
Research Article
Promoting Osteogenic Differentiation of Human Adipose-Derived
Stem Cells by Altering the Expression of Exosomal miRNA

Shude Yang , Shu Guo , Shuang Tong , and Xu Sun

Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District,
Shenyang, 110002 Liaoning Province, China

Correspondence should be addressed to Shu Guo; guoshu187@139.com

Received 7 March 2019; Revised 7 May 2019; Accepted 23 May 2019; Published 1 July 2019

Guest Editor: Yongcan Huang

Copyright © 2019 Shude Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Human adipose-derived stem cells (ADSCs) can release exosomes; however, their specific functions remain elusive. In this study,
we verified that exosomes derived from osteogenically differentiated ADSCs can promote osteogenic differentiation of ADSCs.
Furthermore, in order to investigate the importance of exosomal microRNAs (miRNAs) in osteogenic differentiation of ADSCs,
we used microarray assays to analyze the expression profiles of exosomal miRNAs derived from undifferentiated as well as
osteogenically differentiated ADSCs; 201 miRNAs were upregulated and 33 miRNAs were downregulated between the two types
of exosomes. Additionally, bioinformatic analyses, which included gene ontology analyses, pathway analysis, and miRNA-
mRNA-network investigations, were performed. The results of these analyses revealed that the differentially expressed exosomal
miRNAs participate in multiple biological processes, such as gene expression, synthesis of biomolecules, cell development,
differentiation, and signal transduction, among others. Moreover, we found that these differentially expressed exosomal miRNAs
connect osteogenic differentiation to processes such as axon guidance, MAPK signaling, and Wnt signaling. To the best of our
knowledge, this is the first study to identify and characterize exosomal miRNAs derived from osteogenically differentiated
ADSCs. This study confirms that alterations in the expression of exosomal miRNAs can promote osteogenic differentiation of
ADSCs, which also provides the foundation for further research on the regulatory functions of exosomal miRNAs in the context
of ADSC osteogenesis.

1. Introduction

Effective reconstruction of craniomaxillofacial bone defects
caused by trauma, tumor resection, or congenital malforma-
tion is a major problem in orthopedic surgery. In most cases,
bones can regenerate and heal themselves [1]. However, this
ability is lost when the area of the bone defect exceeds a crit-
ical size. In clinical practice, autologous and allogenic bone
grafts can be a “gold standard” in bone defect treatment, even
they have certain limitations such as chronic pain, poor
cosmesis, nonunion, and infection [2, 3]. Over the last
decades, mesenchymal stem cells (MSCs) have attracted
extensive attention in the field of bone regeneration [4–7].

MSCs are a population of nonhematopoietic adult stem
cells that have the property of self-renewal and can differen-
tiate into multiple lineages [8–10]. They were initially found
in the bone marrow [11] but can also be found in other tis-

sues, such as adipose, periosteum, muscle, placenta, and tra-
becular bone [12]. Among these, adipose-derived stem cells
(ADSCs) are a type of mesenchymal stem cell isolated from
adipose tissue, which has the advantages of abundant storage
in vivo, easy acquisition, and expansion [13–15]. Recently, a
number of studies have confirmed that ADSCs possess the
ability to differentiate into adipocytes, osteoblasts, and chon-
drocytes [16–18], suggesting that a broader source of stem
cells is available for application in tissue engineering. ADSCs
have already been used in bone regeneration [19, 20].

With the in-depth researches of MSCs, an increasing
number of studies have indicated that the therapeutic effects
of MSCs can be attributed not only to their differentiation
capacity but also to their paracrine action [21]. Most of these
paracrine secretions include soluble factors and exosomes,
which regulate the repair and regeneration processes at sites
of damage by affecting cell proliferation, migration, and
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differentiation [22, 23]. Exosomes are a type of sphere- or
dish-shaped extracellular vesicle whose diameter is between
30 and 150nm. Exosomes are found in abundance in
endosome-derived components, which are considered to
play important roles in intercellular communication due to
their ability to transfer “cargos” [24, 25]. By transporting
“cargos” such as proteins, RNAs, DNAs, and lipids [26], exo-
somes regulate the eventual fate of recipient cells. Recently,
several studies have shown that ADSC-derived exosomes
can exert similar biological effects as ADSCs and enhance
bone regeneration [27, 28].

However, how exosomes function in osteogenic differ-
entiation of ADSCs still needs to be further explored. As
exosome research techniques develop, researchers have dis-
covered that exosomes can induce epigenetic changes and
regulate the fate of receptor cells in the process of promoting
bone tissue repair and regeneration, including promoting
proliferation or inhibiting apoptosis. Proteins and RNAs play
vital roles in such processes [29–31]. MicroRNAs (miRNAs)
are endogenous non-protein-coding RNAs with a length of
approximately 22 nt. They can act as quintessential post-
transcriptional regulators and can regulate the expression
of target genes, mainly through specific binding to the 3′
untranslated regions (UTRs) of target genes [32]. Targeted
binding of miRNAs to mRNAs leads to recruitment of the
targeted mRNAs to the RNA-induced silencing complex
(RISC), which then leads to translation stoppage and degra-
dation of mRNA [32, 33]. Through this process, miRNAs
can inhibit protein expression of targeted mRNAs. In
recent years, an increasing number of studies have demon-
strated that miRNAs play important roles in bone formation
[34, 35]. Additionally, it has been found that exosomes con-
tain miRNAs [36], which can regulate the process of bone
regeneration by targeting multiple genes in recipient cells
[34]. Nevertheless, there is a lack of data regarding the global
expression profiles of miRNAs in exosomes derived from
undifferentiated and osteogenic-differentiated ADSCs.

In this study, we verified that only exosomes derived
from osteogenically differentiated ADSCs can promote oste-
ogenic differentiation of ADSCs. Moreover, we compared the
expression profiles of miRNAs in exosomes derived from
undifferentiated ADSCs with those from osteogenically dif-
ferentiated ADSCs using microarray assays and performed
bioinformatic analyses to further explore the biological func-
tions of these differentially expressed miRNAs, which will lay
the foundation for further study regarding ADSCs’ osteo-
genic regulatory functions of exosomal miRNAs.

2. Material and Methods

The study was approved by the Ethics Committee of the First
Hospital of China Medical University, Shenyang, China.

2.1. Isolation, Culture, and Characterization of ADSCs

2.1.1. Isolation and Culture of ADSCs. Human adipose tissue
was obtained from 6 female patients aged 26 67 ± 5 57 years
undergoing liposuction and without metabolic disease, hepa-
titis, HIV, syphilis, and other systemic diseases, which might

affect the ongoing study at the Department of Plastic Surgery,
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ADSCs were separated and expanded according to the
methods previously reported [37, 38]. In brief, the obtained
adipose tissue was added into 50mL centrifuge tubes and
washed with sterile phosphate-buffered saline (PBS (Gibco,
USA)), then centrifuged at 1200 ×g for 5min to remove red
blood cells (RBCs). The above procedure was repeated 3–4
times before enzymatic digestion with 0.2% collagenase type
I (Sigma, USA) at 37°C. Dulbecco’s Modified Eagle’s Med-
ium/Nutrient F-12 Ham (DME F12 (HyClone, USA)), con-
taining 10% fetal bovine serum (FBS (Gibco, USA)), was
added to the digested lipoaspirates for 5min in order to neu-
tralize enzyme activity; this was followed by centrifugation at
1200 ×g for 5min. The pellet was resuspended and filtered
through a 100 μm mesh filter to remove cellular debris.
Finally, cells were plated in 75 cm2 culture flasks and incu-
bated in culture medium (DME F12, 10% FBS, 1%
Penicillin-Streptomycin Solution (Gibco, USA)) at 37°C in
5% CO2 with saturated humidity. The culture flasks were
washed thoroughly with PBS to remove RBCs, and the
medium was changed every two days. ADSCs were passaged
until they were 90% confluent; 0.25% trypsin: 0.2% EDTA at
a ratio of 1 : 3 was used to dissociate the cells. ADSCs at pas-
sage three were used for subsequent experiments.

2.1.2. Characterization of ADSCs by Flow Cytometry. Cells
at the third passage (P3) were digested with trypsin to
form a single cell suspension solution, which was incubated
with antibodies, including anti-CD34-PE, anti-CD31-APC,
anti-CD45-PerCP-Cy5-5, anti-CD10-APC-Cy7 (BioLegend,
USA), anti-CD13-PE, and anti-CD49d-PE-Cy7 (BD Biosci-
ences, USA). All antibody incubations were performed at
37°C in the dark for 30min. The cells were analyzed by
flow cytometry (LSR II, BD Biosciences, USA) and Treestar
FlowJo software.

2.1.3. Multilineage Potential Assay of ADSCs. Third passage
ADSCs were used to demonstrate their ability to differentiate
into adipocytes, osteoblasts, and chondrocytes. Briefly, cells
were seeded in a 24-well plate at a density of 5 × 103 cells/cm2

in standard growth medium. According to the manufac-
turer’s instructions, when the cells reached 90–100% conflu-
ence, the basal medium was replaced with complete OriCell™
osteogenic differentiation medium (Cyagen, USA) and
complete MesenCult™ Adipogenic Differentiation Medium
(Stem Cell Technologies, Canada) for aiding osteogenesis
and adipogenesis of ADSCs. The medium was changed every
3 days for 2–4 weeks. Adipogenic and osteogenic differentia-
tions were detected by oil red O (Cyagen, USA) and alizarin
red S (Solarbio, China) staining, respectively.

To verify the chondrogenic differentiation ability of
ADSCs, MesenCult™ Chondrogenic Differentiation Medium
was added based on the manufacturer’s instructions. Briefly,
5 × 105 cells were resuspended in 0.5mL of complete Mesen-
Cult™ Chondrogenic Differentiation Medium and added
into 15mL polypropylene tubes, followed by centrifugation
at 300 ×g for 10min. The caps of the tubes were loosened
prior to incubation at 37°C under 5% CO2 for 3 days. Then,
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0.5mL complete MesenCult™ Chondrogenic Differentiation
Medium was added to a final volume of 1mL, and incubation
was continued at 37°C under 5% CO2 for 3 days. The medium
was changed every three days until day 28. Subsequently, the
cartilage mass was fixed with formalin and embedded in
paraffin. Finally, alcian blue (Solarbio, China) staining was
performed to detect chondrogenic differentiation.

2.2. Extraction and Identification of ADSC-Derived Exosomes.
When the cells reached 80%–90% confluence, we replaced
the standard growth medium with serum-free medium and
collected conditioned medium after incubating for an addi-
tional 24 h. Similarly, the cells in the experimental group
were induced by treating with complete OriCell™ osteogenic
differentiation medium (Cyagen, USA) for 14 days, and the
conditioned medium was collected after 24 h of continuous
culture with serum-free medium instead of the original
medium. Exosomes were harvested by centrifugation and
ultracentrifugation of the conditioned medium containing
undifferentiated ADSCs (Exos_D0) and osteogenically differ-
entiated ADSCs after 14 days (Exos_D14), respectively.

2.2.1. Extraction of ADSC-Derived Exosomes. The condi-
tioned medium was centrifuged at 300 ×g for 10min at 4°C,
and the supernatant was collected. Next, the supernatant
was centrifuged at 2000 ×g for 20min at 4°C, and the result-
ing supernatant was transferred to a new tube and centri-
fuged at 10000 ×g for 30min in a 45TI rotor (Beckman,
USA). Finally, the precipitates containing the exosomes and
contaminating proteins were collected after centrifugation
at 130000 ×g for 70min and were resuspended in 50mL
PBS. The resuspension was recentrifuged under the same
conditions as the previous step to obtain exosomes, which
were resuspended in PBS and sterilized by filtration using a
0.45 μm filter.

2.2.2. Identification of ADSC-Derived Exosomes. The struc-
ture of exosomes was observed by transmission electron
microscopy (TEM, (HITACHI, Japan)). Characteristic sur-
face markers of exosomes such as TSG101, CD9, and cal-
nexin were detected by western blotting, as described in
Section 2.6.

2.2.3. Uptake Assay of ADSC-Derived Exosomes In Vitro. To
identify uptake of exosomes by ADSCs, exosomes were
labeled with Dil (Beyotime Biotechnology, China) at a con-
centration of 10 μM for 15min, according to the manufac-
turer’s instructions. Then, the exosomes were incubated
with ADSCs for 6 h. Nuclei of ADSCs were stained with
Hoechst33258 (Solarbio, China). Exosome uptake was
observed by fluorescence microscopy (OLYMPUS, Japan).

2.3. Osteogenic Differentiation of ADSCs with Exosomes and
Alizarin Red S (ARS) Assay. ADSCs (P3) were seeded in a
6-well plate at a density of 2 × 104 cells/cm2 in standard
growth medium until the cells reached 90% confluence.
Subsequently, the standard growth medium was changed
to complete OriCell™ osteogenic differentiation medium
(Cyagen, USA) with the medium containing Exos_D0 or
Exos_D14, whose concentration was 20 μg/mL, compared

to negative controls without simulation. The medium was
changed every two days until day 21. According to the
manufacturer’s instructions, the cells were washed with
PBS once or twice and fixed for 30min with 2mL of 4%
neutral formaldehyde solution in each well. After the form-
aldehyde solution was aspirated away and wells washed
with PBS twice, 1mL of alizarin red S solution was added
for 5min. The plate was washed with PBS twice, followed
by placement under a light microscope to observe the
stained cells.

2.4. Alkaline Phosphatase (ALP) Activity Assay. The detected
ADSCs were lysed by cell lysis buffer for Western and IP with-
out inhibitors (Beyotime Biotechnology, China). Then, the
supernatant was collected by centrifugation for semiquantita-
tive analyses of ALP using an Alkaline Phosphatase Assay Kit
(Beyotime Biotechnology, China) according to the manufac-
turer’s instructions. As a common chromogenic substrate of
phosphatase activity, paranitrophenol (p-nitrophenol) yields
a yellow product under alkaline conditions. Optical density
(OD) values were determined using a spectrophotometer
(SpectraMax Plus384, Molecular Devices, USA) at 405nm.
Finally, we normalized ALP expression levels to the total cell
protein content to obtain an absorbance index.

2.5. Isolation of Exosomal RNA. Exosomal RNA was isolated
by the SeraMir Exosome RNA Purification kit (System Bio-
sciences, USA), according to the manufacturer’s instructions.
The exosome RNA isolation protocol was mainly divided
into three parts: exosome isolation and lysis, exoRNA purifi-
cation, and exoRNA elution. For the isolation and lysis steps,
culture medium was combined with ExoQuick-TC before
thorough mixing by inversion three times. Then, the mixture
was placed at 4°C for 6 h overnight and centrifuged at 11200
×g for 2min. After that, supernatant was removed and lysis
buffer was added to the exosome pellet. After vortexing for
15 s, the mixture was placed at room temperature (25°C)
for 5min to allow complete lysis. For exoRNA purification,
100% ethanol was added before vortexing for 10 s. After the
assembly of spin column and collection tubes, the mixture
was transferred to spin columns and centrifuged at 11200
×g for 1min. The flow-through was discarded, and the spin
column was placed back into a collection tube. Then, wash
buffer was added before centrifugation at 11200 ×g for
1min, and this step was repeated twice. Lastly, the flow-
through was discarded and the mixture was centrifuged at
11200 ×g for 2min to dry. For elution, the collection tube
was discarded, and the spin column was assembled with a
fresh, RNase-free 1.5mL elution tube. Elution buffer was
added directly to the spin columnmembrane and centrifuged
at 300 ×g for 2min and then 11200 ×g for 1min to elute
exoRNAs. After that, exosome RNA was recovered.

2.6. Quantitative Real-Time PCR (qPCR). Extraction of cellu-
lar total RNAs and synthesis of cDNA were performed using
TRIzol™ Reagent (Invitrogen, USA) and PrimeScript™ RT
Master Mix (TAKARA, Japan), respectively, according to
the manufacturer’s instructions. Quantitative fluorescence
detection was performed using TB Green™ Premix Ex
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Taq™ II (TAKARA, Japan) according to the manufacturer’s
instructions, under the PCR conditions of predenaturation
at 95°C for 30 s, denaturation at 95°C for 5 s, and exten-
sion at 60°C for 30 s, for 40 cycles. The relative expression
was calculated by the 2-ΔΔCT method, and each experiment
was repeated 3 times. Sequences of PCR primers for Runt-
related transcription factor 2 (RUNX2), alkaline phos-
phatase (ALP), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), differentially expressed miRNAs (miR-130a-3p,
miR-30b-5p, miR-34a-5p, miR-324-5p, miR-378f, and miR-
513b-5p), and U6 are given in Table 1. GAPDH was used
for mRNA normalization. U6 was used for miRNA normali-
zation. We defined significant results according to p value
threshold (<0.05) and FC (fold change) threshold (≥2).

2.7. Western Blotting. Proteins were separated by electropho-
resis on 11% SDS-PAGE gels and transferred to PVDF mem-
branes (Millipore, USA) and stained with Ponceau S staining
solution (Beyotime Biotechnology, China) for 5-10min.
Membranes were then incubated with each primary anti-
body, including anti-ALP, anti-RUNX2, anti-TSG101, anti-
CD9, and anti-calnexin (Abcam, USA, 1 : 1000 dilution) for
16 h, and the respective secondary antibody (Cell Signaling
Technology, USA, 1 : 5000 dilution) after the membrane
was blocked with 5% evaporated skimmed milk. After each
incubation, the membrane was washed three times with
TBST. Target bands were developed using an enhanced
chemiluminescence (ECL) kit (Solarbio, China) according
to the manufacturer’s instructions. To quantify the results
of western blots, we calculated mean Intden (integrated den-
sity) values using ImageJ 1.8.0 software. The relative intensity
was measured by normalization using GAPDH.

2.8. Microarray Assays. Total RNAs of Exos_D0 and Exos_
D14 were extracted from exosomes using TRIzol™ Reagent
(Invitrogen, USA) according to the manufacturer’s instruc-
tions. The quantity and quality of RNA were examined by
NanoDrop 2000 and Agilent Bioanalyzer 2100. Expression
profiles of miRNA were tested by GeneChip 4.0 (Affymetrix,
USA) and verified using three parallel replicates.

2.9. Bioinformatics Analysis. Recognition of differentially
expressed genes was performed using the limma package of

the R program [39] with thresholds of p values < 0.05 and
log2 ∣FC∣ ≥ 1 ∣FC∣≥2 . Differentially expressed genes in two
datasets were selected for further analysis. In order to avoid
biasing of results from different analysis platforms, we use
DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf
.gov/) [40] for pathway analysis and gene ontology (GO)
analyses, in which pathway analyses included Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analysis
and Biocarta pathway analysis. GO analysis included bio-
logical process (BP), cellular component (CC), and molecular
function (MF) categories. For the analysis results, we consid-
ered p values < 0.05 as significant. In addition, we selected
10 miRNAs with the most obvious differential expression
to predict downstream target genes using three online
analysis platforms: TargetScan (http://www.targetscan.org),
microRNA.ORG (http://www.microrna.org/microrna/), and
miRDB (http://mirdb.org/). We regarded the intersection
of the three platforms as the ultimate target genes. In
order to depict pathway and GO analysis results intui-
tively, we constructed enrichment analysis maps using R.
The miRNA-Gene-Network was visually presented through
Cytoscape 3.60.

2.10. Statistical Analysis. In this study, each experiment was
checked by three parallel replicates to ensure the repeatability
of the experiments. Statistical analysis was performed using
SPSS 17.0 software and GraphPad Prism 7.0. For all data, p
values < 0.05 were considered statistically significant.

3. Results

3.1. Identification of Human ADSCs. ADSCs that we used in
this study were obtained by a method involving collagenase
digestion and adherent cell culture. We detected characteris-
tic ADSC surface markers using flow cytometry and obtained
the following results: CD10, CD13, and CD49d expression
was positive, while the expression of CD34, CD31, and
CD45 was negative, as shown in Figure 1(a). Importantly,
ADSCs can differentiate into adipocytes, osteoblasts, and
chondrocytes (Figures 1(b)–1(d)), confirming multilineage
potential, in line with the recognized standard for identifica-
tion of ADSCs [9, 41].

Table 1: List of gene primers.

Gene Forward sequence Reverse sequence

ALP CAACGAGGTCATCTCCGTGATG TACCAGTTGCGGTTCACCGTGT

RUNX2 CCCAGTATGAGAGTAGGTGTCC GGGTAAGACTGGTCATAGGACC

GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

miR-130a-3p GATGCTCTCAGTGCAATGTTA

miR-34a-5p AGCCGCTGGCAGTGTCTTA

miR-30b-5p GCTGCCGTTGTAAACATCCTAC

miR-324-5p CAGCCTAATCGCATCCCCTA

miR-513b-5p GCCGCTTCACAAGGAGGT

miR-378f GCTGGGACTGGACTTGGA
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3.2. Exosomes Derived Only from Osteogenically
Differentiated ADSCs Can Promote
Osteogenic Differentiation

3.2.1. Identification of ADSC-Derived Exosomes. ADSC-
derived exosomes were isolated by centrifugation and ultra-
centrifugation from conditioned medium. As shown in
Figure 2(a), TEM revealed that vesicles with particle sizes
between 30nm and 150nm exhibited spherical morphology,
proving the presence of exosomes. In addition, the western
blot results showed that the exosome-associated proteins

TSG101 and CD9 were expressed while the endoplasmic
reticulum protein calnexin was hardly expressed in exosomes
(Figure 2(b)). The above results demonstrate that we success-
fully extracted ADSC-derived exosomes.

3.2.2. Exosome Uptake by ADSCs. To explore whether ADSCs
can internalize exosomes, we incubated Dil-labeled exosomes
with ADSCs for 6 h. As shown in Figure 3, exosomes labeled
with Dil (red dots) were gradually internalized by ADSCs.
Many exosomes were observed in the cytoplasm of their
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Figure 1: Characterization of ADSCs (P3). (a) The expression of the characteristic surface markers of ADSCs shown by flow cytometry. (b)
Lipid droplets formed after 14 days of adipogenic induction, which is confirmed by oil red O staining. (c) Calcium nodules formed during
osteogenic differentiation, which is identified by ARS after 28 days of osteogenic induction. (d) The chondrocytes stained by alcian blue
after 28 days of chondrogenic induction. Notes: ADSCs: human adipose-derived stem cells; ARS: alizarin red S. Scale bar: 100 μm.
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homotypic cells—ADSCs at only 6 h postincubation by fluo-
rescence microscopy.

3.2.3. Exosomes Derived fromOsteogenically Differentiated and
Undifferentiated ADSCs Promote Osteogenic Differentiation
of ADSCs. To investigate differences in exosome function,
exosomes derived from undifferentiated ADSCs (Exos_D0)
and osteogenically differentiated ADSCs at 14 days (Exos_
D14) were extracted. Exos_D0 and Exos_D14 were used as
stimuli to treat third passage ADSCs without other osteo-
genic interference factors. In order to establish more accurate
results, we set-up 4 comparative groups: a negative control
(NC) group, a positive control (PC) group, an Exos_D0
group, and an Exos_D14 group. ADSCs in the PC group were
induced with osteogenic differentiation medium, while the
NC group remained untreated.

qPCR and ALP activity assays were performed 7 days
after treatment. Compared with NC and Exos_D0, the
expression of osteogenesis-related genes such as ALP and
RUNX2 was significantly increased (FC > 2, p < 0 05) in the
Exos_D14 and PC groups. Interestingly, there were no signif-
icant differences between the NC and Exos_D0 groups, but
the difference between the Exos_D0 and Exos_D14 groups
was obvious (Figure 4(a)). ALP semiquantitative analyses

also showed similar results to those of qPCR. ALP activity
was dramatically higher in the Exos_D14 and PC groups.
In comparisons between NC and Exos_D0, Exos_D0 and
Exos_D14 groups, the results exhibited no significant differ-
ences and notable differences (Figure 4(b)). Additionally,
western blot analysis was corroborated by qPCR results in
that protein expression of ALP, and RUNX2 was remarkably
elevated in the Exos_D14 and PC groups, compared with NC
and Exos_D0, as shown in Figures 4(c) and 4(d).

After 21 days of treatment, alizarin red staining revealed
that there were significantly more calcium nodules formed in
the Exos_D14 and PC groups (Figure 4(e)). These results
confirmed that Exos_D14 rather than Exos_D0 can effec-
tively promote osteogenic differentiation of ADSCs.

3.3. Distinct Levels of miRNA Expression in Exosomes Derived
from Osteogenically Differentiated ADSCs and Undifferentiated
ADSCs. In order to understand the underlying mechanisms
of how exosomes promoted osteogenic differentiation of
ADSCs, the miRNA expression profiles of exosomes derived
from undifferentiated and osteogenically differentiated
ADSCs were analyzed by microarray. We detected a total of
2170 mature miRNAs and 1868 pre-miRNAs expressed in
ADSC-derived exosomes in which hierarchical clustering
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Figure 2: Identification of ADSCs-derived exosomes from the conditioned medium. (a) The image of TEM of ADSC-derived exosomes, scale
bar: 200 nm. (b) Western blot analysis of the exosome-associated protein TSG101 and CD9 was expressed while endoplasmic reticulum
proteins calnexin was hardly expressed. Notes: TEM: transmission electron microscopy.
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Figure 3: Internalization of exosomes by ADSCs. ADSCs can ingest a large number of exosomes at only 6 h postincubation. The results
shown in Figure S1 further confirmed that exosomes can be internalized by ADSCs. Exosomes were labeled with Dil (red), and the nuclei
were stained with Hoechst33258 (blue). Scale bar: 100 μm.
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Figure 4: The Potential of exosomes’ ability to promote osteogenic differentiation of ADSCs. (a) qPCR analysis expression of osteogenesis-
related genes (ALP, RUNX2) in NC, Exos_D0, Exos_D14, and PC on 7th day. (b) Semiquantitative analyses of ALP activity on 7th day. (c)
Western blot analyses of the protein expression of ALP and RUNX2 on 14th day. (d) Relative intensity analyses of western blot results of ALP
and RUNX2. (e) ARS staining on 21st day (1 represents NC, 2 represents Exos_D0, 3 represents Exos_D14, and 4 represents PC), scale bar:
100 μm. Notes: ∗represents significant differences between NC and other groups; #represents significant differences between Exos_D14 and
Exos_D0; NS represents no significant differences. ∗p < 0 05; #p < 0 05.
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showed that miRNA expression profiles in the same group
were consistent, while the expression profiles between the
two groups were distinct. As shown in Figure 5(a), the
abscissa represents sample clustering (the first three columns

represent exosomes derived from undifferentiated ADSCs,
and the last three columns represent exosomes derived from
osteogenically differentiated ADSCs) and the ordinate repre-
sents gene clustering. The deeper the red, the more obvious
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Figure 5: The miRNA differential expression profiles in exosomes. (a) The heat map of distinct miRNAs in exosomes derived from
undifferentiated and osteogenically differentiated ADSCs based on microarray. (b) The volcano plot of miRNAs in exosomes derived from
undifferentiated and osteogenically differentiated ADSCs. The red dots represent upregulation, and the green dots represent
downregulation of expression with statistical significance (fold change ≥2, p value < 0.05). Notes: NC: normal control (exosomes derived
from undifferentiated ADSCs); OD: osteogenic differentiation (exosomes derived from osteogenically differentiated ADSCs).
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the upregulation of the gene, and the deeper the green, the
more obvious the downregulation of the gene.

Compared with exosomes derived from undifferentiated
ADSCs, 201 miRNAs were upregulated and 33 miRNAs were
downregulated in exosomes derived from osteogenically dif-
ferentiated ADSCs (FC ≥ 2, p value < 0.05), as represented by
a volcano plot (Figure 5(b)).

3.4. Exosomal miRNAs Affect Osteogenic Differentiation via a
Series of Biological Processes. Exosomal miRNAs can affect
the osteogenic differentiation process through a series of bio-
logical processes in which they first target related genes such
that they can regulate axon guidance, MAPK signaling, and
Wnt signaling and modify gene expression, cell metabolism,
and other biological functions.

3.4.1. Pathway Analysis and Functional Analysis of Exosomal
miRNAs. To determine which signaling pathways were chan-
ged during osteogenic differentiation of ADSCs regulated by
exogenous microRNAs, KEGG pathway analysis and Bio-
carta pathway analysis were performed. The results revealed
that the target genes of the differentially expressed miRNAs
are principally related to processes such as axon guidance
(p value = 1.16E-18), MAPK signaling (p value = 2.31E-16),
Wnt signaling (p value = 1.03E-15), endocytosis (p value =
7.1E-12), regulation of actin cytoskeleton (p value = 1.31E-
11), and the TGF-β signaling pathway (p value = 5.26E-10)
(Figure 6(a)). It suggested that these biologic pathways were
involved in osteogenic differentiation of ADSCs.

To explore the potential biological functions of differ-
entially expressed miRNAs, we performed GO enrichment
analyses, including BP, CC, and MF by DAVID. Accord-
ing to statistically significant GO analysis results (p values
< 0.05), we found that functions such as enzyme binding
(p value = 7.7E-69), cell projection (p value = 1.29E-54),
transcription factor activity (p value = 1.53E-45), regula-
tion of gene expression (p value = 4.52E-74), and cell
metabolism (p value = 5.92E-74) are mainly affected by
differentially expressed miRNAs (Figures 6(b)–6(d)). Inter-
estingly, these functions were closely related to osteogenic
differentiation of ADSCs.

3.4.2. miRNA-mRNA Network Analysis. miRNAs can target
single or multiple genes involved in the same or different
signaling pathways in order to regulate the process of bone
regeneration [30]. To explore the link between differen-
tially expressed miRNAs and associated protein-encoding
mRNAs, we chose 10 miRNAs (miR-130a-3p, miR-30b-5p,
miR-34a-5p, miR-183-5p, miR-212-3p, miR-324-5p, miR-
345-5p, miR-378f, miR-513a-5p, and miR-513b-5p) with
the most obvious differential expression to predict down-
stream target genes using TargetScan, microRNA.ORG,
miRDB, and constructed miRNA-mRNA networks using
Cytoscape. As shown in Figure 7, we discovered that one
miRNA may recognize multiple target mRNAs simulta-
neously, and one gene may also be regulated by multiple
miRNAs. More importantly, a great quantity of miRNAs
was predicted to be involved in a variety of pathways that
promote osteogenic differentiation. For instance, mir-130a-

3p was a miRNA with the highest differential expression
and which was predicted to have a high probability of bind-
ing to SIRT7. Previous research has found that knockdown
of SIRT7 enhances osteogenic differentiation of bonemarrow
mesenchymal stem cells (BMSCs) [42].

3.4.3. qPCR Validation of miRNA Expression. The 6 miR-
NAs (miR-130a-3p, miR-513b-5p, miR-30b-5p, miR-34a-
5p, miR-324-5p, and miR-378f) with the most obvious
differential expression were chosen to validate the results
of microarray analyses using qPCR. In agreement with the
preliminary conclusions obtained by microarray, compared
with exosomes derived from undifferentiated ADSCs, the
expression of 5 miRNAs (miR-130a-3p, miR-30b-5p, miR-
34a-5p, miR-324-5p, and miR-378f) in exosomes derived
from osteogenically differentiated ADSCs was significantly
increased (FC > 2, p < 0 05) while the expression of miR-
513b-5p was decreased (Figure 8). qPCR results confirmed
the validity of differentially expressed miRNAs identified
by microarray, which revealed that these miRNAs have
functions in regulating ADSC osteogenesis.

4. Discussion

A major issue in the field of bone regeneration is inducing
differentiation of stem cells into osteoblasts. In addition to
osteogenic differentiation medium, genetic modification,
and growth factors, MSC-derived exosomes have also drawn
much attention in recent years because of their ability to
induce osteogenic differentiation of stem cells [28, 43, 44].
However, ADSC-derived exosomes have rarely been exam-
ined in the field of bone regeneration. In our current study,
we explored the differences between the effects of exosomes
derived from osteogenically differentiated ADSCs and undif-
ferentiated ADSCs separately on osteogenic differentiation
of ADSCs in vitro. Our results indicated that osteogenically
differentiated ADSC-derived exosomes can promote osteo-
genic differentiation of ADSCs, whereas undifferentiated
ADSC-derived exosomes cannot (Figure 4). This finding
provides evidence that ADSC-derived exosomes can be an
ideal inducing factor with excellent osteogenic efficacy,
safety, and widespread availability in bone regeneration
and clinical applications. Li et al. have proven that the addi-
tion of ADSC-derived exosomes to osteogenic differentiation
medium can promote osteogenic differentiation of bone mar-
row MSCs in vitro [28]. To our knowledge, in the absence of
factors intervening in osteogenic differentiation, for the first
time, we have demonstrated excellent osteogenic activity of
osteogenically differentiated ADSC-derived exosomes. In
addition, we found that it took only 6 h for ADSCs to ingest
a large number of ADSC-derived exosomes (Figure 3), com-
pared to 48h for bone marrow-derived stem cells (BMSCs)
[28]. We speculated that perhaps this may be because
ADSC-derived exosomes are more easily ingested by homo-
typic cells, namely, ADSCs. This suggests that the combina-
tion of ADSC-derived exosomes and ADSCs in bone tissue
engineering can reduce the loss of exosomes, which is due
to a longer uptake time, thus promoting bone regeneration
more efficiently.
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Understanding the precise molecular mechanisms of
osteogenesis is of immense importance for promoting the
osteogenic efficacy and clinical application of stem cells in
bone regeneration. To date, most research has focused on
the study of epigenetic and transcriptional factors involving

stem cells themselves [45–47], whereas few studies have
focused on the effects of exosome “cargo” on the osteogenic
differentiation of stem cells. It has been noted that exosomes
can regulate corresponding biological processes by affecting
related pathways in receptor cells. For example, Yue et al.
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Figure 6: Pathway analysis and GO analyses. (a) Enrichment map of KEGG pathway analysis and Biocarta pathway analysis. (b) Enrichment
map of GO analyses—biological process analysis. (c) Enrichment map of GO analyses—cellular component analysis. (d) Enrichment map of
GO analyses—molecular function. Notes: KEGG: Kyoto Encyclopedia of Genes and Genomes pathway analysis; GO: gene ontology.
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showed that huc-MSC-derived exosomes promote cutaneous
wound healing by influencing Wnt4 signaling [48]. Zhang
et al. demonstrated that exosomes can enhance bone regener-
ation by activating the PI3K/Akt signaling pathway [49].

Interestingly, microRNAs can regulate the expression of
mRNA by binding specifically to the 3′UTR of target genes,
thus affecting the corresponding signaling pathways [32].
Based on previous studies, we have learned that there are
proteins, DNAs, RNAs, lipids, and other biomolecules in
exosomes, among which proteins and RNAs play important
roles [25, 28]. miRNAs, an important class of RNA, are
involved in a series of crucial processes, including cell
growth, cell proliferation, differentiation, apoptosis, and cell
death. Numerous reviews have mentioned that miRNAs play
a critical role in bone biology [50–52]. Moreover, there are no
reports concerning the genome-wide expression and func-
tion of miRNAs in ADSC-derived exosomes. We analyzed
differences in the expression of miRNAs between undifferen-
tiated ADSC-derived exosomes and osteogenically differenti-
ated ADSC-derived exosomes by microarray assays.

Dysregulation of exosome-derived miRNA expression
has been reported in schizophrenia and localized breast can-
cer [53, 54]. These studies suggested that the expression of
miRNAs in exosomes changed significantly under different
conditions. In this study, we detected 2170 mature miRNAs
and 1868 pre-miRNAs in ADSC-derived exosomes. Com-
pared with undifferentiated ADSC-derived exosomes, there
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were 234 significantly differentially expressed miRNAs (201
upregulated and 33 downregulated) in osteogenically differ-
entiated ADSC-derived exosomes. A heat map of distinct
miRNAs in exosomes indicates that miRNAs may play an
important regulatory role in the process of osteogenic differ-
entiation of ADSCs, promoted by exosomes.

miRNAs act through base pairing with complementary
sequences within mRNAs and silence expression of corre-
sponding genes, thus interfering with signaling pathways
[55]. Furthermore, 10 differentially expressed miRNAs
showing a high fold change were selected to predict their tar-
get genes and to perform pathway analysis. We found that
one miRNA can target multiple mRNAs and that one mRNA
can be regulated by one or more miRNAs. This conclusion is
consistent with previous reports [56]. In our study, a majority
of predicted miRNAs involved in signaling pathways were
related to osteogenic differentiation, including the MAPK
signaling pathway, Wnt signaling pathway, and TGF-β sig-
naling pathway, among others (Figure 6(a)). For example,
SIRT7 is predicted to be a highly likely target of miR-130a-
3p, with the highest fold change. We also confirmed that
the expression of miR-130a-3p was significantly increased
in Exo_D14, compared with Exos_D0 (Figure 8). Previous
studies have demonstrated that SIRT7 inhibits osteogenic
differentiation of BMSCs by antagonizing the Wnt signaling
pathway, while mir-130a-3p promotes it [42, 57], which is
consistent with our prediction. It is a fact that theWnt signal-
ing pathway is a highly conserved pathway involved in the
regulation of cell growth, differentiation, survival, and apo-
ptosis and plays a key role in the self-renewal and mainte-
nance of stem cells [58]. To date, many studies have
confirmed the important regulatory role of theWnt signaling
pathway in the process of osteogenic differentiation of stem
cells [59, 60]. Consequently, the mir-130a-3p/SIRT7/Wnt
axis may be a novel molecular mechanism regulating osteo-
genic differentiation of ADSCs. To further clarify the biolog-
ical function of target genes of differentially expressed
microRNAs, GO analyses, including BP, CC, and MF, were
carried out. The results of the GO analyses revealed that the
affected target genes are mainly involved in enzyme binding,
cell projection, transcription factor activity, regulation of
gene expression, and cell metabolism (Figures 6(b)–6(d)). It
is clear that certain differentially expressed miRNAs in exo-
somes are closely related to cellular and molecular responses
in the osteogenic differentiation process of ADSCs.

Our results indicated that exosomal miRNAs may play a
vital role in enhancing bone regeneration. Exosomes can be
ingested more rapidly by homotypic cells, as opposed to
other cells. We believe that the combination of ADSC-
derived exosomes and ADSCs will serve as excellent “induc-
ing factors” and “seed cells” during the creation of tissue
engineered bone—a development that would aid the repair
of clinical bone defects. Moreover, the detailed mechanisms
of how ADSC-derived exosomes enhance osteogenic differ-
entiation of ADSCs require further exploration, but these
comprehensive analytical experiments will build a rich infor-
mation base for understanding the mechanisms underlying
exosome-mediated promotion of osteogenic differentiation
of ADSCs.

We should indicate that there are some limitations to this
study. We only compared exosomes derived from osteogeni-
cally differentiated ADSCs and undifferentiated ADSCs. This
may lead us to lose information regarding the dynamic
changes in exosomal miRNAs throughout the osteogenic dif-
ferentiation process. In addition, the specific molecular
mechanisms involving exosomes remain elusive. Therefore,
these issues should be explored in future studies.

5. Conclusion

In summary, to the best of our knowledge, we demonstrated
for the first time that osteogenically differentiated ADSC-
derived exosomes can promote osteogenic differentiation of
ADSCs. Importantly, we successfully identified miRNAs of
exosomes and performed functional analyses involving core-
gulated networks. These will serve as a new foundation for
basic research in bone regeneration and clinical bone regen-
eration therapy.
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