilitate the full repressive

effects of PR-Set7.

Since the main function of UBC9 is to conjugate SUMO

moieties to target substrates, it is highly likely that the UBC9-

mediated SUMOylation of PR-Set7 is required to promote the

observed repression of PR-Set7-regulated genes, although this has

yet to be demonstrated. How could the SUMOylation of PR-Set7

function in a transcriptional repression pathway? Recent findings

demonstrated that UBC9-mediated SUMOylation of other

chromatin-associated proteins, including p300, Elk-1 and reptin,

was required for the recruitment of various histone deacetylases

resulting in gene repression [36,37,38]. Therefore, one possible

consequence of PR-Set7 SUMOylation may be to signal the

recruitment of additional co-repressor proteins at PR-Set7 target

genes to induce repression. Although our results strongly suggest

that SUMOylation of PR-Set7 is dispensable for its nuclear

localization, it is also possible that the addition of SUMO1 may be

required to target PR-Set7 to chromatin and to specific genes.

Lastly, it is possible that SUMOylation of PR-Set7 may alter its

catalytic activity in vivo and, thereby, affect target gene expression

since H4K20me1 is essential for gene repression [27]. These

possibilities are not necessarily mutually exclusive and, therefore,

additional investigation is required to determine the precise role of

UBC9-mediated SUMOylation of PR-Set7 in transcriptional

regulation.

Materials and Methods

Yeast-two-hybrid screening
Yeast-two-hybrid screen was performed using the MATCH-

MAKER GAL4 Two-Hybrid System 3 protocol (Clontech). The

bait plasmid was created by inserting PCR-amplified fragment

encoding full length human PR-Set7 (Gene ID: 387893) into the

NdeI-BamHI restriction sites of pGBKT7 plasmid. The GAL4-

DBD-PR-Set7 plasmid or pGBKT7-null were transformed into

AH109 yeast strain and each was mated to pre-transformed

human HeLa Matchmaker cDNA library in the Y187 yeast strain.

Mated yeast were selected on synthetic medium without

tryptophan and leucine (DDO) and histidine (TDO) and adenine

with X-alpha-galactosidase (QDO+X-a-Gal) to screen for ADE2,

HIS3 and MEL1 expression. TDO and QDO surviving colonies

were re-streaked on corresponding selective plates to assure

maintenance of the correct phenotype followed by plasmid

isolation using YEASTMAKER Yeast Plasmid Isolation Kit

(Clontech) and DNA sequencing. Candidate clones were co-

transformed with the PR-Set7 bait plasmid into the AH109 yeast

strain and grown on selective media to confirm the interaction.

Immunoprecipitations
The AH109 yeast strains were grown at 30uC in 100 mL of

DDO medium to OD600,1.0. Yeast extracts were prepared by

glass-bead lysis in immunoprecipitation (IP) buffer (50 mM Tris-

HCl, pH 7.5, 50 mM NaCl, 1 mM PMSF, 10 mg/mL Pepstatin

A, 10 mg/mL Leupeptin/Aprotinin and 1% Triton-X-100).

Reactions containing 0.5 mg of total protein and 50 mL of a

50% EZview Red anti-HA affinity gel slurry (Sigma) in a 1 mL

final volume of IP buffer were incubated over night at 4uC. Beads

were washed three times with 1 mL of wash buffer (50 mM Tris-

HCl, pH 7.5, 100 mM NaCl, 1 mM PMSF, 10 mg/mL Pepstatin

A, 10 mg/mL Leupeptin/Aprotinin and 1% Triton-X-100). The

bound material was eluted by boiling in SDS loading buffer and

fractionated by SDS-PAGE. HEK 293 cells were transfected using

Lipofectamine 2000 according to the manufacturer’s instructions

(Invitrogen). Cells were incubated in DMEM medium with or

without 10 mM BMH for 10 min at room temperature 24 hours

post-transfection. Whole cell IP lysates were made by resuspending

26107 cells in 500 mL of IP buffer (50 mM Tris-HCl pH 7.0,

150 mM NaCl, 0.5 mM DTT, 1% NP-40, 1 mM PMSF, 1 mg/

mL pepstatin and 1 mg/mL aprotinin/leupeptin), followed by an

overnight 4uC incubation with 40 mL of pre-equilibrated 50%

EZview Red anti-HA or anti-FLAG affinity gel slurry (Sigma).

Beads were washed extensively with IP buffer prior to eluting

bound material by boiling in SDS loading dye. Samples then were

fractionated by SDS-PAGE prior to Western analysis.

SUMOylation and binding assays
The in vitro SUMOylation assay was performed with a

SUMOlink Kit according to the manufacturer’s instructions

(Active Motif) using purified recombinant proteins as substrates.

Glutathione S-transferase (GST)-null, GST-UBC9 and His-S-tag-

PR-Set7 recombinant proteins were induced in BL21 E. coli and

purified by either glutathione-conjugated Sepharose 4B beads or

Ni-Sepharose High Performance agarose beads (GE Healthcare),

respectively. Recombinant His-S-tag-PR-Set7 (10 mg), 3 mg of

anti-S-tag antibody and 20 mL of pre-equilibrated Protein-A beads

in a 300 mL final volume in IP buffer were incubated overnight at

4uC. Purified GST-UBC9 (5 mg) or GST alone (3 mg) were added

to the reaction and incubated at 4uC for 8 hours. For GST pull-

downs, 3 mg of GST-UBC9 or GST alone were incubated with

15 mL of in vitro translated [35S]-labeled His-PR-Set7 proteins

(Promega) in IP buffer overnight at 4uC followed by a 4 hour

incubation at 4uC with 20 mL of pre-equilibrated glutathione-

conjugated Sepharose 4B beads (GE Healthcare). Beads were

washed with IP buffer and bound proteins were eluted in SDS

loading dye prior to fractionation by SDS-PAGE and Western

analysis.

Western analysis
Western analysis was performed as previously described [16]

using the following antibodies and dilutions: PR-Set7 (1:1 k; Cell

Signaling), UBC9 (1:500; Santa Cruz Biotechnology), FLAG

(1:2 k; Sigma), His (1:1 k; Novagen), GST (1:5 k; Upstate),

SUMO1 (1:4 k; Active Motif).

Immunofluorescence
HEK 293 cells were transfected with wild type or mutant GFP-

PR-Set7 plasmids using BioT (Bioland Scientific). Cells were fixed

24 hours post-transfection and counterstained with DAPI as

previously described [39]. Staining was visualized using a 636
objective on Zeiss Axio Imager upright fluorescence microscope

with ApoTome and images were analyzed using Adobe Photo-

Shop CS5.

Gene expression analysis
Control, PR-Set7 or UBC9 shRNA plasmids were transfected

into HEK 293 using Lipofectamine 2000 (Invitrogen) as previously

described [27,29]. Total RNA was isolated (Qiagen) 4 days post-

transfection for UBC9 shRNA or PR-Set7 shRNA cells and cDNA

was created using a Reverse Transcriptase Kit (Applied Biosys-

tems). Quantitative real-time PCR was performed in triplicate

using 10 ng cDNA. Fold change was calculated using 2‘(2DDCt)

and plotted relative to control shRNA cells. Primers: NFKBIZ (59-

TGGTTGATACCATTAAGTGCCTA, 39-GTAAGCCTTTG-
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CATTCACAAAA), VAMP1 (59-AGCATCACAATTTGAGAG-

CAGT, 39-GTGTTGAGAGAGCAAACAGAGG), UBE2L6 (59-

CCATGATCAAATTCACAACCA, 39-TTCGGCATTCTTT-

CTGAACA), CBR1 (59-TGATCCCACACCCTTTCATA, 39-

AGCTTTTAAGGGCTCTGACG), 18S (59-AACTTTCGATG-

GTAGTCGCCG, 39-CCTTGGATGTGGTAGCCGTTT), AD-

M (59-GGACGTCTGAGACTTTCTCCTT, 39-ACGACTCA-

GAGCCCACTTATTC), ARL14 (59-AGAACTGTTTGGG-

GCTGTTACT, 39-CACTGCAAAGCTTCTTCACTTT), HES-

5 (59-AGCTACCTGAAGCACAGCAA, 39-GAAGTGGTACA-

GCAGCTTCATC), REC8L1 (59- AATTCCAGGAACAACTG-

CAAA, 39-TTGGAACTTCAATCTTTCTCCTT), CDA (59-

CAAGATGATTTTATCTCTCCATGTG, 39-GACATCTTT-

ATGAAGTTCTCCAGGT), NFS1 (59-TCTATATGGATGTG-

CAAGCTACAA, 39-TTGCTATGTTGTTGGATTCAGTAG),

CALCB (59-CAGATGAATGACTCCAGGAAGA, 39-CTGT-

GATTCTGGCTTCTGGTAG), HERPUD1 (59-TAAATCGA-

GATTGGTTGGATTG, 39-GTTATTGTTGGGGTCCTGA-

TTT).

Whole genome expression analysis
HeLa cells transfected with control or PR-Set7 shRNA plasmids

were selected with 5 mg/ml puromycin before total RNA isolation

(Qiagen) 4 days following transfection. Two independent biolog-

ical replicates of each were hybridized to the Illumina Human

WG-6 v.3.0 Expression BeadChips (GEO accession: GSE30361).

The raw intensity values of the probes were processed using the

Bead Studio application. To efficiently analyze the data, the bead-

summary files were produced and subsequently processed using

the beadarray library of the BioConductor framework in the R

programming environment. Probes that had a log2 difference

between PR-Set7 shRNA and control samples with an absolute

value equal to or greater than 1 at a statistically significant level

(p,0.005) were selected for further analysis. Genes whose

expression are known to be significantly altered by indirect effects

associated with RNA interference, such as interferon or mitogen-

induced genes, were excluded from the analysis.
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