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Type I generalized progressive hybrid censoring scheme is a combination of Type I and Type II progressive hybrid censoring
schemes, and it is one of the most recent advancements in data censoring. In this article, based on Type I generalized
progressive hybrid censoring data from generalized exponential distribution, the maximum likelihood and Bayesian estimators
of distribution’s parameters as well as the reliability and hazard functions are approximately calculated. Also, the credible
interval estimators of these quantities are obtained. Since these quantities cannot be obtained in closed form, so simulation and
analysis using a Monte Carlo simulation study with Gibbs sampling are taken. Finally, an illustrative example using real data
set is presented to compare the proposed procedures presented and developed here.

1. Introduction

Computational methods and data processing are among
the most important sciences that have different applica-
tions in many flelds such as medicine, engineering,
agriculture, and various vital fields. For a large data, it
was necessary to find method for statistical inference by
using small samples taken in a certain way of this large
data, in order to limit the time and the cost; hence, the
idea of censored samples started. There are a variety of
scenarios where observed data is censored in nature,
including reliability and life testing experiments. The two
most popular censoring techniques are Type I and Type
II censoring schemes. Epstein [1] initially proposed the
hybrid censoring scheme, which is a mixture of Type I
and Type II censoring schemes. One of the main problems
of Type I, Type II, and hybrid censoring (HC) methods is
that they do not allow for unit removal at whatever point
other than the experiment’s finish. To address this issue, a
more comprehensive censoring scheme known as progres-
sive Type II censoring was implemented. Balakrishnan and
Cramer [2] provide a full discussion of these censoring

schemes as well as some recent advances. The disadvan-
tages of the progressive Type II censoring scheme are that
the time of the experiment can be very long if the units
are highly reliable. Therefore, Kundu and Joarder [3] pro-
posed a progressive hybrid censoring scheme (PHCS).
Under progressive hybrid censoring scheme, the time on
experiment will be no more than T. Some recent studies
on progressive hybrid censoring have been carried out by
many authors including Lin et al. [4], Panahi [5], Mohie
El-Din et al. [6], and EI-Din et al. [7]. On the other side,
one of the progressive hybrid censoring scheme’s draw-
backs is that it cannot be used when there are only a
few failures before time T.

Cho et al. [8] suggest a Type I generalized PHCS that
allows us to notice a prespecified number of failures for this
reason. As a result, a specified number of failures and their
lifetimes are always supplied under the Type I generalized
PHCS. The life testing experiment based on this censoring
scheme can reduce total test duration as well as the cost
incurred due to unit failures. Furthermore, because there
are more failed observations, statistical estimating efficiency
improves. The Type I generalized PHCS have been
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investigated for instance by El-Din et al. [9], Nagy et al. [10,
11], and Nagy and Alrasheedi [12].

We look at statistical inference for a generalized expo-
nential (GE) distribution under Type I generalized PHCS
in this paper. Gupta and Kundu [13] provide the probability
density function (PDF) and cumulative distribution function
(CDF) of the GE distribution, respectively.

flx;a,1) =ad exp (—Ax)[1 - exp (—)Lx)]""l, x,a,A>0,

(1)

F(x;a,A)=[1-exp (-Ax)]*, x,a,A>0, (2)

where « and A denote the shape and scale parameters,
respectively. For simplicity, let y(x;A)=1--exp (-Ax);
then, PDF and CDF of the GE distribution can be rewritten,
respectively, by the following:

f(xs0,1) =ad exp (—Ax)[y(x; A)]‘H, xoaA>0, (3)

F(x;a,A)=[y(x;1)]%  xa,A>0. (4)

Therefore, the reliability (survival) and hazard functions
may be written, respectively, as follows:
S(x;a,A)=1-[y(x;1)]% xaA1>0, (5)

Fleso0d) _ ok exp (<A M)
SCesa ) =y A

H(x;a,A) = , % 0,A>0.

(6)

The GE distribution is a very flexible and favorably
skewed model that is used to replace the lognormal, gamma,
and Weibull distributions. It is often used to examine data
that is skewed in a positive direction. Inferences for the GE
distribution have been discussed by many authors including
Gupta and Kundu [14] and Jaheen [15].

The aim of this article is that we consider the analysis of
the Type I progressive censoring data from generalized
exponential distribution to calculate the maximum likeli-
hood and Bayesian estimators of unknown parameters and
also calculate the approximate confidence intervals. The
remainder of this paper is as follows. In Section 2, we
provide an overview of the Type I generalized PHCS and
compute the likelihood function of the model based on Type
I generalized PHCS. The ML estimators with the
corresponding approximate confidence intervals of the GE
distribution’s parameters, the reliability function and hazard
function, are derived in Section 3. In Section 4, we use
MCMC with the Gibbs sampling procedure to compute the
Bayesian estimates of the parameters, reliability and hazard
functions for the GE distribution, and also construct their
credible intervals. Under Type I generalized censoring
scheme, simulation studies to compare the efficacy of the
offered inference methodologies are carried out in Section
5. In Section 6, some computational results with real data
are presented for illustrating all the inferential methods
developed here. Finally, Section 7 concludes the paper.
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2. The Likelihood Model Description

Consider life testing experiment in which # equivalent units
are tested. For T € (0,00) and integers k,me {1,2,---,n}
and R=(R,,---—R,,) are prefixed such thatk <m. Let d
denote the number of observed failures up to time 7T, and
Yimnand Y, .. are the times of failure k, m, respectively.
According to the Type I generalized PHCS which introduced
by Cho et al. [8], the experiment termination time is 7" =
max {Y}.,,.,, min {Y, T}} and we have the following
observations:

m.m:n’

(1) Suppose T is reached before the k™ failure, then the
experiment terminates at Y;.,,.,, and we will observe

{Yl:m:n<"'<Yd:m:n < Yd+1:m:n<"'<Yk:m:n}

(2) Suppose that the T is reached between the k™ and
m™, then the experiment terminates at T and we will

observe {lem:n<' < Yk:m:n < Yk+1:m:n<' ’ '<YD:m:n}

(3) Suppose that the m™ failure occurs before T (i.e.,
Y, umn < T), then the experiment terminates at
X and we will observe {Y,,.,<*<Yj,mn<

m:m:n

Yk+1:m:n<”'<Y

1:m:n

m:m:n}

Thus, the joint density function based on the above cases
can be written as follows:

f(z) = Ci‘j |:Hf(yi:m:n)[s()/i:m:n)}R::| [S(T)]R:’ (7)

where

(Rl)""Rd’.“’Rk)’ if T < Yk:m:rt’
lf Yk:m:n < T < Ym:m:n’ (8)
if Yk:m:n < T’

where R is the number of surviving units eliminated at T, as
determined by the following:

0, it T< Yk:m:n’
d
Ri = ZR" i Yn <T <Y ppins (9)
j=1
0, if Yk:m:n <T,
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with

it T< Yk:m:n’
if Yk:m:n <T< Ym:m:n’ (10)

DoV 0
Z: (yl,...’yk,...,yd),

(yl"“’yk"“’ym)’ ifYk:m:n<T’

and x; = x;,,,.,, for simplicity of notation.

Upon using Equations (3) and (4) in Equation (7), the
likelihood function of «, 8 based on generalized Type I
HPCS can be obtained as follows:

.
L(a,A | g) =C;;a” A7 exp (—A Z%) exp

[y (risA)] ]}-

(11)

(a—1) Zl nfy(y, ;A)]} X exp

i=1
LR In[1- [y +ZR In[1-]

3. The ML Estimations

For computing the ML estimates, we must maximize the
likelihood L(a, A|y) with respect to « and A in order to
compute the ML estimates. The logarithm of the likelihood
function is given by:

R(a,ll)i) o« D* In a+ D" lnA—Aiyi
D* D* ) (12)
+(@=1) Y Infy(y )]+ X R In [1=[y(y )]

R In [1- [y(T5 1],

The ML estimates a,; and XML of a« and A can be
obtained by simultaneously solving the following equations.

oL (X,Alz D* D*
%z o zln[‘/’()’i;)‘)]

r(arly) p D Cyll-y(;5A)
(aA )zT_;yf+(“_ >;y[w(y,,l) ]
Sl w(y,, Ml (s M)
“ )R “Ty O A
R T[l—W(T;A)][V/(T;A)]“ _
ke W

(14)

By using the invariance property of the ML estimator,
the ML estimators of the corresponding reliability and haz-
ard functions are given, respectively, by

Sy()=1- [w<t;XML)fWI, t>0, (1)

- [‘V (v XML)}
(16

3.1. Approximate Confidence Intervals for « and A. For large
observation D*, the observed Fisher information matrix of
the parameters « and A is given by the following:

Pe(wrly)  Pe(wrly)
I<aML’ XML) oo _ g
Pe(wrly)  Pe(wrly)
T da0r e aayA= Ay
(17)
where
Pt ry) b Sk { W03 AP In [y (3 M
90 @ 5T {1-osA)lY
L WO 0) In [y (s )12}
1= [y(ys )" (18)
_R*{[W(T;A)]Z“ In [y(T; 1)
L =Ty
L W] In [y(T5 P
= [w(T;54)]" ’
Pe(wAly) - Sslovou)
dadd 5 vish)
L2 ay,[1 sy M) In [y (y;5 1))
ZR{ < {1 - W0 D)
LA y0is )][v/(yw M

V/(yz’ ){l_wj()}z; )]06}
L=y Y0 VI In [y (s >1}

YO M1 = [y
_R*{aT[l— Y(Ts M)][y(T: )] In [y(T; )]
‘ (T M){1 = [w(T5A)]*}
T =y(T; M][y(T;

M)
YT {1y (T5 0]
LT y(T D)y (T5 )P In W;m}
{1 [y (Ts

]
Y(T5 D)1= [w(T; )Y




oA’ A

e Aly) e 1>Dz‘{x§[1 v 0] | =0

—w(y,;k)]z}
M)

i v(ri54) [w(;s

2 (el =y (0 M0 A
+;&{wm-m—Mﬂmm
@O O v AP AL
T >J {1 WO | WO AP (T

R0 -y V)] w»m”}m
(s W{l “wos Iy ST
oLy VI T y(Ts Amw )i
H{l ST (T DF {1 = [p(T5 M)}
aT?[1 =y (T )P [w(T5 M) ”2[ v(Ts )ﬁ >]2“}'
[w(T5 A)J{l WO (T ]{1 (T3 )]}
(20)

Based on the normal approximation of the ML estimators,

(@ —a)/y/V(a) and (X - A/ V(X) are asymptotically

normally distributed with mean 0 and variance 1; that is,

0 ~N(0,1),
> 21
A-A ~N(0,1). 2

Two-sided (1 —y) 100% confidence intervals for o and A

are given by @+ Z,,/V(a) and A +Z,p\/ V(X), respec-

tively, where V(@) and V(X) are the asymptotic variances of
@and 1, respectively, obtained by inverting the matrix I
(Wprs XML), and Z,, is the upper y'"/2  percentile of
the standard normal distribution.

3.2. Approximate Confidence Intervals for S(t) and H(t). In
this subsection, we calculate the estimated confidence
intervals for the reliability and hazard functions using
the delta method proposed by Greene [16]. The delta
method is a general method for calculating confidence
intervals for MLE functions that are too complex to calcu-
late the variance analytically. It creates a linear approxima-
tion of the function and then calculates the variance of the
simpler linear function that can be used for large sample
inference (see [17]). Let

(22)
M, = ( ))
where
as(t) - .
5y = WA In [y (4], (23)
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3S(t) _ Ay (ts N)]*[1 - y(t3A)]
on G ’ 24
OH() _ A[L=y(t; M][y(t; M + ady(t; 1)1 In [y(t; V)]
oa N
aA[L— (£ M)yt 1)) In fy(e34)]
(1= [0
(25)
BH (1) _ a1 ~y(ts )ly(ts )" ~ adefl — y(t; A)][y(t; 1]
2 -G
L -y VP (s AP
YO D {1 - AT
L A - y( )y )P
YN~ (AR

(26)

Then, the approximate estimates of V(S/(—B ) and V(
H(t)) are given, respectively, by the following:

V(§(?)>E[M§1*1M1] ., (27)

a=oypA=Ayy,

IR ~ tr-1 ~
V(H(t)) B [MZI Mz] a:,‘;ML’/\:/\ML’ (28)
where M| and M} are the transposes of the matrix M,
and M,, respectively. Again, based on the normal approx-

imation of the ML estimators, (S/(t\) - S(1))/ V(S/(t\)) and

(H(t) - H(2))/
tributed with mean 0 and variance 1; these results yield
(I1-9y) 100% approximate confidence intervals for S(t)
and H(t) which are given by the following.

V(Pﬂ?)) are asymptotically normally dis-

(29)

For more on different types of confidence intervals, we
refer our readers to Banik et al. [18] and Almonte and
Kibria [19] among others.

4. Bayesian Estimates

In this section, we derive the Bayesian estimates of the GE
distribution’s parameters « and A, based on Type I gener-
alized HPCS data. For the Bayesian estimations, it is under
the premise that both distribution’s parameters o and A
are independent and have gamma prior distributions,
respectively,



Computational and Mathematical Methods in Medicine 5
TaBLE 1: The mean and MSE values of the ML and Bayesian estimates of .
ML Prior 1 peyesan Prior 2

(k,m, n) T Scheme Mean MSE Mean MSE Mean MSE
(15,30,60) 0.50 1 2.1255 0.4860 2.0606 0.3239 1.9908 0.3529
(20,40,60) 2.1501 0.4315 2.1299 0.2959 2.0365 0.3842
(25,50,60) 2.1636 0.2815 2.1471 0.2448 2.0499 0.2607
(15,30,60) 2 2.1863 0.3859 2.1192 0.2579 1.9817 0.2733
(20,40,60) 2.2249 0.5032 22217 0.2471 2.0646 0.3562
(25,50,60) 2.0489 0.2332 2.0476 0.1898 1.9453 0.1989
(15,30,60) 3 2.1356 0.3612 2.0814 0.3226 1.9816 0.3339
(20,40,60) 2.2364 0.4384 2.2313 0.3872 2.0741 0.4091
(25,50,60) 2.1430 0.2512 2.1491 0.1808 2.0083 0.1867
(15,30,60) 1.00 1 2.1600 0.4285 2.1012 0.3207 2.0706 0.3498
(20,40,60) 2.2021 0.3454 2.2408 0.2104 2.0426 0.2780
(25,50,60) 2.0801 0.2621 2.0332 0.2065 1.9571 0.2152
(15,30,60) 2 2.2459 0.6246 2.2890 0.3873 2.1173 0.4227
(20,40,60) 2.1706 0.4180 2.1867 0.2928 2.0639 0.2935
(25,50,60) 2.0408 0.2817 2.0878 0.1511 1.9569 0.2470
(15,30,60) 3 2.0641 0.4176 2.0529 0.3936 1.9282 0.4022
(20,40,60) 2.1515 0.3330 2.1366 0.2458 2.0215 0.3108
(25,50,60) 2.2139 0.3206 2.1795 0.1851 2.0784 0.2290
(15,30,60) 1.50 1 2.0989 0.2912 2.0275 0.2347 1.9301 0.2628
(20,40,60) 2.1448 0.1987 2.0942 0.1503 1.9712 0.1544
(25,50,60) 1.9933 0.1974 2.0514 0.1042 1.9506 0.1724
(15,30,60) 2 2.1719 0.6535 2.1996 0.3790 1.9704 0.3899
(20,40,60) 2.1907 0.4195 2.2318 0.2446 2.0746 0.3094
(25,50,60) 2.1820 0.3845 2.1559 0.2338 1.9989 0.2789
(15,30,60) 3 21772 0.4201 2.1399 0.2094 1.9230 0.2840
(20,40,60) 2.1174 0.3313 2.1083 0.1820 1.9868 0.1869
(25,50,60) 2.1132 0.2397 2.0725 0.1990 2.0277 0.2099
b‘f‘ . Upon combining Equations (11) and (31), given the
m(a) = I(a) @™ exp (-ab,), Type I generalized PHCS, the corresponding posterior dis-

o (30)  tribution of a, A is obtained as follows:
2

= A%l exp (=Ab,),
I(ay) p ( 2)

where hyper parameters a;, b; for all i=1,2 are the posi-
tive real constants that indicate prior knowledge of distri-
bution’s parameters; if a;,b; for all i=1,2 are set to be
equal zero, then the informative priors m(a) and 7(A)
are reduced to the noninformative priors. The joint prior
density of « and A can be obtained by multiplying 7(«)
by (1) as follows:

a1 1,9
by' b

e d) = I'(a))I'(ay)

a7 A% exp (—ab, — Aby).  (31)

L(wAly)m(a)

i (‘X’MZ) B J"°°L(cx,)l Iy)n(

> exp{ a-1 Zln[t//(y,, }
)

(2

Xe

(—ab, — Ab,) exp

Adad)

oo

D*+al—1AD*+u2—l

exp

: {Ri In L=y (Ts V"] + ;RF Infl- [llf(%;l)}“]}

(32)

The Bayesian estimate of a parametric function g(6)
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TaBLE 2: The mean and MSE values of the ML and Bayesian estimates of A.
ML Prior 1 pryesin Prior 2

(k,m, n) T Scheme Mean MSE Mean MSE Mean MSE

(15,30,60) 0.50 1 1.2644 0.2104 1.3913 0.1202 1.3719 0.1846
(20,40,60) 1.1882 0.0842 1.2538 0.0566 1.2853 0.0719
(25,50,60) 1.1952 0.0519 1.2335 0.0328 1.2726 0.0358
(15,30,60) 2 1.1988 0.1582 1.3227 0.0698 1.3446 0.1050
(20,40,60) 1.1658 0.1067 1.2446 0.0554 1.2616 0.0720
(25,50,60) 1.2218 0.0713 1.2664 0.0436 1.2938 0.0632
(15,30,60) 3 1.2277 0.1558 1.3346 0.0999 1.3628 0.1513
(20,40,60) 1.1841 0.0929 1.2305 0.058 1.2965 0.0872
(25,50,60) 1.1978 0.0622 1.2302 0.0387 1.2808 0.0475
(15,30,60) 1.00 1 1.2210 0.1241 1.3210 0.0736 1.3024 0.1005
(20,40,60) 1.1483 0.0504 1.1789 0.0337 1.2270 0.037

(25,50,60) 1.2268 0.0664 1.2777 0.0407 1.3014 0.0513
(15,30,60) 2 1.1348 0.0784 1.1834 0.0522 1.2369 0.0704
(20,40,60) 1.1922 0.0689 1.2373 0.0429 1.2710 0.0662
(25,50,60) 1.2143 0.0769 1.2333 0.0398 1.2895 0.0488
(15,30,60) 3 1.2393 0.1323 1.3069 0.0919 1.3405 0.1189
(20,40,60) 1.1692 0.0546 1.2182 0.0436 1.2580 0.0541
(25,50,60) 1.1611 0.0465 1.2143 0.031 1.2258 0.0362
(15,30,60) 1.50 1 1.2094 0.1347 1.3098 0.0867 1.3212 0.1028
(20,40,60) 1.1498 0.0505 1.2108 0.0371 1.2447 0.0433
(25,50,60) 1.2418 0.0463 1.2672 0.0269 1.2970 0.0411
(15,30,60) 2 1.2122 0.1228 1.2862 0.0721 1.3610 0.1108
(20,40,60) 1.1559 0.0547 1.1895 0.0366 1.2402 0.0513
(25,50,60) 1.1583 0.069 1.2170 0.0414 1.2324 0.0454
(15,30,60) 3 1.1581 0.0929 1.2566 0.0512 1.3192 0.0865
(20,40,60) 1.1933 0.0796 1.2580 0.0418 1.2908 0.0638
(25,50,60) 1.1920 0.0486 1.2377 0.0411 1.2455 0.0470

under squared error loss (SEL) function is obtained as
follows:

50w~ [ o0 (wply)duir. ()

0 Jo

All Bayesian estimators based on the SEL function are in
the form of a ratio of two integrals for which there are no
closed-form solutions, so to estimate the above integrals, we
must use appropriate numerical methods. To compute
Bayesian estimates and build credible intervals for the distri-
bution’s parameters « and A, we apply here the MCMC
approaches. When compared to previous methods, the
MCMC method gives an alternate way for parameter esti-
mate that is more flexible. For more details about the MCMC
approaches, for further details, see [20, 21].

4.1. The Metropolis-Hastings Algorithm within Gibbs
Sampling. The Metropolis-Hastings (MH) algorithm was
presented by Metropolis et al. [22] as a general Markov
chain Monte Carlo (MCMC) approach, and Hastings
[23] developed the MH algorithm. The MH approach
can be used to generate random samples from any arbi-
trary complicated target distribution with any dimension
that is known up to a normalizing constant. The Gibbs
sampling method is a subset of the MCMC method. It
can be used to produce a sequence of samples from two
or more random variables’ entire conditional probability
distributions. Decomposing the joint posterior distribution
into entire conditional distributions for each parameter
and sample from them is required for Gibbs sampling.
To produce a sample from the posterior density
function71* (a, A | y), we propose utilizing the Gibbs sam-
pling approach.
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TaBLE 3: The mean and MSE values of the ML and Bayesian estimates of S(¢t = 0.6).
ML Prior 1 pryesin Prior 2
(k,m, n) T Scheme Mean MSE Mean MSE Mean MSE
(15,30,60) 0.50 1 0.8502 0.0402 0.8558 0.0390 0.8501 0.0394
(20,40,60) 0.8460 0.0404 0.8520 0.0374 0.8422 0.0402
(25,50,60) 0.8539 0.0374 0.8573 0.0342 0.8500 0.0367
(15,30,60) 2 0.8524 0.0377 0.8581 0.0355 0.8498 0.0361
(20,40,60) 0.8495 0.0395 0.8555 0.0339 0.8480 0.0388
(25,50,60) 0.8424 0.0378 0.8474 0.0357 0.8403 0.0371
(15,30,60) 3 0.8469 0.0343 0.8554 0.0327 0.8474 0.0340
(20,40,60) 0.8545 0.0353 0.8591 0.0347 0.8516 0.0351
(25,50,60) 0.8526 0.0381 0.8568 0.0332 0.8475 0.0349
(15,30,60) 1.00 1 0.8514 0.0361 0.8560 0.0309 0.8520 0.0328
(20,40,60) 0.8487 0.0376 0.8561 0.036 0.8430 0.0368
(25,50,60) 0.8486 0.0408 0.8491 0.0384 0.8426 0.0391
(15,30,60) 2 0.8439 0.0507 0.8544 0.0473 0.8447 0.0499
(20,40,60) 0.8515 0.0367 0.8564 0.0356 0.8495 0.0359
(25,50,60) 0.8415 0.0468 0.8459 0.0399 0.8375 0.0425
(15,30,60) 3 0.8354 0.0484 0.8437 0.0465 0.8347 0.0467
(20,40,60) 0.8454 0.0409 0.8501 0.0358 0.8405 0.0388
(25,50,60) 0.8543 0.0394 0.8555 0.0376 0.8486 0.0382
(15,30,60) 1.50 1 0.8392 0.0448 0.8451 0.0415 0.8370 0.0426
(20,40,60) 0.8438 0.0376 0.8458 0.0348 0.8371 0.0364
(25,50,60) 0.8437 0.0389 0.8522 0.0355 0.8436 0.0385
(15,30,60) 2 0.8495 0.0427 0.8584 0.0386 0.8459 0.0426
(20,40,60) 0.8486 0.0395 0.8545 0.0388 0.8460 0.039
(25,50,60) 0.8464 0.0403 0.8485 0.0371 0.8365 0.0385
(15,30,60) 3 0.8444 0.0389 0.8509 0.0378 0.8392 0.0381
(20,40,60) 0.8472 0.0407 0.8522 0.0364 0.8444 0.0367
(25,50,60) 0.8467 0.0362 0.8484 0.0324 0.8436 0.0354
From Equation (32), the conditional posterior density D
function of « givenr* (| A, y) can be obtained as follows: { (¢=1) Zl:ln[l//()’i ; /\)]} X exp
i=
* D" +a,-1 T D
n (rxlx\,z> xa exp {(a 1) izl:ln[ll/()’i»l)]} {R: In [ - [w(T: A))%] + ZIRI* In[l- [‘//(J’ii)‘)}a}}
D* =
X exp {R; In [1-[y(T3 1))+ Y R In [1-[y(y, ;A)m}. (35)

Similarly, the conditional posterior density function of A

given 7" (a| A, y) can be obtained as follows:

(34)

-
m ()L | 06,2) oc A2 exp (=Ab,) exp (—A Z%‘) exp
in1

Furthermore, the conditional posterior distributions of «

and A in Equations (34) and (35) cannot be reduced analyt-
ically to well-known distributions; therefore, they cannot be
sampled directly using usual methods, but their plots show
that they are similar to normal distributions. We employ
the MH technique within the Gibbs sampling scheme with
normal proposal distribution to generate random numbers
from these distributions. Now, we propose the following
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TaBLE 4: The mean and MSE values of the ML and Bayesian estimates of H(t = 0.6).
ML Prior 1 peyesan Prior 2

(k,m, n) T Scheme Mean MSE Mean MSE Mean MSE
(15,30,60) 0.50 1 0.4572 0.1080 0.4260 0.0997 0.4371 0.1041
(20,40,60) 0.4748 0.0817 0.4482 0.0806 0.4623 0.0816
(25,50,60) 0.4541 0.0759 0.4383 0.0700 0.4461 0.0712
(15,30,60) 2 0.4637 0.0962 0.4319 0.0876 0.4392 0.0896
(20,40,60) 0.4734 0.0937 0.4486 0.0851 0.4586 0.0928
(25,50,60) 0.4718 0.0746 0.4548 0.0704 0.4615 0.0714
(15,30,60) 3 0.4689 0.0836 0.4346 0.079 0.4426 0.08
(20,40,60) 0.4595 0.0797 0.4431 0.0764 0.4433 0.0776
(25,50,60) 0.4581 0.0815 0.4422 0.0731 0.4523 0.0786
(15,30,60) 1.00 1 0.4627 0.0912 0.4347 0.0819 0.4460 0.0854
(20,40,60) 0.4758 0.0762 0.4552 0.0736 0.4690 0.0737
(25,50,60) 0.4577 0.0792 0.4459 0.0765 0.4545 0.0767
(15,30,60) 2 0.4888 0.1140 0.4574 0.1006 0.4669 0.1130
(20,40,60) 0.4607 0.0716 0.4428 0.0693 0.4496 0.0696
(25,50,60) 0.4763 0.0915 0.4609 0.0829 0.4686 0.0867
(15,30,60) 3 0.4860 0.1051 0.4564 0.099 0.4676 0.1005
(20,40,60) 0.4802 0.0858 0.4583 0.0814 0.4681 0.0856
(25,50,60) 0.4618 0.0876 0.4478 0.0831 0.4587 0.0858
(15,30,60) 1.50 1 0.4911 0.1216 0.4592 0.1104 0.4689 0.1122
(20,40,60) 0.4888 0.0967 0.4723 0.0835 0.4791 0.0943
(25,50,60) 0.4651 0.0812 0.4425 0.0765 0.4531 0.0776
(15,30,60) 2 0.4640 0.0990 0.4306 0.0892 0.4396 0.0921
(20,40,60) 0.4737 0.0854 0.4554 0.0745 0.4611 0.0811
(25,50,60) 0.4801 0.0881 0.4635 0.084 0.4816 0.088
(15,30,60) 3 0.4879 0.1015 0.4555 0.0896 0.4642 0.0938
(20,40,60) 0.4713 0.0926 0.4466 0.0811 0.4581 0.0877
(25,50,60) 0.4720 0.0807 0.4576 0.0787 0.4651 0.0796

scheme for generating and deriving the posterior density
functions, as well as the Bayesian estimates and credible
intervals.

o~

(1) Step 1: Start with (a, A) as (0, Ag) = (A ppp, App)
(2) Step 2: For i=1,2,--+, N, repeat the following steps

(i) Set (@A) = (a1, Aiy)
(i) Generate a; from 7" (a| A, y) given in Equation
(33) with the N(«a;_,, V(@)) proposal distribution
(iii) Generate A; from 7*(A|a,y) given in Equation

~

(35) with the N(A,_;, V(1)) proposal distribution

(iv) Calculate the probabilities p, = min {1, 7* (a'*) |
A y)imt (| A y)}

(v) Calculate the probabilities p, =min {1, 7" (/\(*) |
(X(*),Z)/T[*(A le,y)}

(vi) Set a; = a*) with probability p,; otherwise, set a; = «

(vii) Set A, = A" with probability p,; otherwise, set A,

=2

(viii) Set i=i+1

Finally, some initial observations of size B, say, are elim-

inated as burn-in observations from a total N generated
observations of &« and A, and the remaining N-B
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TaBLE 5: The values of AL and corresponding CP of 95% confidence interval for the ML and Bayesian estimates of .
Bayesian
ML Prior 1 Prior 2

(k, m, n) T Scheme AL Cp AL CP AL CP

(15,30,60) 0.50 1 2.1503 0.76 1.2485 0.94 1.2997 0.80
(20,40,60) 1.9408 0.68 1.1051 0.98 1.2134 0.70
(25,50,60) 1.7922 0.72 1.0989 0.98 1.1467 0.72
(15,30,60) 2 2.2102 0.72 1.2233 0.96 1.3401 0.74
(20,40,60) 2.0227 0.58 1.1614 0.98 1.1647 0.76
(25,50,60) 1.6797 0.70 1.0447 0.94 1.1023 0.74
(15,30,60) 3 2.1558 0.72 1.2466 0.94 1.3393 0.78
(20,40,60) 2.0401 0.52 1.1221 0.98 1.2342 0.76
(25,50,60) 1.7730 0.78 1.0967 0.98 1.1048 0.78
(15,30,60) 1.00 1 2.0843 0.76 1.2637 0.92 1.2885 0.82
(20,40,60) 1.9442 0.70 1.1219 0.98 1.1801 0.76
(25,50,60) 1.6910 0.62 1.0046 0.94 1.1009 0.84
(15,30,60) 2 2.2203 0.72 1.2274 0.94 1.3734 0.78
(20,40,60) 1.9287 0.64 1.1161 0.96 1.1525 0.78
(25,50,60) 1.6562 0.70 1.0283 0.96 1.0504 0.74
(15,30,60) 3 2.0034 0.68 1.1686 0.84 1.2709 0.68
(20,40,60) 1.8992 0.74 1.1026 0.98 1.1746 0.76
(25,50,60) 1.8219 0.76 1.0909 0.98 1.1381 0.78
(15,30,60) 1.50 1 2.0136 0.74 1.2214 0.94 1.2681 0.84
(20,40,60) 1.8781 0.80 1.1119 0.98 1.1437 0.84
(25,50,60) 1.5959 0.76 1.0456 0.98 1.1086 0.80
(15,30,60) 2 2.1374 0.72 1.2379 0.94 1.4195 0.78
(20,40,60) 1.9462 0.60 1.1432 0.96 1.2650 0.84
(25,50,60) 1.7937 0.60 1.0337 0.94 1.0520 0.80
(15,30,60) 3 2.1235 0.80 1.2394 0.98 1.3376 0.82
(20,40,60) 1.8577 0.74 1.1798 0.96 1.2803 0.82
(25,50,60) 1.7161 0.78 1.0369 0.92 1.0517 0.80

observations can be used to compute Bayesian estimates.
The required Bayesian estimates of & under SELF are com-
puted as follows:

1 N-B

Xpo= —— ;.
BS Z i
N Bi:B+1

(36)

The Bayesian estimate of A under SELF is given by the
following:

1 NEB
aBs = 5 /\r (37)
N-B i=B+1

Substituting «; and A, into Equations (5) and (6) to com-
pute S;(¢t) and H,(t), for i=1,2,---, N, then the Bayesian

estimates of S(¢t) and H(¢) under SELF are computed,
respectively, as follows:

S/(t\)BS = ﬁi S(i),» (38)
H() = 55 3 Hi0) (39)

This algorithm is also useful in computing credible inter-
vals of unknown parameters. (1 —v) 100% symmetric cred-
ible intervals of «, A, S(¢), and H(t) become, respectively,
the following:

(“[<N—B><w2>l> “[(N—B)(l—v/2>]> ’ (40)
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TaBLE 6: The values of AL and corresponding CP of 95% confidence interval for the ML and Bayesian estimates of A.
ML Prior 1 peyesan Prior 2

(k, m, n) T Scheme AL Cp AL cp AL cp
(15,30,60) 0.50 1 1.1877 0.80 0.9999 0.94 1.0630 0.80
(20,40,60) 0.8905 0.78 0.7766 0.92 0.8624 0.80
(25,50,60) 0.7586 0.86 0.6683 0.94 0.7108 0.90
(15,30,60) 2 1.0973 0.80 0.9808 0.90 1.0367 0.82
(20,40,60) 0.8656 0.78 0.7879 0.90 0.7986 0.82
(25,50,60) 0.7867 0.84 0.7146 0.98 0.7386 0.86
(15,30,60) 3 1.1479 0.80 0.9962 0.92 1.0916 0.84
(20,40,60) 0.8799 0.68 0.7172 0.90 0.8368 0.82
(25,50,60) 0.7619 0.86 0.6503 0.96 0.7224 0.90
(15,30,60) 1.00 1 1.0249 0.78 0.9354 0.88 0.9515 0.82
(20,40,60) 0.8063 0.82 0.6968 0.94 0.7178 0.90
(25,50,60) 0.7685 0.86 0.6999 0.96 0.7023 0.88
(15,30,60) 2 0.9557 0.82 0.8299 0.84 0.8840 0.82
(20,40,60) 0.8473 0.80 0.7411 0.92 0.7796 0.86
(25,50,60) 0.7643 0.80 0.6494 0.94 0.7267 0.84
(15,30,60) 3 1.1049 0.78 0.9263 0.94 0.9610 0.80
(20,40,60) 0.8415 0.76 0.7543 0.92 0.7598 0.88
(25,50,60) 0.7207 0.84 0.6597 0.94 0.6705 0.92
(15,30,60) 1.50 1 1.0246 0.76 0.9332 0.92 0.9386 0.86
(20,40,60) 0.8087 0.86 0.7325 0.90 0.7539 0.90
(25,50,60) 0.7768 0.88 0.6986 1.00 0.7223 0.92
(15,30,60) 2 1.0356 0.76 0.9870 0.92 1.0260 0.86
(20,40,60) 0.8169 0.84 0.7054 0.96 0.7321 0.88
(25,50,60) 0.7170 0.76 0.6541 0.90 0.6648 0.88
(15,30,60) 3 0.9983 0.82 0.9786 0.90 0.9829 0.88
(20,40,60) 0.8602 0.86 0.8237 0.94 0.8277 0.90
(25,50,60) 0.7469 0.82 0.6584 0.92 0.6835 0.84

(M(N—B)(wz)p A[(N—B)(I—V/Z)])’ (41) () Scheme 1:R, = Ry = 2(n = m)/5.R,, = (n = m)/5.

(i) Scheme 2: Ry =R, =2(n—-m)/5R, = (n—-m)/5.

(S[(H)(m)] (t), s[(N,Bm,y,z)]) (t), (42) (iii) Scheme 1: R, =R,, = 2(n— m)/5,R, = (n — m)/5.
We then generate Type I generalized PHCSs from a GE
(H[(N,B)Wz)} (1), H[(N,B)(l,y/z)]) (1). (43) distribution with @ =2 and A = 1.2. To compute the Bayesian

5. Simulation Study

In this section, to evaluate the performance of the proposed
methods of different estimators of the parameters presented
in the preceding sections, a simulation study is carried out.
Without losing generality, sample of size (n=60) is used
for the simulation study with different sample sizes (k, m,
where m = 2k) and different values of T'and the following
censoring schemes:

estimates and the credible intervals using MCMC algor-
ithm,by using the number of iterations N = 11,000, the ML
estimates for unknown parameters « and A have been used
as initial values for running the MCMC algorithm. The first
values of the generated sequences may be far from reminded
converged sequences, so the first B=1,000 values are
removed here to avoid the effects of the initial values and
the procedure repeated 1000 times. We use the informative
gamma priors for the two distribution’s parameters a, A with
hyper parameters a, =a, =1 and b, =b, =2 (prior 1) and
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TaBLE 7: The values of AL and corresponding CP of 95% confidence interval for the ML and Bayesian estimates of S(¢).
ML Prior 1 pyesian Prior 2
(k, m, n) T Scheme AL Cp AL Cp AL Cp
(15,30,60) 0.50 1 0.1545 0.96 0.1461 0.96 0.1505 0.96
(20,40,60) 0.1502 0.90 0.1474 0.98 0.1486 0.92
(25,50,60) 0.1468 0.88 0.1441 0.96 0.1442 0.92
(15,30,60) 2 0.1498 0.92 0.1454 0.98 0.1487 0.96
(20,40,60) 0.1488 0.90 0.1434 0.98 0.1457 0.94
(25,50,60) 0.1503 0.94 0.1483 0.98 0.1484 0.98
(15,30,60) 3 0.1495 0.94 0.1465 0.96 0.1476 0.94
(20,40,60) 0.1479 0.90 0.1444 0.94 0.1452 0.94
(25,50,60) 0.1479 0.94 0.1445 0.96 0.1448 0.96
(15,30,60) 1.00 1 0.1744 0.98 0.1584 1.00 0.1594 0.98
(20,40,60) 0.1564 0.94 0.1522 0.98 0.1538 0.96
(25,50,60) 0.1522 0.92 0.1494 0.92 0.1499 0.92
(15,30,60) 2 0.1598 0.90 0.1588 0.90 0.1590 0.90
(20,40,60) 0.1543 0.94 0.1521 0.98 0.1526 0.94
(25,50,60) 0.1539 0.88 0.1504 0.98 0.1521 0.94
(15,30,60) 3 0.1586 0.92 0.1563 0.94 0.1572 0.92
(20,40,60) 0.1539 0.90 0.1509 0.94 0.1514 0.92
(25,50,60) 0.1481 0.90 0.1453 0.92 0.1459 0.92
(15,30,60) 1.50 1 0.1646 0.88 0.1614 0.92 0.1627 0.90
(20,40,60) 0.1589 0.94 0.1561 0.98 0.1564 0.96
(25,50,60) 0.1520 0.90 0.1491 0.94 0.1517 0.94
(15,30,60) 2 0.1602 0.88 0.1520 0.90 0.1577 0.90
(20,40,60) 0.1556 0.94 0.1528 0.96 0.1536 0.94
(25,50,60) 0.1543 0.90 0.1504 0.96 0.1504 0.94
(15,30,60) 3 0.1581 0.94 0.1547 0.96 0.1548 0.96
(20,40,60) 0.1529 0.94 0.1507 0.98 0.1508 0.94
(25,50,60) 0.1504 0.96 0.1487 0.96 0.1490 0.96

noninformative priors with a, =b, =a,=b, =0 (prior 2).
Performance of different point estimates is compared in
terms of their mean squared error (MSE) and estimate bias
(EB) values for a, A, S(¢), and H(t) with t=0.6, as shown
in Tables 1-4, respectively. Also, the average length (AL)
and coverage probability (CP) of the 95% approximate
confidence intervals are displayed in Tables 5-8.

To check the convergence of MCMC samples, we pro-
vide the key diagnostic test and trace plots with posterior
density plots for different parameters and censoring schemes
using the three above schemes at m =40 and T = 1.5 with
prior 1 and prior 2. Figures 1, 2, 3, and 4 show the trace plot
iterations for posterior densities of «, A, S(t), and h(t),
respectively. All censoring schemes are plotted in the same
way, and it has been found that the trace plots of all censor-
ing schemes converge very well.

From Tables 1-4, as expected, we observe that the Bayes-
ian estimates computed under informative prior have
smaller MSEs than the Bayesian estimates computed under
noninformative prior and ML estimates. Moreover, in most
cases, the MSEs are decreases with increasing sample size
(m, k) with the same time T. Also, for the same sample sizes,
the MSEs are decreases with increasing the time 7. Further-
more, in most cases, under the scheme 1, MSEs are smaller
than corresponding with scheme 2 and scheme 3.

From Tables 5-8 may be observed that the AL of Bayes-
ian intervals with informative priors is shorter than the
corresponding length of Bayesian intervals with noninfor-
mative priors; this is to be expected. As a result, if prior
information is available, it should be used. Finally, there
are no significance differences between the AL of ML inter-
vals and the corresponding AL of Bayesian intervals with
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TaBLE 8: The values of AL and corresponding CP of 95% confidence interval for the ML and Bayesian estimates of H(t).

ML Prior 1 payesian Prior 2
(k,m, n) T Scheme AL CP AL CP AL CP
(15,30,60) 0.50 1 0.3453 0.82 0.1572 0.94 0.1874 0.84
(20,40,60) 0.3277 0.92 0.3224 0.96 0.3230 0.92
(25,50,60) 0.3063 0.94 0.2999 0.96 0.3005 0.94
(15,30,60) 2 0.3553 0.86 0.3505 0.94 0.3516 0.88
(20,40,60) 0.3294 0.86 0.3245 0.94 0.3251 0.92
(25,50,60) 0.3095 0.96 0.3037 0.98 0.3050 0.98
(15,30,60) 3 0.3550 0.88 0.3532 0.94 0.3540 0.94
(20,40,60) 0.3220 0.92 0.3146 0.98 0.3175 0.98
(25,50,60) 0.3077 0.94 0.3019 0.96 0.3025 0.94
(15,30,60) 1.00 1 0.3623 0.96 0.1638 0.98 0.1866 0.96
(20,40,60) 0.3387 0.96 0.1830 0.96 0.2018 0.96
(25,50,60) 0.3087 0.92 0.1805 0.98 0.1903 0.96
(15,30,60) 2 0.3868 0.90 0.3844 0.92 0.3864 0.92
(20,40,60) 0.3352 0.94 0.3291 0.98 0.3298 0.98
(25,50,60) 0.3195 0.88 0.3144 0.94 0.3162 0.92
(15,30,60) 3 0.3856 0.90 0.3720 0.92 0.3744 0.92
(20,40,60) 0.3389 0.98 0.3325 1.00 0.3333 1.00
(25,50,60) 0.3178 0.92 0.3118 0.96 0.3124 0.96
(15,30,60) 1.50 1 0.3788 0.86 0.1878 0.94 0.2167 0.90
(20,40,60) 0.3433 0.92 0.2023 0.94 0.2162 0.94
(25,50,60) 0.3087 0.92 0.1776 0.94 0.1972 0.94
(15,30,60) 2 0.3660 0.88 0.3587 0.94 0.3638 0.94
(20,40,60) 0.3430 0.96 0.3364 0.98 0.3382 0.96
(25,50,60) 0.3269 0.94 0.3207 0.96 0.3209 0.94
(15,30,60) 3 0.3790 0.98 0.3710 1.00 0.3765 0.98
(20,40,60) 0.3337 0.94 0.3280 1.00 0.3283 0.94
(25,50,60) 0.3174 0.96 0.3116 0.98 0.3121 0.96
is Prior 1 i, Prior 2
2 o
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FiGure 1: Trace plots of 11,000 iterations of a.
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FIGURE 2: Trace plots of 11,000 iterations of A.
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FIGURE 3: Trace plots of 11,000 iterations of S(¢ = 0.6).
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FIGURE 4: Trace plots of 11,000 iterations of S(¢ = 0.6).
TaBLE 9: The different Type I generalized HPCS from the real data.
T =50
D* =9
Scheme 1 TF = X = 54.12
x = (17.88,28.92,33.00,42.12,45.60,48.80,51.84,51.96,54.12)
R*=(2,0,0,0,0,0,0,0,12), R =0
T =280
D*=12
Scheme 2 T°=T
x =(17.88,28.92,33.00,42.12,45.60,48.80,51.84,51.96,54.12,55.56,67.80,68.88)
R*=(2,0,0,0,0,0,0,0,3,0,0,0),R; =6
T=110
D* =15
Scheme 3 T =x,, =105.84

x = (17.88,28.92,33.00,42.12,45.60,48.80,51.84,51.96,54.12,55.56,67.80,68.88,98.64,105.12,105.84)
R*=(2,0,0,0,0,0,0,0,3,0,0,0,0,0,3),R: =0
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TasLE 10: The point and 95% confidence interval estimates for the ML and Bayesian estimates of a, A, S(t =50), and H(t = 50).

Asymp. CI

Bayesian

Prior 1

Prior 2

2.3051,8.0601
2.1934,8.4708
2.1882,8.4909
0.0143,0.0459
0.0139,0.0434

0.5800,1.0722
0.5758,1.0736
0.0095,0.0224
0.0095,0.0224

2.6509,6.4481
2.5224,6.7767
2.5164,6.7927
0.0152,0.0436
0.0147,0.0412
0.0128,0.0402

0.6380,1.0186
0.6333,1.0200
0.0105,0.0206
0.0107,0.0208

2.4204,7.6571
2.3030,8.0473
2.2976,8.0664
0.0146,0.0450
0.0142,0.0425
0.0123,0.0415

0.6148,1.0079
0.6103,1.0092
0.0106,0.0215
0.0108,0.0213

Parameter Scheme ML Prior IB ayesmnprior )
Sch. 1 4.6436 3.9703 43239
o Sch. 2 4.4185 3.9936 4.0892
Sch. 3 4.4080 3.8862 3.9674
Sch. 1 0.0295 0.0282 0.0288
A Sch. 2 0.0290 0.0278 0.0284
Sch. 3 0.0283 0.0271 0.0277
Sch. 1 0.7015 0.6706 0.6886
S(t=50) Sch. 2 0.6924 0.6817 0.6773
Sch. 3 0.7065 0.6870 0.6813
Sch. 1 0.0173 0.0178 0.0175
H(t=50) Sch. 2 0.0174 0.0172 0.0176
Sch. 3 0.0166 0.0167 0.0172

)
)
)
)
)
0.0121,0.0423)
)
)
)
)
)
)

( ( ) ( )
( ( ) ( )
( ( ) ( )
( ( ) ( )
( ( ) ( )
( ( ) ( )
(0.5772,1.0732 (0.6350,1.0195) (0.6119,1.0088)
( ( ) ( )
( ( ) ( )
( ( ) ( )
( ( ) ( )
( ( ) ( )

0.0096,0.0222 0.0103,0.0200 0.0100,0.0211

noninformative priors. Hence, we can say that performance
of the maximum likelihood method is worse than the Bayes-
ian method based on informative priors.

6. Real Data Analysis

In this section, we perform the following data analysis for
illustrative purpose. The data set is from Lawless [24]. The
data given here arose in tests on endurance of deep groove
ball bearings. The data are the numbers of million revolu-
tions before failure for each of the 23 ball bearings in the life
test. It has been analyzed by several authors. It has been used
earlier by Gupta and Kundu [14] that the two-parameter GE
distribution can be used quite effectively to analyze this data
set. Also, the Kolmogorov-Smirnov goodness-of-fit test with
a total sample size of 23 was conducted for the GE distribu-
tion. The test statistics D = 0.105825 and the corresponding
p value of 0.93511 were obtained. As a result, the data can
be considered fit to the GE distribution. We have created
three Type I generalized PHCS from this uncensored data
set, by fixed m =15, k=9, and R= (2,07, 3,00, 3), and in
different values of T, we have the censoring schemes as given
in Table 9. The point and the 95% confidence interval esti-
mates of the parameters o, A, S(t = 50), and h(t =50) using
the ML and informative and noninformative priors are pre-
sented in Table 10.

7. Conclusions and Discussion

In this paper, using the Type I progressive hybrid censored
data from generalized exponential distribution, we construct
the maximum likelihood and Bayesian estimators for the
distribution’s parameters, and the maximum likelihood
and Bayesian estimators of the reliability and hazard
functions are computed. Using the delta technique, we
determined the approximate confidence intervals of the reli-
ability and hazard functions, as well as the approximate con-
fidence intervals of the distribution’s unknown parameters.

Finally, we used the Markov chain Monte Carlo approach
to perform a Bayesian estimate procedure and determine
credible intervals. The results showed that the Bayesian esti-
mation is more reliable than the ML estimation.

Data Availability

The data used to support the findings of this study are
included within the article.
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