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Abstract: Severe systemic toxicity and poor targeting efficiency remain major limitations
of traditional chemotherapy, emphasising the need for smarter drug delivery systems.
Magnetic 2D transition-metal-based nanomaterials offer a promising approach, as they can
be designed to combine high drug loading, precise targeting, and controlled release. The
key material classes—transition metal dichalcogenides, transition metal carbides/nitrides,
transition metal oxides, and metal–organic frameworks—share important physicochemical
properties. These include high surface-to-volume ratios, tuneable functionalities, and
efficient intracellular uptake. Incorporating magnetic nanoparticles into these 2D structures
broadens their potential beyond drug delivery, through enabling multimodal therapeutic
strategies such as hyperthermia induction, real-time imaging, and photothermal or photo-
dynamic therapy. This review outlines the potential of magnetic 2D transition-metal-based
nanomaterials for biomedical applications by evaluating their therapeutic performance
and biological response. In parallel, it offers a critical analysis of how differences in physic-
ochemical properties influence their potential for specific cancer treatment applications,
highlighting the most promising uses of each in bionanomedicine.

Keywords: transition metal dichalcogenides; transition metal carbides/nitrides; transition
metal oxides; metal–organic frameworks; magnetic nanoparticles; targeted drug delivery;
photothermal therapy; photodynamic therapy; hyperthermia; magnetic resonance imaging

1. Introduction
Traditional chemotherapy remains a delicate balance between efficacy and toxicity—while

it provides over 70 different drugs for cancer treatment, its systemic effects often lead to
severe side effects, including blood disorders and nervous system damage [1–3]. Cancer
persists as a major global health threat and causes a high number of deaths annually [4]. A
key challenge in improving the outcomes of cancer therapy lies in minimising unintended
harm to healthy tissues by improving targeting and controlled drug release, which is one
of the greatest downsides of the treatment at the moment [5,6]. An approach that could
make this difference is the development of smart drug delivery systems—systems designed
to selectively target cancer cells and release drugs in response to specific stimuli [7,8].
Besides the acidic pH of the tumour microenvironment, which promotes drug release [9],
magnetically responsive systems have gained particular attention due to their precision
and efficiency in guiding therapeutic agents directly to tumour sites [10].

Nanomaterials have emerged as an irreplaceable component in new smart biomedical
systems [11]. Some of their beneficial properties are high surface-to-volume ratio, enhanced
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reactivity, and the ability to manipulate their size and surface. Among them, magnetite
(Fe3O4) nanoparticles (NPs) stand out due to their biocompatibility, biodegradability, low
cost, and strong magnetism [12]. These properties make them highly suitable—alone or as
part of a composite—for a range of biomedical applications including magnetic resonance
imaging (MRI) [13], targeted drug delivery [14], and photothermal therapy (PTT) [15]. Mul-
tifunctional nanocomplexes that incorporate magnetic NPs have the potential to overcome
numerous limitations of the classic therapy [16,17].

Recent research has been focused on two-dimensional (2D) nanomaterials, a rapidly
expanding class of nanomaterials known for their high specific surface area and diverse
electronic, optical, and catalytic properties [18]. Among their most significant properties as
potential theranostic systems are their high surface-to-volume ratios and ability to accumu-
late in tumours [19,20]. In addition, intracellular uptake evaluations have shown that 2D
forms can be taken up more efficiently than other geometries [19]. This enhanced internali-
sation is largely attributed to their ultrathin, planar morphology, which enables stronger
interactions with the cell membrane and facilitates endocytosis. Furthermore, this geometry
promotes improved interaction with biological interfaces, enhancing biodistribution and
retention within tumour tissue. Beyond structural advantages, the high surface-to-volume
ratio of 2D nanomaterials supports greater drug-loading capacity and versatile surface
modification, enabling the integration of tailored therapeutic and imaging functionalities
within a single platform. This broad category includes various planar, few-nanometre-thick
materials with tuneable properties, making them highly suitable for biomedical applica-
tions. In particular, this review focuses on transition metal (TM)-based 2D nanomaterials
(Figure 1). These include transition metal dichalcogenides (TMDs) [21], transition metal
carbides/nitrides (MXenes) [22], metal–organic frameworks (MOFs) [23], transition-metal
oxides (TMOs) [24], and certain layered double hydroxides (LDHs) [25]. Chemical ver-
satility and tuneable properties make transition-metal-based 2D nanomaterials strong
candidates for cancer therapy; however, it should be stated that systematic biocompatibility
evaluation remains the main challenge, although the interest in overcoming it has rapidly
increased in the last decade [26].

Figure 1. Schematic overview of the four key classes of transition-metal-based 2D nanomaterials—
TMDs, MXenes, MOFs, and TMOs—highlighting their main biomedical applications.

Transition metals, such as iron (Fe), manganese (Mn), copper (Cu), nickel (Ni), tita-
nium (Ti), and zinc (Zn), are key elements in these materials [27]. They are characterised by
high density, strong metallic bonding, and high melting and boiling points that arise from
delocalised d-electrons and contribute to cohesion and stability [28]. Many nanomaterials
based on these elements possess magnetic properties, and their performance as magneti-
cally guided agents in bionanomedicine could potentially be enhanced by incorporating
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magnetic nanoparticles, which have been extensively studied for their responsiveness to
external magnetic fields [29].

Considering the important role of magnetism in the development of smart systems for
combined biomedical applications [30], along with the chemical versatility, potential for
controlled drug release, and high drug-loading capacity of 2D TM-based nanomaterials,
combining these materials represents one of the most promising directions for future
advancement in the field. Such nanocomposites could be activated under a magnetic field,
triggering the release of anticancer drugs while also generating localised hyperthermia
through near-infrared (NIR) irradiation [31–34]. The ultimate goal is to develop a system
that ensures targeted, on-demand drug release; minimises toxicity to healthy cells; and
follows safe degradation and excretion pathways [35]. Figure 2 illustrates a schematic of the
main potential applications of magnetic transition-metal-based 2D nanomaterials in cancer
therapy, including drug delivery, hyperthermia, photothermal therapy, photodynamic
therapy (PDT), and magnetic resonance imaging.

 

Figure 2. Schematics illustrating the potential applications of magnetic transition-metal-based 2D
nanomaterials in cancer therapy discussed in this article.

Given the significant progress in this field, this review aims to integrate current
advancements, critically analyse and compare possibilities, and highlight both the strengths
and challenges of four key classes of transition-metal-based 2D nanomaterials—TMDs,
MXenes, MOFs, and TMOs—with a particular focus on their magnetic composites, which
represent some of the most promising platforms for advancing multimodal strategies
in nanooncology.
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2. Transition Metal Dichalcogenides
Transition metal dichalcogenides (TMDs) are promising 2D materials for multimodal

systems for biomedical applications due to their large surface area and biocompatibil-
ity [36,37]. The general formula of TMDs can be expressed as MX2, in which M is a
transition metal from group 4 to 10 covalently bonded between two hexagonal layers of
chalcogen atoms, often in a trigonal prismatic geometry [21] (Figure 3). Typical transition
metal dichalcogenides, such as molybdenum disulfide (MoS2), tungsten disulfide (WS2),
titanium disulfide (TiS2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2),
exhibit a planar crystal structure with unique chemical and optical properties [38]. Com-
pared to graphene, TMDs are more robust, exhibit higher band gaps, and can be tuned
using various surface functionalisation techniques [21,39]. There are various ways to syn-
thesise these materials, from mechanical cleavage to chemical intercalation and chemical
vapour deposition [40].

Figure 3. Structure of transition metal dichalcogenides: (a) TMDs monolayer; (b) top view of TMDs’
structure with trigonal prismatic coordination.

TMDs’ structure and properties can support sustainable drug release, NIR photother-
mal/photodynamic therapy, enzyme immobilisation, 3D printing scaffolds, and tissue
engineering [41]. They have shown promise in tumour immunotherapy by modulat-
ing the tumour immune microenvironment and enhancing immune cell activity. Their
unique physicochemical properties allow for the delivery of immunotherapeutic agents
and combination with other treatment modalities, thereby amplifying antitumour immune
responses [42]. The enhanced permeability and retention (EPR) effect, central to targeted
cancer therapy for decades, facilitates the passive accumulation of TMDs in tumours [43].

Considering their magnetic properties, two-dimensional transition metal dichalco-
genides exhibit strong magnetic and magneto-optical behaviours. However, these features
are predominantly explored in non-biomedical fields such as spintronics, valleytronics,
and quantum information technologies [44–46]. As for magnetic phenomena in TMDs for
biomedical applications, research still relies on the incorporation of magnetic nanoparti-
cles [47]. Such nanoplatforms are particularly interesting for photothermal therapy and
magnetically targeted drug delivery [21,48,49], which is the primary focus of this section.

Molybdenum disulfide (MoS2) is possibly the most investigated transition metal
dichalcogenide. It is characterised by high surface area, strong NIR absorbance, and
thickness-dependent band gap, all valuable for bioimaging, drug delivery, and PTT applica-
tions [50–52]. In the past decade, researchers have been developing various multifunctional
magnetic nanoplatforms based on MoS2 for multimodal cancer therapy [53]. For instance,
Abareshi and Salehi [50] studied the effect of Fe3O4 nanoparticles on certain MoS2 nanoflake
properties. Successful incorporation of Fe3O4 NPs between the MoS2 nanoflakes resulted
in a magnetic MoS2-Fe3O4 nanocomposite with a saturation magnetisation (Ms) value
of 22.38 emu g−1, enabling its separation from aqueous solutions. The main application
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of this nanocomposite was improving photothermal heat generation, thus targeting tu-
mours by applying external heat. Under 808 nm NIR laser irradiation, the nanocomposite
reached 50.9 ◦C at a concentration of 200 ppm after 10 min, significantly higher than MoS2

(33.1 ◦C) or Fe3O4 (40.4 ◦C) alone [50]. Further modifications could improve the stability
of such a nanoplatform in physiological solutions, as Li et al. [1] showed by modifying a
magnetic MoS2 system (mMoS2) with liposomes, obtaining a complex for combined photo-
chemotherapy. Uniform distribution of phosphorus (from lipids) on the mMoS2 surface
was confirmed by TEM-mapping, matching the distribution of sulphur, molybdenum, and
iron (from mMoS2), and showed the uniform distribution of iron oxide nanoparticles on
MoS2 nanosheet (Figure 4a). The mMoS2-lipid exhibited high photothermal conversion
efficiency, reaching temperatures around 75 ◦C (comparable to the non-lipid-modified
system), and achieved a doxorubicin (DOX) loading of approximately 108%. In vitro ex-
periments showed successful cellular uptake by human breast cancer cells, MCF-7, with
concentration-dependent cytotoxicity (~35% cell viability at 50 µg mL−1). Combined photo-
chemotherapy (mMoS2-Lipid-DOX+NIR) resulted in cell viability of approximately 16%
(Figure 4d). Quite promising results were also obtained in vivo, where mMoS2-lipid accu-
mulated more effectively at tumour sites compared to unmodified mMoS2, resulting in
significant tumour inhibition while having minimal toxic side effects, with improved bio-
compatibility attributed to the lipid surface modification. Additionally, magnetic resonance
signal intensity was linearly related to the concentration of magnetic 2D nanomaterial, and
in vivo T2-weighted MRI indicated higher accumulation of mMoS2-lipid in tumour cells,
highlighting its potential as an effective treatment system for breast cancer [1].

Figure 4. (a) TEM elemental mapping images displaying the distribution of sulphur (1), molybdenum
(2), iron (3), and phosphorus (4), along with TEM micrographs of mMoS2-lipid (5) and mMoS2

(6). (b) Cellular uptake of FITC-labelled mMoS2-lipid (DAPI-labelled cell nuclei). (c) Cell viability
following treatment with mMoS2-lipid at concentrations of 12.5, 25, and 50 µg mL−1 after 10 min NIR
laser irradiation (2 Wcm−2) and incubation for 24 h. (d) Cell viability assessment after 24 h incubation
(PBS, PBS + NIR, mMoS2-lipid + NIR, mMoS2-lipid-DOX, mMoS2-lipid-DOX + NIR) incubating
with cells for 24 h at 50 µg mL−1 concentration of doxorubicin (mean ± SD, n = 3; *** statistical
significance). Reproduced from [1], with permission from Elsevier.
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The study by Shariati et al. [54] demonstrates another example of MoS2 modification
with magnetite nanoparticles and gold nanorods, resulting in an MFG nanocomposite.
Photothermal experiments were performed for 10 min (808 nm continuous wave laser,
1 W cm−2), resulting in a stronger response than unmodified structure. DOX loading was
enabled with further modification with PEG, and its release was assessed in phosphate
buffer saline (PBS) at pH 5.8 and 7.4, with and without NIR laser irradiation. Under NIR
irradiation, approximately 70% of DOX was released from the MFG-PEG sample at pH 5.8,
compared to 18% without irradiation at the same pH. At physiological pH, 27% of DOX
was released under NIR irradiation, whereas only 13% was released without it [54]. These
results indicate both pH- and NIR-dependent DOX release, enabling better control over
this potential therapy platform.

Alongside MoS2, many complexes of tungsten disulfide (WS2) have been synthe-
sised as potential drug delivery agents. One such example is the WS2/Au-lipid com-
plex [55], which was evaluated for the dual-responsive release of DOX in combined
PTT/chemotherapy due to its responsiveness to both NIR light and pH, and reduced
cancer survival rates were observed both in vitro (~30% relative cell viability) and in vivo
experiments. Tumour reduction in vivo was observed only with combinational therapy,
while all other groups showed little to no change in tumour size in Balb/c mice [55]. Hsiao
et al. coated WS2 with polypyrrole to electrically stimulate the delivery of 5-fluorouracil
(5-FU) [56]. While both studies offer valuable insights without incorporating magnetism,
the integration of magnetic properties could improve the effectiveness and control of
such systems.

Considering magnetic WS2, we begin with a promising approach presented a decade
ago by Yang et al. [57]. In this study, WS2 nanosheets were functionalised with Fe3O4

nanoparticles via self-assembly, then encapsulated in a mesoporous silica shell function-
alised with PEG. The resulting WS2-IO@MS-PEG composite exhibited strong near-infrared
light and X-ray absorbance, along with superparamagnetism. Doxorubicin loading was
high, with intracellular release triggered by NIR-induced photothermal heating at acidic pH,
promoting cancer cell eradication. In vivo combined PTT/chemotherapy with WS2-IO@MS-
PEG/DOX showed almost complete tumour inhibition, significantly higher compared to
monotherapies. Similarly to magnetic MoS2 lipid modification, modification of magnetic
WS2 was also performed [58]. DOX-loading capacity was ~180%, and the platform showed
great photothermal performance (reaching 60 ◦C after 10 min at 200 µg mL−1) and dual-
responsive drug release, achieving 33% release at pH 5 and NIR irradiation after 4 h.
In vitro experiments showed cytotoxicity dependence on the concentration of DOX-loaded
platform, and in vivo studies indicated higher accumulation with the lipid-coated structure,
similar to the behaviour observed for a lipid-coated MoS2-based nanosystem. The complex
itself, without the drug, showed practically no cytotoxicity, with a value of relative cell
viability being over 90% [58].

In addition to photothermal therapy, photodynamic therapy is another non-invasive
phototherapy modality where TMDs can play a significant role. In PDT, visible-light-
activated photosensitizers produce reactive oxygen species (ROS), causing oxidative dam-
age and cell death. Wang et al. [59] developed a transition-metal-based magnetic nano-
material that can potentially combine PTT/PDT/chemotherapy. They solvothermally
synthesised hollow molybdenum diselenide nanospheres, introduced Fe3O4 coating, and
subsequently combined these with different amounts of the pluronic F127 (MF-2). The
nanocomposite showed increased ROS production and enhanced perfluorocarbon (PFC)
loading, leading to a threefold increase in ROS generation, which is desirable for hypoxic
tumour environments. Moreover, the narrow band gap (1.25 eV) of MoSe2 enhances
MF-2’s NIR light absorption, resulting in a photothermal conversion efficiency of 66.2%.
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This value is significantly higher compared to some materials such as MnO2 nanosheets
(21.4%) [60], but also MoSe2 alone (57.9%) [61] and gold-nanoparticle-modified MoSe2

nanosheets (62.2%) [62]. It is also comparable to widely studied gold nanorods [63] and
gold nanoparticles, which exhibit efficiencies ranging from 22% to 103%, depending on their
size and shape [64]. The presence of Fe3O4 nanoparticles further improved MF-2’s biodegra-
dation through redox reactions, forming water-soluble Mo(VI) oxide species, and DOX
loading also showed promising results. Although this is not a 2D system, its potential as a
versatile transition-metal-based theranostic agent for integrated PTT/PDT/chemotherapy
applications is recognised [59].

To further emphasise the potential of transition metal dichalcogenides as anticancer
agents, we will discuss evaluations using density functional theory (DFT) calculations. One
study revealed that complex bilayer MSe2 and MS2 (M = Mo, W) nanomaterials exhibit
strong interactions with the β-lapachone anticancer drug, suggesting their potential for
effective drug delivery based on their electronic properties [65]. Certain TMDs can also
improve the drug’s effectiveness in treating cancer cells. Specifically, WS2 and WSe2 interact
with proteins either on the cell’s surface or within the cytoplasm, triggering signalling
pathways that initiate autophagy. When A549 lung cancer cells were pre-treated with
WS2 or WSe2, they became more susceptible to the effects of doxorubicin, reducing the
cancer cells’ resistance to the drug and making the treatment more effective [66]. In vitro
studies have shown that TMDs, such as WS2 nanosheets, exhibit strong biocompatibility by
localising within the cell cytoplasm and being surrounded by membranes rather than inside
the nucleus. Cytotoxicity and genotoxicity assessments using human kidney cells showed
that WS2 did not induce significant levels of ROS or mutations in S. Typhimurium bacteria,
even at high concentrations and extended exposure times, indicating minimal cytotoxicity
and its potential for diverse biomedical applications [67]. Although several studies have
reported favourable biocompatibility profiles for TMD-based nanoplatforms, the potential
cytotoxic effects, particularly those arising from metal constituents and prolonged exposure,
remain an important consideration in their development for clinical applications.

3. Transition Metal Carbides/Nitrides
Transition metal carbides and nitrides (MXenes) are a novel class of 2D inorganic

compounds, structurally similar to graphene sheets. MXenes are typically composed of
an early transition metal (e.g., Ti, Mo, V) combined with carbon or nitrogen (X), following
three common stoichiometries: M2XTx, M3X2Tx, and M4X3Tx [68] (Figure 5). Their general
formula is Mn+1XnTx, where T represents surface functional groups (e.g., hydroxyl (-
OH), fluorine (-F), and oxygen (-O)), and n typically ranges from 1 to 4 [31]. MXenes,
exemplified by Ti3C2, Mo2C, V2C, Nb2C, Zr3C2, and Ta4C3, are commonly produced by
selectively etching the A-layer from atomically laminated ceramics known as MAX phases
(Figure 6a) [69]. In these MAX phases, “A” refers to elements from groups IIIA (13) to VIA
(16) (such as Al, Ga, Si, and Ge) [70,71]. The unique edge-sharing [M6X] octahedral structure
of MAX phases contributes to the stability and properties of the resulting MXenes [72].
More than 70 types of MXenes have been synthesised with various elements, and over
100 types have been theoretically predicted [5].
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Figure 5. Schematics of three types of MXenes and the top-down approach for their synthesis.
(a) Structure of MAX phases M2AX, M3AX2, and M4AX3 and the selective etching of A-layer. (b) MX-
ene layers (1-, 2-, or 3-atom thick) obtained after selective etching and their surface termination,
T (functional groups). (c) Elements that build MAX phases, and T elements in MXenes. Adapted
from [73].

These 2D materials have attracted wide interest since their discovery in 2011, owing
to their physicochemical properties such as high specific surface area, tuneable surface
chemistry, electrical conductivity, magnetic properties, low toxicity, luminescence, and
high biocompatibility; hence, they have emerged as promising candidates for various
bio-applications [74,75]. The presence of surface-terminating functional groups allows
the grafting of other molecules and compounds to their surface, providing active sites
for drug loading and enabling surface modification and functionalisation [4,71]. These
surface functional groups allow active targeting to tumour cells, while passive targeting
via the EPR effect supports accumulation in the tumour. MXene-based nanoplatforms
impose anticancer effects primarily through combined photothermal and photodynamic
therapy, enhanced by their high surface area and tuneable surface chemistry, enabling
efficient drug loading and controlled release. That is why MXenes have found applications
in photodynamic therapy, photothermal/chemo-photothermal therapy, tissue engineer-
ing, regenerative medicine, bioimaging and biosensing, targeted delivery of anticancer
drugs [76,77] (including mitigation of drug toxicities), and optimisation of the pharmacoki-
netics of therapeutic agents [4].

MXenes also have considerable potential to achieve intrinsic magnetism owing to their
chemical and structural diversity [78]. The magnetic properties of MXenes are determined
by their structure and chemical composition, primarily the occupation of the d-orbitals.
Strong covalent M-X and M-T bonds affect the magnetism of MXenes, which typically do
not exhibit spontaneous magnetism. However, some pristine MXenes do exhibit magnetic
order [79], and the ground state of some MXenes is ferromagnetic, mostly Cr-based ones,
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such as Cr2CF2, Cr2C(OH)2, Cr2NF2, Cr2N(OH)2, and Cr2NO2 [80]. Gao and Zhang [81]
investigated the 2D in-plane order of MXenes (i-MXenes) based on DFT calculations
and observed that robust magnetism can be achieved by alloying nonmagnetic MXenes
with magnetic transition metal elements. Out of the 319 i-MXenes they investigated,
about 20% of the compounds exhibit magnetism, with total magnetic moments exceeding
0.2 µB per formula unit in the ferromagnetic configuration, among which 64.5% have
ferromagnetic ground states [81]. Zhang et al. [78] used spin-polarised density functional
theory calculations to design and investigate 50 double-transition metal MXenes and
reported ferromagnetic half-metallicity for some of them.

Through systematic studies performed both in vitro and in vivo, the engineered MX-
enes and MXene-based nanoplatforms have demonstrated high efficacy in targeted drug
delivery and combination therapy in several tumour treatments, with almost all available
studies focusing on titanium carbide (Ti3C2). Li et al. [82] modified the Ti3C2 surface with a
mesoporous silica layer to improve dispersibility, hydrophilicity, controlled drug delivery,
and surface chemistry for further potential modification. Systematic studies have revealed
that MXene-based nanosystems can actively target tumours through arginine-glycine-
aspartic acid (RGD) binding [82,83]. Liu et al. [84] also demonstrated MXenes’ potential to
eradicate cancer cells and tumour tissue through combined PTT/PDT/chemotherapy. They
synthesised ∼100 nm Ti3C2 nanosheets with a stable surface functional group Al(OH)4−,
achieved by supplying additive Al3+ to avoid Al loss from long-term etching of Ti3AlC2

using TMAOH organic base. Layer-by-layer surface modification with hyaluronic acid
(HA) and DOX resulted in a multifunctional nanoplatform that could actively target CD44+
overexpressed tumour cells, a characteristic feature of various cancers, associated with
tumour progression, metastasis, and resistance to chemotherapy [85]. The overexpression
of CD44+ on tumour cells allows HA to enhance the selective delivery of DOX, improving
drug uptake in malignant cells while minimising toxicity to healthy tissues. Molecular in-
teractions between DOX and Ti3C2 nanosheets resulted in 84.2% drug loading capacity. The
178 nm Ti3C2-DOX complex was able to accumulate at the tumour sites via the EPR effect
and ablate the tumour at a low dose (Ti3C2 at 2 mg kg−1 with DOX loaded at 1.6 mg kg−1)
under a 0.8 W cm−2 power of 808 nm NIR laser [84]. Another study explored modification
of Ti3C2 with soybean phospholipid, particularly because it enables easier transport of
Ti3C2 nanosheets within blood vessels, while also keeping them highly dispersed. Drug
loading was impressively high, 211.8%, and the platform exhibited both pH-responsive
and NIR-laser-triggered on-demand DOX release [86].

The studies presented in this review showed promising theranostic potential; however,
control and targeting specificity in cancer treatment remain a challenge [87]. Regardless
of their potential to exhibit intrinsic magnetism themselves, none of the experimentally
produced MXenes has exhibited strong ferro- or ferrimagnetism. Inducing stronger mag-
netism can be accomplished by incorporation and growth of Fe3O4 or ferrites (CuFe2O4)
nanoparticles [88]. Sobolev et al. [31] demonstrated a method for large-scale production
of magnetic MXene-based nanocomposites by delaminating multilayer Ti3C2Tx sheets
and directly growing iron oxide magnetic nanoparticles within their interlayer spacing.
The growth of the Fe3O4 on the surface of Ti3C2Tx flakes results in higher crystallinity
of Fe3O4 compared to separately synthesised nanoparticles. Higher iron salt concentra-
tions accelerate delamination, creating more nucleation sites and smaller Fe3O4 particles,
while slower delamination leads to fewer nucleation sites, causing the formation of larger
crystallites on multilayer MXene structures. This affects magnetic properties, as smaller
Fe3O4 particles on MXene surfaces exhibit higher crystallinity, increasing their saturation
magnetisation. Separately synthesised Fe3O4 NPs show superparamagnetic behaviour
with an Ms value of 39 A m2 kg−1 due to an amorphous phase, whereas Ti3C2Tx enhances
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Ms to ~45 A m2 kg−1. A particle mass fraction comparable to or higher than MXenes accel-
erates delamination, single-layer MXene yield, and magnetic properties [31]. Liu et al. [89]
developed a Ti3C2-CoNWs heteronanocarrier by intercalating cobalt nanowires in Ti3C2

nanosheets via ultrasound. Ti3C2-CoNWs exhibited tuneable magnetic properties and high
drug loading efficiency of 225.05%, comparable to previously mentioned non-magnetic
Ti3C2 modified with soybean phospholipid, which achieved a DOX loading of 211.8% [86].
Furthermore, drug release from magnetic Ti3C2-CoNWs was triggered by pH (4–6) and
NIR irradiation, inducing simultaneous heat generation and DOX release. Under 808 nm
laser irradiation, the combined therapy drastically reduced cancer cell viability to 15%,
whereas PTT and chemotherapy alone resulted in around 60% viability each. The heteroge-
neous system also enhances Ti3C2 nanosheets’ photothermal performance by improving
photoelectron transmission [89].

Magnetic MXenes have also been explored for MR imaging-guided photothermal
therapy in cancer treatment. Incorporating Fe3O4 nanoparticles, either in situ or post-
synthesis, enhances their magnetic properties by increasing magnetic saturation and overall
magnetic moment, resulting in improved responsiveness to an external magnetic field [90].
Liu et al. [91] synthesised a soybean-phospholipid-modified Ti3C2-Fe3O4 composite with
a high T2 relaxivity (394.2 mM−1 s−1), making it a strong candidate for tumour imaging.
This magnetic 2D nanocomposite also exhibited a photothermal conversion efficiency of
48.6%, demonstrating effectiveness in vitro and in vivo (4T1 breast cancer xenografts in
nude mice) (Figure 6b). Post-treatment observations revealed complete tumour ablation
without recurrence, suggesting the potential for multimodal application (Figure 6c,d).

The potential for biomedical applications of MXenes is similar to that of TMDs in terms
of their mechanisms of action. Both material groups exhibit strong photothermal conversion
efficiency and ROS generation under NIR irradiation or chemical stimuli. While both
support drug delivery and combination therapies, MXenes’ tuneable surface chemistry with
diverse functional groups further enhances their potential in responsive and multifunctional
anticancer platforms [92].

Controlling drug delivery also depends on the coating’s response to stimuli. A hy-
drogel, combining covalently cross-linked poly(N-isopropyl acrylamide) (PNIPAM), a
temperature-responsive polymer, and ionically cross-linked alginate [93] demonstrates how
surface modifications impact controlled release. This system enhances MXenes’ biocom-
patibility and mechanical properties while enabling drug release by shrinking under NIR
or alternating magnetic field (AMF) exposure. Grafting PNIPAM allows AMF-triggered
drug release in various transition-metal-based 2D systems [7]. At room temperature, drug
release can be inhibited, while AMF triggers a change in polymer conformation, enabling
release. Additionally, surface nanopore engineering (such as sol-gel chemistry) can further
improve drug loading and release [82]. However, despite these advancements, magnetic
MXenes still face challenges such as biodegradability, stability, and limited drug-loading
capacity [4].
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Figure 6. (a) Schematics of the exfoliation and surface modification process used to obtain mag-
netic 2D soybean-modified Ti3C2 nanocomposite, highlighting its multifunctional capabilities for
tumour theranostics, including T2-weighted MRI-guided photothermal therapy. (b) Infrared ther-
mal images of 4T1 tumour-bearing mice captured before and after intravenous administration of
soybean-phospholipid-modified magnetic nanosheets, further irradiated with 808 nm laser for 8 min
(1.5 W cm−2). (c) Tumour growth curves for different groups of 4T1 tumour-bearing mice sub-
jected to different treatments: control, soybean-phospholipid-modified magnetic Ti3C2, laser, and
laser + soybean-phospholipid-modified magnetic Ti3C2. (d) Representative photographs of excised
4T1 from each treated group after performed photothermal therapy. Reprinted from [91] with
permission from RSC Publishing.
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4. Transition Metal Oxides
Transition metal oxides (TMOs) are d-state transition elements oxides with unique

magnetic, optical, and electrochemical properties, due to their wide band gaps [27,28,94].
They have atomic-scale to few-atomic-layer thickness, and some can exhibit enhanced
magnetism due to quantum confinement and oxygen vacancies (that can also modify
electron interactions and surface effects that can modify the spin order) [95,96]. Held
together by weak van der Waals forces, these materials can be exfoliated into thin layers,
either mechanically or in a liquid phase, which are common top-down approaches for
their synthesis. That approach is often followed to obtain materials such as molybdenum
trioxide (MoO3), manganese dioxide (MnO2), and ruthenium oxide (RuO2). Bottom-
up methods, including self-assembly and chemical vapour deposition, enable controlled
design [94]. Besides those mentioned, other unique transition metal oxides include tungsten
trioxide (WO3), vanadium oxide (VO2), titanium dioxide (TiO2), and iron oxide forms (FeO)
(Figure 7).

Figure 7. Two-dimensional forms of some transition metal oxides and their unit cells: (a) MoO3,
(b) TiO2, (c) WO3, (d) MnO2, and (e) V2O5.

The layered structure of these materials allows them to control “light interactions”,
leading to photoluminescence and electroluminescence in some of them. The reduced cyto-
toxicity, along with high surface reactivity and photoelectric properties, makes transition
metal oxides promising for combined PTT and PDT [97]. Research on oxygen-deficient
forms like MoO3−x and WO3−x has shown that they exhibit localised surface plasmon
resonance for improved NIR absorption and high photothermal conversion efficiency, all of
which are beneficial for photothermal and photoacoustic imaging. Furthermore, their high
atomic numbers enhance X-ray attenuation, making them potential computed tomography
(CT) imaging agents [98]. For molybdenum, its trioxide form, MoO3−x, stands out for its
strong optical absorption in visible and NIR regions, ability to induce caspase-dependent
apoptosis, and inhibition of endothelial cell migration [99]. Furthermore, one comparative
gene expression study indicated that molybdenum oxide (50–60 nm in size, 1D geometry)
showed lower cytotoxicity compared to widely used silver nanoparticles [100], making this
material one of the most promising candidates for biomedical applications.

Pandey et al. [101] investigated the PTT of solid tumours using bluish-green molybde-
num oxide (BG α-MoO3), exfoliated from molybdenum oxide powder. Oxygen vacancies
were introduced by Xe lamp irradiation to produce blue (B) and then, from them, green
(G) nanoflakes. The materials were then functionalised with polypyrrole and irradiated
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with 808 nm, resulting in temperature increases of 50 ◦C (BG), 65 ◦C (B), and 52 ◦C (G),
with corresponding photothermal transduction efficiencies of 29.32%, 44.42%, and 42.00%,
respectively [101]. In vitro and in vivo studies showed that all produced materials possess
good biocompatibility and photostability, reducing tumour size after 7-day treatment in
tumour-bearing mice models. Further optimisation of the stability and solubility of MoOx

nanosheets is crucial for their biomedical application. For instance, α-lipoic-acid-conjugated
mPEG-NH2 and folic-acid-modified bovine serum albumin improve stability and prevent
aggregation. Modified blue 2D MoO3 achieved 76.49% docetaxel (DTX) loading, inducing
immunogenic cell death and inhibiting both primary tumour growth and lung metastasis
of breast cancer with an inhibition rate of 93.6%, outperforming Taxotere® alone with fewer
side effects [102]. Furthermore, after in vivo NIR irradiation, the tumour temperatures
reached 48.4 ◦C for modified nanocomposite without the drug and 48.8 ◦C with the drug
(Figure 8).

 

Figure 8. The NIR thermal images of mice (a) and corresponding tumour temperature profiles
(b) showing changes over time for different treatment groups: normal saline, FA-BSA-PEG/MoOx alone,
and loaded with docetaxel, respectively. Reprinted from [102]. Copyright Journal of Nanobiotechnology.

Tungsten oxide (WO3), another significant TMO, is a promising material for PTT due
to the high X-ray absorption coefficient of tungsten (4.438 cm2 kg−1 at 100 keV) [103].
Researchers have successfully synthesised W18O49 nanosheets and nanorods whose surface
properties could be directed towards catalysis and sensing, and thus biomedical applica-
tions. A W18O49-poly(ε-caprolactone)–poly(ethylene glycol) nanoparticles system with
tirapazamine (TPZ) can react with absorbed oxygen to generate ROS when exposed to an
808 nm laser [104]. It also creates a hypoxic tumour microenvironment, activating TPZ for
hypoxia-activated chemotherapy, which can be monitored through intracellular ROS detec-
tion and in vivo positron emission tomography (PET) imaging. In vivo results showed that
this system effectively eliminated solid tumours [104]. Another multimodal PEG-modified
tungsten oxide platform, PEGylated WO2.9, was developed by Zhang et al. [105] for com-
bined NIR-II-mediated PTT and chemotherapy, achieving a DOX loading efficiency of
102%. Drug release was 3.6-fold higher at pH 5.0 (than at pH 7.4) (Figure 9a), likely due
to increased hydrophilicity under acidic conditions. In vitro studies further demonstrated
significant cytotoxicity against 4T1 cells, with cell viability reduced to around 16% in the
PEG@WO2.9@DOX + NIR group (Figure 9b). Fluorescent staining further confirmed these
results, showing increased cell death under combined treatment (Figure 9c). Addition-
ally, computed tomography imaging showed enhanced tumour contrast after injection
of PEG@WO2.9 nanosheets, with quantitative analysis confirming increased CT signal
intensity (Figure 9d,e), highlighting their potential as multifunctional agents for cancer
theranostics [105].

So far, we have seen that oxygen deficiencies make TMOs sensitive to oxidation, thus
making them ideal candidates for PTT, but improvement of their stability in physiological
environments, as well as biocompatibility, is required. A PVP-coated W18O49 system is
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shown as more biocompatible while maintaining high photothermal conversion efficiency,
supporting controlled DOX release (69.1%) under pH and NIR stimuli, with HeLa cell
viability dropping to 21.5% [106]. Oxygen vacancies in TMOs also enhance ROS generation,
significant for both photodynamic and sonodynamic therapy (SDT), as demonstrated in
titanium dioxide (TiO2)-loaded black phosphorus nanosheets [107].

Figure 9. (a) Doxorubicin release profiles at different pH conditions with(out) near-infrared-II
(1064 nm) laser irradiation. (b) Viability of 4T1 cells following various treatments. (* p < 0.05,
** p < 0.01). (c) Fluorescence staining of 4T1 cells (live: green, dead: red) following multiple treatments:
G1, control; G2, PEG@WO2.9 nanosheets; G3, doxorubicin; G4, PEG@WO2.9@DOX nanosheets; G5,
PEG@WO2.9 nanosheets + NIR; G6, PEG@WO2.9@DOX nanosheets + NIR (scale bar = 25 µm).
(d) Computed tomography imaging of the mice tumours at pre- and post-injection of PEG@WO2.9

nanosheets. (e) Quantitative analysis of computed tomography signal intensity corresponding to (d)).
Reprinted from [105] with permission from Elsevier.

Among the various biomedical applications employing magnetism and thermal effects,
such as MRI, hyperthermia, and PTT, iron oxide stands out as one of the most significant ma-
terials. As an FDA-approved nanomedicine, it has been extensively studied in its 0D form,
not only as a contrast agent but also for biosensing and immunoassay applications [108,109].
When integrated with other materials, iron oxide nanoparticles enhance multimodal treat-
ments, making this TMO central to advancements in targeted drug delivery and theranostic
platforms. While this review focuses on magnetic 2D TM-based nanomaterials, it is impor-
tant to acknowledge the potential of 2D iron oxide, particularly in the context of synthesis
and biomedical applications. The quantum confinement effects in hematite (α-Fe2O3) films
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is between 3 and 12 nm [110], so if the thickness does not exceed these values, it is possible
to obtain 2D hematene. Although most studies on 2D Fe-oxides have focused on energy and
engineering applications [111], hydrothermal synthesis has been identified as a promising
approach for obtaining such films for potential biomedical applications as well [112]. Given
iron oxide’s well-established role in magnetic nanomedicine, exploring its 2D geometry
could open new possibilities for magnetism-related biomedical applications. This is some-
thing that should be further explored, particularly as iron oxide in other-dimensional forms
can be integrated with 2D nanomaterials, often outperforming single components [113].

While hydrothermal synthesis is promising for obtaining iron oxides, chemical vapour
deposition and liquid exfoliation are more commonly used for the synthesis of 2D nanoma-
terials in general [114]. Other synthesis techniques such as redox and thermal decompo-
sition have been successful ways of obtaining many TMOs, such as manganese dioxide
(MnO2) [115]. MnO2 ultrathin nanosheets can rapidly increase the temperature, reaching
74.5 ◦C [116], making it significant for potential PTT applications, also due to the strong NIR
adsorption, paramagnetic properties, and reactivity with glutathione (GSH) [117], overall
creating opportunities for bioapplications [118]. For instance, Sun et al. [119] recently
reviewed 2D MnO2 nanosheets’ (~1.2 nm) photothermal conversion efficiency, which was
62.4% under NIR laser irradiation, outperforming multilayer nanosheets (60 nm), which
reached only 16.5%. Furthermore, in vitro MRI measurements showed higher values of r1
relaxivity of Mn3O4 nanoplates compared to 0D nanospheres (2.06 vs. 1.31 mM−1 s−1, re-
spectively), suggesting advantages of the high surface-to-volume ratio 2D geometry results
in [120]. Another TMO that has potential as a tumour therapeutic and diagnostic agent
is vanadium oxide (VOx) [121]. Selective degradation, resulting in nanoscale products
rather than ions, can play a significant role in enhancing excretion and reducing the risk of
toxicity [122]. Additionally, vanadium’s multiple valence states could provide controllable
redox activity and peroxidase-like activity, which can add up to intracellular oxidative
stress [123]. Finally, ROS generation remains a key ability for TMO-based photodynamic
therapy, and combining V-based or other TMOs with magnetic nanoparticles could enhance
oxidative and thermal stress in cancer cells.

5. Metal–Organic Frameworks
Metal–organic frameworks (MOFs) are porous coordination polymers—crystalline

materials composed of metal ions or clusters (nodes) coordinately bonded by organic
ligands (linkers). These materials are particularly interesting due to their structural diversity
and multifunctionality [124,125]. Nodes function as connection points, while linkers serve
as cross-overs between them, resulting in 1-, 2-, or 3-dimensional networks [126]. The
structure of MOFs can be described at four distinct levels (Figure 10). The first level consists
of metal ions and linkers. When these basic elements combine, they form secondary
building units (SBUs) with geometries such as octahedral or tetrahedral. The tertiary
structure refers to the internal framework formed by linking SBUs, while the final level
is represented by the overall topology/morphology (size, shape, and orientation), which
depends on the growth of the internal framework [125,127].

This architecture results in an impressively high Brunauer–Emmett–Teller (BET) spe-
cific surface area, ranging from 3000 to 6000 m2g−1, with some reports even reporting up
to 8000 m2g−1, making MOFs ideal for high drug-loading capacities [124,128]. Zn, Fe, and
Zr are the most commonly employed metals due to their biocompatibility [128], while
organic units can range from mono- to tetravalent ligands [125]. The ability to adjust pore
characteristics, including size, volume, and surface chemistry, is crucial for biomedical
applications [124,129].
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Figure 10. Four hierarchical levels of MOF structure: from metal ions and linkers to secondary
building units, the internal framework, and overall topology/morphology.

Research on MOFs as potential biomedical agents began approximately two decades
ago, and although it has predominantly focused on three-dimensional structures, interest
in their two-dimensional counterparts is rapidly increasing. Unlike 3D MOFs, 2D MOFs
possess a layered structure that offers not only high surface area but also enhanced hy-
drophilicity and greater interaction with biological agents. These properties make 2D MOFs
exceptionally promising candidates for drug delivery and other therapeutic applications.
Moreover, their structural features may allow them to outperform 3D MOFs in specific
biomedical settings, especially where molecular diffusion and membrane interaction are
critical. At the same time, extensive studies on MOFs in general have demonstrated their
strong potential for biomedical applications, particularly for cancer drug delivery. Early
MOFs had certain limitations regarding the types of drugs they could effectively load due
to the lack of larger pores [35]. However, advancements over the years have enabled the
design of highly porous MOFs capable of loading high amounts of drugs and supporting
controlled drug release by responding to specific stimuli (pH, ATP, UV light) [130,131],
allowing them to function as dynamic drug delivery systems. Functionalisation with spe-
cific groups further enhances their biocompatibility, controls release kinetics, and reduces
toxicity [132–134].

Magnetic properties in MOFs can arise from paramagnetic metal centres, particularly
V, Cr, Mn, Fe, Co, Ni, and Cu (first-row transition metals). However, combining MOFs
with magnetic nanoparticles results in a stronger magnetic response; thus, these highly
porous materials are capable of controlled drug release under an external magnetic field,
enabling magnetic hyperthermia and magnetic resonance imaging applications [135,136].
For example, core-shell Fe3O4@HKUST-1(Cu) nanostructure prepared by Ke et al. [137]
demonstrated a 16 wt% drug loading capacity for nimesulide, a pancreatic cancer drug,
with 0.2 g of drug per 1 g of composite, which was completely released over 11 days at
body temperature [137]. Oxaliplatin delivery was also tested using a copper-based MOF
combined with Fe3O4 NPs and showed controlled release, with ~35% oxaliplatin released
at pH 1.2 within 30 min [138].

In another study, lanthanide-doped MIL-53(Fe)/Fe3O4 (with La and Gd) was evalu-
ated for antimicrobial and anticancer properties [139]. Cytotoxicity screening on Hep-G2,
MCF-7, and HCT-116 showed strong antitumour effects, particularly against MCF-7 cells
(IC50 = 5.50 ± 0.13 µg mL−1). This is attributed to the coordination of metal ions, which
improve biological activity by increasing ligand acidity, promoting hydrogen bonding,
DNA binding affinity, and oxidative-stress-mediated cancer cell death [139]. MIL-100(Fe)
is among the most studied MOFs in general, and different studies have been performed
to understand its potential. In one such study, FeAu-nanoparticle-coated MIL-100(Fe)
demonstrated nearly complete DOX release (97.19%) and 90% cancer cell death in HSC-3
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oral squamous carcinoma cells after 10 min hyperthermia treatment (Figure 11). Figure 11
further provides insights into the material’s properties and therapeutic potential, including
its magnetic properties and hyperthermia ability with different numbers of MIL-100(Fe)
shells. In vivo studies showed enhanced imaging contrast, 30-fold tumour volume reduc-
tion, and improved survival in a mouse model [140]. In another approach, ZIF-8 was
explored for tumour imaging and catalytic therapy, after doping it with Fe/Mn [141].

Zr-based MOFs are also gaining attention for drug delivery. Parsaei and Akhbari [142]
synthesised Fe3O4-COOH@UiO-66-NH2 via a layer-by-layer assembly method. Fe3O4-
COOH nanoparticles were synthesised, followed by the self-assembly of UiO-66-NH2

shell by alternating 15 min ultrasonication of Zr-cluster precursor and NH2-BDC solu-
tions, repeated 20 times. The resulting material achieved 43.1% drug loading of quercetin
with pH-dependent release behaviour over 11 days [142]. Cytotoxicity assays showed
increased apoptosis in MDA-MB-231 breast cancer cells compared to each distinct compo-
nent. Additionally, MIL-88B-NH2 combined with iron oxide nanoparticles was studied for
glioblastoma treatments, enabling dual-drug release (carmustine and mertansine), triggered
by AFM, with confirmed efficacy in U251 glioblastoma cells [143].

Figure 11. (a) Magnetic characterisation of FeAu nanoparticles alone and coated with MIL-100(Fe):
M-H curves show reduced Ms following the coating. (b) Assessment of hyperthermia performance
of FeAu nanoparticles and MIL-100(Fe)-coated FeAu nanostructures with 5 or 10 shells. (c) Ef-
fect of hyperthermia treatment on cell viability of HSC-3 oral squamous carcinoma cells with(out)
doxorubicin-loaded FeAu@MIL-100(Fe); asterisks are representing statistical significance. (d,e) MRI
images of tumour-bearing mice taken 2 h post-injection with FeAu@MIL-100(Fe) 10-shell nanos-
tructures, with tumour regions indicated by red circles. Reprinted from [140] with permission
from Elsevier.

Within the context of ongoing research, 2D MOFs have emerged as a highly promising
new class of materials. In addition to the benefits associated with its layered structure,
the surface-exposed metal sites, hydrophilicity, and enhanced interactions with cells and
biological agents make them highly promising for drug delivery [144,145]. A recent review
by Kumar et al. [146] provides an overview of the biomedical application of 2D MOFs—
non-magnetic structures that nonetheless possess significant potential for advancement.
The following part will discuss some of these directions.
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For instance, Li et al. [147] synthesised a 2D iron-porphyrin-based metal–organic
framework with Cu nanosheets loaded with cisplatin. Drug release was triggered by pH-
dependent degradation of the nanosheets, successfully delivering cisplatin to lung cancer
cells. Cellular uptake of Pt/Cu-TCPP(Fe) was significantly higher than that of the drug
alone, and cell viability in A549 cells after 48 h at a 50 µM concentration was extremely
low, only a few percentage points, demonstrating the effectiveness of the Pt/Cu-TCPP(Fe)
nanosheets. The ROS generation capacity of this 2D nanosystem was also higher compared
to the individual components, as measured by flow cytometry (Figure 12). Another recent
study used 2D ZIF-8 for controlled delivery of siRNA [148], while a similar platform enabled
co-delivery of siRNA and cisplatin to ovarian cancer cells [149]. Specifically, Feng et al. [148]
developed a multifunctional PDA-ZIF-8 (PSZ) nanoplatform for the delivery of siRNA,
combining photothermal and gene therapy, and guided by photoacoustic/near-infrared
dual-modality imaging. The PSZ nanocarriers enabled tumour-specific accumulation of
siRNA while preventing premature degradation and release. The release of siRNA was
triggered by pH, as the ZIF-8 framework degrades under acidic conditions, such as in the
tumour microenvironment. The release profile showed only 13% siRNA release at pH 7.4,
with significantly higher release at lower pH values: 52% at pH 6.5 and 63% at pH 5.0 after
24 h. This 2D MOF nanosystem exhibited a photothermal conversion efficiency of 39%,
with a 30 ◦C temperature increase at a PSZ concentration of 50 µg mL−1, and remained
stable over five cycles of photoirradiation. In vivo studies demonstrated complete ablation
of tumours in HeLa tumour-bearing mice after combining PSZ+PTT therapy, with no
recurrence observed for 10 days [148].

Apart from drug delivery, 2D MOFs are also promising for bioimaging and PDT
applications. Zhu et al. [150] developed a 2D Zn-TCPP@PEG nanoplatform for combined
chemo-photodynamic therapy. These 2D nanosheets exhibited superior properties com-
pared to their 3D counterparts, including enhanced light-triggered 1O2 generation for
photodynamic therapy, higher drug loading capacity for doxorubicin, increased cellular
uptake, and higher ROS generation. Labelling with 99mTc enabled in vivo tracking through
single photon emission computed tomography (SPECT). In vivo studies revealed signif-
icant tumour growth inhibition after treatment with Zn-TCPP@PEG/DOX nanosheets
under light irradiation, demonstrating a successful synergistic anti-tumour effect from com-
binational photodynamic/chemotherapy. Importantly, the system showed no long-term
toxicity, as confirmed by hematoxylin and eosin staining and organ slice examination [150].
Biodegradation studies further indicated that these 2D metal–organic frameworks undergo
renal excretion and are not retained long-term in the body, highlighting their biodegrad-
ability and potential for clinical applications in cancer therapy.

Despite not being widely explored as magnetic nanosystems, 2D MOFs’ unique proper-
ties suggest the potential to create a window of opportunities in the area of bionanomedicine.
The layered structure enables efficient interactions with small molecules and biological
systems, potentially outperforming materials with three-dimensional geometry in selected
applications. Furthermore, 2D MOFs can be hybridised with other 2D materials, such
as MXenes or TMDs, to create multifunctional composites with improved stability and
drug-loading capacity, and better targeting capabilities [151]. Although challenges remain,
such as the scale-up of their synthesis, stability, and long-term effects, overcoming them
could enable magnetic 2D MOFs to make significant advancements in cancer therapy
applications [20,142].
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Figure 12. (a) Comparison of A549 cell viability after 48 h exposure to cisplatin and Pt/Cu-TCPP(Fe)
nanosheets. (b) Measurement of intracellular platinum and copper levels following 6 h of incubation
with Pt/Cu-TCPP(Fe). (c) Assessment of ROS production induced by cisplatin and Pt/Cu-TCPP(Fe)
nanosheets; cell nuclei are stained with DAPI (blue), and ROS are visualised by DCF fluorescence
(green) (scale bar = 20 µm). (d) Flow-cytometry-based quantification of ROS levels in A549 cells, with
data presented as mean ± SD (n = 3); statistical significance: ** p < 0.01. Reprinted with permission
from [147]. Copyright 2018 American Chemical Society.

6. Future Directions
While prior reviews have often focused on individual categories of 2D nanomaterials

for cancer therapy or broadly addressed their biomedical applications [21,146,152–154],
this review provides a comparative analysis specifically of 2D nanomaterials containing
transition metals in their structure. It also covers their magnetic nanocomposites—an area of
growing relevance, as magnetic functionality is increasingly recognised as powerful stimuli
for enhancing targeting, enabling controlled drug release, and integrating multimodal
therapeutic strategies. By examining four major classes of magnetic 2D nanomaterials
based on transition metals—TMDs, MXenes, MOFs, and TMOs—this review highlights
both their common advantages and material-specific limitations.

Although the multifunctionality of magnetic 2D transition-metal-based nanomate-
rials is well established, several critical challenges must be addressed to advance their
clinical translation. As inorganic materials, one of the primary concerns is their limited
biodegradability and the potential for long-term bioaccumulation, raising toxicity concerns.
Bio-inspired surface engineering strategies, such as PEGylation, as demonstrated with
PEG-WO2.9 nanosheets [105], and modification with lipids, different polymeric coatings,
hydrogels, and scaffolds have shown improved biocompatibility and hydrophilicity [155].
Notably, in the case of PEG modification of several TMDs, only MoS2 degrades and is
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excreted from the system within a month due to its unique chemistry [156]. Additionally,
agglomeration issues can be addressed by incorporating 2D materials into polymer ma-
trices. For example, TiO2@MXene nanosheets can catalyse the polymerisation of acrylic
acid monomers and chemically cross-link polymer chains, forming stable hydrogels that
enhance dispersion and performance [157].

Moreover, the complexity and heterogeneity of tumours call for more personalised
nanoplatforms [158]. The integration of biomolecule-conjugated nanostructures for
receptor-targeted delivery or gene-editing tools such as CRISPR/Cas9 systems could en-
hance the treatment specificity and therapeutic efficacy [159]. Computational approaches,
including molecular modelling, have the potential to provide valuable insights into biologi-
cal interactions and guide the rational design and optimisation of these materials [160].

Nevertheless, the lack of a standardised framework for evaluating long-term in vivo
stability and metabolic clearance has delayed their advancement in clinical translation.
Systematic toxicological assessments, including organ-specific accumulation profiles and
immunotoxicity analyses, are essential to bridging the gap between preclinical efficacy
and clinical safety. Furthermore, addressing challenges associated with scalable and repro-
ducible production is critical for enabling broader clinical application. By integrating these
strategies with the intrinsic advantages of magnetic 2D transition-metal-based nanomateri-
als, these platforms hold strong promise for advancing biomedical applications and the
broader field of nanotechnology.

7. Conclusions
The development of 2D transition-metal-based nanomaterials with intrinsic and ex-

trinsic magnetic properties opens new opportunities for bionanomedicine. Each class
of these materials—transition metal dichalcogenides, transition metal carbides/nitrides,
metal–organic frameworks, and transition metal oxides—offers distinct advantages for
specific biomedical applications. Incorporation of magnetic nanoparticles further enables
multimodal therapeutic strategies with enhanced targeting and efficacy, by improving
hyperthermia and photothermal treatments. When integrated with 2D materials like
transition metal dichalcogenides or carbides/nitrides, they facilitate multimodal therapy,
increasing tumour cell death while minimising damage to healthy tissues. MoS2 modified
with magnetite nanoparticles achieved 70% doxorubicin release under NIR irradiation at
pH 5.8 [54], while different lipid-modified magnetic TMDs showed minimal toxic side
effects [1,58]. Among the systems discussed in this review, soybean-phospholipid-modified
Ti3C2-Fe3O4 MXene composite stands out, achieving a photothermal conversion efficiency
of 48.6% and a T2 relaxivity of 394.2 mM−1s−1, resulting in complete tumour ablation [91].
MXenes remain one of the few 2D platforms capable of efficiently integrating photothermal
therapy, drug and gene delivery, and MRI imaging within a single system.

As for the drug delivery capabilities, MOFs are exceptionally promising due to their
high drug-loading capacity, tuneable porosity, and stimuli responsiveness. Systems such as
MIL-100(Fe)-Au achieved 97% DOX release, 90% cancer cell death, and a 30-fold tumour
volume reduction [140], matching or outperforming other nanosystems like dendrimer-
functionalised nanodiamonds (~95% release) [161], temperature- and pH-responsive lipo-
somes (up to 98% release) [162], and other liposomal-based systems [163–166]. Furthermore,
the increasing interest in 2D MOFs, whose layered structure could improve interaction
with biological molecules, is a promising direction, and they could even outperform their
3D counterparts in certain biomedical applications [150]. Multimodality positions both
2D and 3D MOFs as very promising materials for precision oncology, with their potential
expected to continue expanding.
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Magnetic transition metal oxides and their composites also present strong candidates
for multimodal therapy by mainly combining photothermal and photodynamic therapy.
Systems like blue MoO3 nanosheets achieve photothermal efficiencies of 44.42% and tem-
peratures up to 65 ◦C [101], outperforming many studied platforms. PVP-modified W18O49

nanosheets demonstrated responsive DOX release and significant reduction in cancer cell vi-
ability [106]. Meanwhile, MnO2-based systems generate reactive oxygen species and exhibit
photothermal efficiencies over 60% [119], matching or exceeding widely studied photother-
mal agents like 1D or 0D gold-based nanomaterials and their nanocomposites [167,168].
MnO2 and MoO3 nanosystems achieved temperatures up to 74.5 ◦C [116] and 65 ◦C [101],
respectively, surpassing the heat generation capabilities of multiwall carbon nanotube
composites [169].

To conclude, each of the four magnetic 2D material classes offers distinct advantages
and faces unique limitations in cancer therapy. TMDs are well-suited for photothermal and
photodynamic applications due to their strong optical properties, although their functionali-
sation range can be more limited. MXenes offer superior surface tunability for combinatorial
therapy and imaging but may require strategies to address oxidative degradation. Ultra-
high drug-loading capacities and stimuli-responsive release is the strongest trait of MOFs,
but this group faces challenges with long-term stability and synthesis scalability in 2D
forms. TMOs demonstrate superior ROS generation and photothermal properties, yet their
potential for multifunctional integration is less developed compared to other classes.

Taken together, magnetic 2D TM-based nanomaterials remain highly competitive,
particularly for their capacity to integrate drug delivery, PTT, PDT, hyperthermia, and
imaging within a single system. Their advantages lie in higher surface-to-volume ratio
and increased cellular internalisation compared to other-dimensional nanomaterials, which
significantly improves intracellular delivery efficiency. However, translating these proper-
ties into clinical success requires addressing limitations such as material biodegradability,
long-term stability, as well as manufacturing scalability. Moving forward, continued inter-
disciplinary collaboration and innovation are essential to strategically develop and optimise
these systems to improve their biocompatibility and overall enhance treatment outcomes,
with strong potential to reshape precision nanomedicine for cancer therapy and related
biomedical applications.
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