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Abstract: Hexagonal M2C3 compound is a new predicted functional material with desirable band gaps,
a large optical absorption coefficient, and ultrahigh carrier mobility, implying its potential applications
in photoelectricity and thermoelectric (TE) devices. Based on density-functional theory and Boltzmann
transport equation, we systematically research the TE properties of M2C3. Results indicate that
the Bi2C3 possesses low phonon group velocity (~2.07 km/s), low optical modes (~2.12 THz), large
Grüneisen parameters (~4.46), and short phonon relaxation time. Based on these intrinsic properties,
heat transport ability will be immensely restrained and therefore lead to a low thermal conductivity
(~4.31 W/mK) for the Bi2C3 at 300 K. A twofold degeneracy is observed at conduction bands along
Γ-M direction, which gives a high n-type electrical conductivity. Its low thermal conductivity and
high Seebeck coefficient lead to an excellent TE response. The maximum thermoelectric figure of
merit (ZT) of n-type can approach 1.41 for Bi2C3. This work shows a perspective for applications of
TE and stimulate further experimental synthesis.
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1. Introduction

Thermoelectric (TE) technology can directly convert heat energy into electrical power, playing an
important role in solving current energy and environmental crises [1–3]. However, low conversion
efficiency and high cost are currently facing two crucial bottlenecks [4]. Generally, the conversion
efficiency of a TE material is evaluated in terms of a dimensionless thermoelectric figure of merit
(ZT) [5–7],

ZT =
S2σT
κ

(1)

where S, σ, and T are the Seebeck coefficient, electrical conductivity, and absolute temperature. κ is the
thermal conductivity, which is composed of the lattice thermal conductivity κl and electronic thermal
conductivity κe. However, optimizing one parameter without affecting another is difficult due to
the complex competition [8]. The common measures to enhance TE performance mainly concentrate
on regulating electrical transport coefficients by band-structure engineering [9] and/or suppressing
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the heat conductivity ability through nanostructuring [10]. These methods are benefits to simplify
conflicting parameters, and further enhance the TE performance.

Since exfoliating graphene from graphite by the mechanical cleavage method in 2004 [11],
researching two-dimensional (2D) functional materials has recently drawn much attention in materials
science [12–17]. Unfortunately, graphene is unsuitable for TE materials because of its small band
gap and ultrahigh κl [18]. The most common pristine TE materials are IV–VI (PbTe [19], Bi2Te3 [20],
PbSe [21],) compounds, all of which possess a fairly low thermal conductivity. Generally, these TE
materials contain heavy atoms with a relatively narrow band gap, because heavy atoms give rise to low
lattice vibrational frequency that results in a low κl [22]. For example, SnSe has been found to show
high TE performance (ZT~2.6 at 300 K) and inherently low thermal conductivity (~0.25 W/mK) [23].
The intrinsic thermal transport property in SnSe mainly attributes to its strong anharmonic effect [24].
With the extraordinary electrical transport properties, the SnSe really surprises the field of science as a
hopeful TE material. Therefore, we should research the TE properties of new functional materials.

Very recently, a new IV–VI compounds, M2C3 (M = As, Sb, and Bi), which could be synthesized
by appropriate substrates, has been successfully predicted [25]. It is reported that the As2C3 has an
ultrahigh electron mobility of 4.45 × 105 cm2V−1s−1, which is significantly higher than that of the MoS2

(~200 cm2V−1s−1) [26]. Meanwhile, compared with the other 2D materials, such as phosphorus [27],
boron nitride [28], and silicene [29], it exhibits desirable band edge locations and a large optical
absorption coefficient. These outstanding properties suggest M2C3 monolayers could be hopeful
functional materials for next-generation high-performance devices. In this work, we systematically
study the TE properties of the M2C3 monolayers by using Boltzmann transport theory. The κl is
computed by utilizing the self-consistent iterative approach. Results indicate that the intrinsic low κl is
20.82, 9.35, and 4.31 W/mK for As2C3, Sb2C3, and Bi2C3 at room temperature, respectively. Detailed
discussions of phonon scattering curves, phonon velocities, phonon relaxation time, and Grüneisen
parameters are exhibited to explain its low κl. A high Seebeck coefficient can be observed in electrical
transport. The maximum ZT can approach 0.93, 1.17, and 1.41 for the As2C3, Sb2C3, and Bi2C3 at
700 K, respectively. Calculated results shed light on the idea that the M2C3 is a hopeful candidate for
TE applications.

2. Methods

In this paper, the M2C3 is calculated by utilizing the Vienna ab initio simulation package
(VASP) [30] within the framework of the Perdew–Burke–Ernzerhof (PBE) [31] generalized gradient
approximation [32]. A 9 × 9 × 1 k-mesh and kinetic energy cutoff of 500 eV were used for structure
optimization in the Brillouin zone (BZ). A vacuum layer of 20 Å thickness along the z direction was
employed to eliminate interlayer interactions. All crystal structures were fully optimized until the
total energy variation was less than 10−6 eV/Å, and the residual forces atoms were less than 0.01 eV/Å.
In order to accurately evaluate electronic structure, the Heyd–Scuseria–Ernzerhof (HES06) hybrid
density functional was adopted [33]. The electrical transport properties were obtained by semiclassical
Boltzmann transport theory as implemented in the BoltzTraP code [34]. This method has successfully
predicted many TE materials [35,36]. A dense 45 × 45 × 1 k-mesh was used in the BZ.

Using the ShengBTE code [37], the phonon transport properties were calculated from the Boltzmann
transport equation, in which the harmonic second-order interaction force constants (2nd IFCs) and
the anharmonic third-order IFCs (3rd IFCs) were used as input. The phonon dispersions and 2nd
IFCs were calculated by utilizing PHONONPY packages [38]. A 2 × 2 × 1 supercell with 3 × 3 × 1
k-mesh was used. The anharmonic 3rd IFCs were obtained by using the 2 × 2 × 1 supercell with the
finite-difference method [39]. The interactions including the sixth-nearest-neighbor atoms were taken
into account for the 3rd IFCs. Based on the test of k-mesh, a dense 35 × 35 × 1 k-mesh was used to
calculate kl.
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3. Results and Analysis

3.1. Atomic and Electronic Structures

As illustrated in Figure 1a,b the monolayer M2C3 is a hexagonal crystal system with high space
group P6/mmm (No. 191). The optimized lattice constant is 5.86, 6.39, and 6.70 Å for As2C3, Sb2C3,
and Bi2C3, which is excellently consistent with a previous theoretical prediction [25]. There are four
M (M = As, Sb, and Bi) atoms and six C atoms in the primitive cell. Interestingly, it looks like an
enlarging of arsenene [40] with the insertion into a 2D mesh of C atoms from a top view. From the
side, the monolayer M2C3 possesses puckered configuration. As shown in Table 1, the interatomic
distance of M-C shows a lengthening trend, resulting in the enhancement of atomic vibration frequency.
More details are summarized in Table 1.
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Figure 1. Top (a) and side (b) view for monolayer M2C3. The band structures and corresponding
projected density of states (PDOS) for (c) As2C3, (d) Sb2C3, and (e) Bi2C3.

Table 1. The lattice constants (la), bond lengths of C-C (lC-C), bond lengths of M-C (lM-C), and band
gaps based on Perdew–Burke–Ernzerhof (PBE) and HES06.

Type la (Å) lC-C (Å) lM-C (Å) PBE (eV) HES06 (eV)

As2C3 5.86 1.33 2.00 1.42 2.27
Sb2C3 6.39 1.33 2.20 0.92 1.53
Bi2C3 6.70 1.33 2.31 0.81 1.28

The band structures and corresponding projected density of states (PDOS) of monolayer M2C3

are shown in Figure 1. Obviously, As2C3 and Sb2C3 are indirect band gap semiconductors with the
valence band maximum (VBM) and the conduction band minimum (CBM) located at the Γ and K
points, respectively. Monolayer Bi2C3 exhibits a direct band gap of 0.81 eV, which is smaller than that
of As2C3 (1.42 eV) and Sb2C3 (0.92 eV). Near the Fermi level, one can see that the bands primarily
stem from the M-p orbitals. Interestingly, the two lowest conduction bands (CB) display overlap along
Γ-M direction. A twofold degeneracy is observed in Sb2C3 and Bi2C3, which gives rise to a high
n-type electrical conductivity. The PDOS fully shows that the valence band (VB) and CB are mainly
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occupied by the p orbitals. Remaining orbitals almost have no contribution around the Fermi level.
Meanwhile, we also find that it exhibits stair-like PDOS, which can increase the Seebeck coefficient [41].
Therefore, an intrinsic CB degeneracy and a stair-like PDOS are obtained in monolayer M2C3, which
are considered to be the electronic transport characteristics of high performance TE devices [42].

3.2. Electrical Transport Properties

The S, σ, and κe are indispensable for analyzing the TE performance of monolayer M2C3.
The electrical transport properties are obtained by solving semiclassic Boltzmann transport
equation [33,43] combing with a constant relaxation time approximation. Here, we further imitate the
doping effects of electronic transport by using the rigid band approximation. Based on these methods,
the shape of electronic band structure is assumed to be invariant under light doping, and only moves
up or down at the Fermi level for n- and p-type doping, respectively [44,45]. The negative and positive
µ equate to n- and p-type, respectively. Based on Boltzmann transport equation, the electrical transport
coefficients as functions of chemical potential µ and temperature can be derived [33],

σαβ(T,µ) =
1
V

∫ ∑
αβ

(ε)

[
−
∂ fµ(T, ε)

∂ε

]
dε (2)

Sαβ(T,µ) =
1

eTVσαβ(T,µ)

∫ ∑
αβ

(ε)(ε− µ)

[
−
∂ fµ(T, ε)

∂ε

]
dε (3)

where αβ and V are Cartesian index and the volume of the primitive cell, and the electrical transport
distribution function

∑
αβ(ε) is given by

∑
αβ

(ε) =
e2

N0

∑
i,q

τυα(i, q)υβ(i, q)
δ
(
ε− εi,q

)
dε

(4)

where N0, i, τ, and ν are the sum of q points, the band index, the electron relaxation time, and the
electron group velocity.

Figure 2a–c shows the Seebeck coefficients for monolayer M2C3. Obviously, the temperature-
dependent decreasing behavior of the Seebeck coefficients is slowing down along with increasing the
temperature. Surprisingly, the monolayer As2C3 has a very high Seebeck coefficient of 2.27 mV/K,
which is visibly higher than that of Sb2C3 (1.37 mV/K) and Bi2C3 (1.31 mV/K) at room temperature.
Compared with some high-performance TE materials (PbTe [19], SnSe [23], Bi2O2Se [46]), the monolayer
M2C3 exhibits an ultrahigh Seebeck coefficient. These high Seebeck coefficients mainly originate from
energy-dependent PDOS as shown in Figure 1. For a doped semiconductor, the Seebeck coefficient can
be given by [47],

S =
π2k2

BT

3e

{
1
n

dn(ε)
dε

+
1
µ

dµ(ε)
dε

}
ε=µ

(5)

where kB is the Boltzmann constant. Equation (5) implies that the stair-like PDOS contains several
sharp peaks, which can enhance carrier concentration n (ε) and give a high Seebeck coefficient.

The electrical conductivity with respect to scattering time σ/τ is presented in Figure 2d–f. Unlike
the Seebeck coefficient, the maximum σ/τ for As2C3 is lower than that of Sb2C3 and Bi2C3. Meanwhile,
it is found that no matter what kind of materials, the σ/τ of n-type is always higher than that of the
p-type, which is mainly attributed to the PDOS. We can see clearly that the slope of σ/τwill be flattened
in low µ region (−0.5–0.5 eV) with the temperature increasing. The κe with respect to the relaxation
time is shown in Figure 2g–i via the Wiedemann–Franz law [48]

κe = LσT (6)
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where L = π2κB
2/3e2 is the Lorenz number. Similar to the σ/τ, the κe/τ displays analogous curves.

The κe/τ gradually increases along with varying the absolute value of the µ from the Fermi energy
level (µ = 0). These transport coefficients indicate that the monolayer M2C3 has a good performance of
electronic transport ability with n-type.

Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 11 

temperature increasing. The κe with respect to the relaxation time is shown in Figure 2g–i via 
the Wiedemann–Franz law [48] 𝜅 = 𝐿𝜎𝑇 (6)

where L = π2κB2/3e2 is the Lorenz number. Similar to the σ/τ, the κe/τ displays analogous 
curves. The κe/τ gradually increases along with varying the absolute value of the μ from the 
Fermi energy level (μ = 0). These transport coefficients indicate that the monolayer M2C3 has a 
good performance of electronic transport ability with n-type. 

 
Figure 2. (a–c) Seebeck coefficients, (d–f) electrical conductivity, and (g–i) electronic thermal 
conductivity with respect to the scattering time at different temperatures. 

3.3. Phonon Transport Properties 

The phonon scattering curves of monolayer M2C3 is shown in Figure 3. No imaginary phonon 
frequencies appear in the phonon spectra, which indicates that the monolayer M2C3 is 
thermodynamically stable at ambient pressure. The acoustic branches of M2C3 exhibit a common 
phenomenon in 2D systems with a parabolic dispersion of out-of-plane acoustic mode and two 
linear dispersions of in-plane modes at the Γ point [49]. As shown in Figure 3, one can see that the 
M atoms dominate the low frequency region (below~10 THz), while the remaining area is from the 
C atomic contributions. Meanwhile, we also find that the acoustic modes for As2C3, Sb2C3, and 
Bi2C3 exhibit a downward moving trend, which can be attributed to the larger of atomic mass. It is 
noted that the low frequency optical modes are alternating and softening with the three acoustic 
branches for the monolayer M2C3, resulting in strong acoustic–optical interactions. This is similar to 
the PbSe [50], which has strong anharmonic effects. The boundary frequency of lowest optical 
branch displays a decreasing trend with the following order: As2C3 (4.18 THz) > Sb2C3 (3.08 THz) 
> Bi2C3 (2.12 THz). To further analyze phonon scattering properties, the corresponding phonon 
density of states (PhDOS) is presented. From the PhDOS, we can see clearly that the acoustic 
phonon branches mainly contain the M vibrations, while the contributions from C (xy) 
vibrations are mainly limited to 10 to 25 THz. The high frequency region from 45 to 50 THz 
is fully occupied by C (z) vibrations. In addition, the PhDOS also shows several peaks 

Figure 2. (a–c) Seebeck coefficients, (d–f) electrical conductivity, and (g–i) electronic thermal
conductivity with respect to the scattering time at different temperatures.

3.3. Phonon Transport Properties

The phonon scattering curves of monolayer M2C3 is shown in Figure 3. No imaginary phonon
frequencies appear in the phonon spectra, which indicates that the monolayer M2C3 is thermodynamically
stable at ambient pressure. The acoustic branches of M2C3 exhibit a common phenomenon in 2D
systems with a parabolic dispersion of out-of-plane acoustic mode and two linear dispersions of
in-plane modes at the Γ point [49]. As shown in Figure 3, one can see that the M atoms dominate the
low frequency region (below~10 THz), while the remaining area is from the C atomic contributions.
Meanwhile, we also find that the acoustic modes for As2C3, Sb2C3, and Bi2C3 exhibit a downward
moving trend, which can be attributed to the larger of atomic mass. It is noted that the low frequency
optical modes are alternating and softening with the three acoustic branches for the monolayer M2C3,
resulting in strong acoustic–optical interactions. This is similar to the PbSe [50], which has strong
anharmonic effects. The boundary frequency of lowest optical branch displays a decreasing trend
with the following order: As2C3 (4.18 THz) > Sb2C3 (3.08 THz) > Bi2C3 (2.12 THz). To further analyze
phonon scattering properties, the corresponding phonon density of states (PhDOS) is presented.
From the PhDOS, we can see clearly that the acoustic phonon branches mainly contain the M vibrations,
while the contributions from C (xy) vibrations are mainly limited to 10 to 25 THz. The high frequency
region from 45 to 50 THz is fully occupied by C (z) vibrations. In addition, the PhDOS also shows several
peaks especially in optical branches region, which can give rise to the small phonon group velocity.
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Based upon the phonon kinetic theory, the κl can be calculated as below:

κl,αβ =
∑
qλ

CV(qλ) να(qλ) νβ(qλ)τqλ (7)

where CV, να is the phonon specific heat and the phonon group velocity along α direction, and τqλ is
the phonon relaxation time for the phonon mode λ at the wave vector q. The κl of monolayer M2C3,
at temperatures from 300 K to 800 K, are plotted in Figure 4a. Obviously, the intrinsic κl shows evident
temperature dependence, proportional to the inverse of the temperature 1/T. In the high temperature,
this dependence behavior is deemed to a common phenomenon of crystals, which attribute to the
intrinsic enhancement of phonon–phonon scattering. At room temperature, we can see clearly that the
Bi2C3 exhibits an intrinsic low κl of 4.31 W/mK, which is lower than those of the Sb2C3 (9.53 W/mK)
and As2C3 (20.82 W/mK). In general, the κl is mainly dominated by the acoustical modes for the
monolayer systems [51]. Because the mass of Bi is larger than that of As and Sb, acoustical phonons
have lower frequencies for Bi2C3 than for As2C3 and Sb2C3. These acoustic modes with low frequency
might cause the small phonon group velocities, leading to the low κl.

The phonon group velocities are the important indicator for the assessment of heat transport
ability. Using the phonon dispersion, the phonon group velocities can be obtained by

υλ(q) =
dωλ(q)

dq
(8)

The corresponding group velocities are plotted in Figure 4b. Much large values of the group
velocities can be observed in low frequency region, while the high frequency modes exhibit relatively
small group velocities. Meanwhile, it can be seen clearly that the group velocities from large to small is
monolayer As2C3 > Sb2C3 > Bi2C3, which is consistent with the above analysis. This phenomenon
similar to the GeS and SnS [52], which may attribute to large atomic mass.

To identify the underlying mechanism of low κl, we introduce the Grüneisen parameters and
phonon relaxation time as shown in Figure 4c,d. The Grüneisen parameter can fully reflect the
anharmonic interactions of a crystal, which is essential for analyzing the intrinsic characteristics of κl.
The Grüneisen parameter can be described by

γλ(q) = −
V

ωλ(q)
∂ωλ(q)
∂V

. (9)

It is noted that the large Grüneisen parameters can be observed at a low frequency region. Usually,
large Grüneisen parameters (absolute value) indicate strong anharmonicity, which can give rise to low
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κl. The averages of the acoustic Grüneisen parameters (absolute value) are calculated to be 2.61, 4.25,
and 4.46 for As2C3, Sb2C3, and Bi2C3, respectively. Obviously, the Bi2C3 exhibits larger Grüneisen
parameter than that of As2C3 and Sb2C3, indicating that Bi2C3 possesses stronger anharmonicity.
To further explore the thermal transport properties, we show the phonon relaxation time in Figure 4d.
The phonon relaxation time of Bi2C3 is much shorter than that of the As2C3 and Sb2C3 at 300 K, which
is a significant factor for the low κl of Bi2C3. More phonon transport details are summarized in Table 2.
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Figure 4. (a) Calculated lattice thermal conductivity of M2C3 versus temperature. (b) Phonon
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Table 2. Summary of the lattice thermal conductivity κl (W/mK), the averages of the acoustic group
velocity v (km/s) and Grüneisen parameters γ, and the lowest optical frequency ωo (THz) for the As2C3,
Sb2C3, and Bi2C3, respectively.

Type κl v γ ωo

As2C3 20.82 2.59 2.61 4.18
Sb2C3 9.53 2.15 4.25 3.08
Bi2C3 4.31 2.07 4.46 2.12

3.4. Thermoelectric Figure of Merit

Based on these transport coefficients, we estimate the ZT of M2C3 at three typical temperatures.
The electronic relaxation time τ is employed from a previous report [25] and calculated by deformation
potential theory [53]. The calculated ZT of M2C3 is presented in Figure 5. We can see that the two
peaks move gradually towards the Fermi energy level (µ = 0 eV), which originate from the decrease of
band gap. Unlike the Seebeck coefficient, the ZT value has an enhancing behavior with the increasing
temperature. Meanwhile, we can note that the ZT of n-type is always higher than that of the p-type
for M2C3, which mainly stems from their difference in electrical conductivity. In general, if the ZT
value approach 1, it can be considered as a good TE material [54]. Due to the excellent transport
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performance of electrons, the maximum ZT value can reach 0.93, 1.17, and 1.41 for As2C3, Sb2C3, and
Bi2C3, respectively.
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In summary, we report on the TE properties of monolayer M2C3, through using the first-principles
calculations and solving Boltzmann transport equation. The results indicate the monolayer M2C3
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TE materials, the Bi2C3 exhibits analogous intrinsic properties, such as small group velocity, short
relaxation time, and large Grüneisen parameters. A twofold degeneracy and stair-like PDOS are
observed, which can lead to a high Seebeck coefficient. Finally, combining with available transport
parameters, the ZT is found to be about 0.93, 1.17, and 1.41 for the As2C3, Sb2C3, and Bi2C3 at 700 K,
respectively. This work indicates that the M2C3 is very promising for TE applications.
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