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Abstract: Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor
secretome is a promising strategy for understanding the biology of tumor cells and providing markers
for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was
performed on the PCa tumor transcriptome of Genetically Engineered Mouse Model (GEMM) Pb-
Cre4/Ptenf/f mice to identify potentially secreted and membrane proteins—PSPs and PMPs. We
combined a selection of transcripts from the GSE 94574 dataset and a list of protein-coding genes of
the secretome and membrane proteome datasets using the Human Protein Atlas Secretome. Notably,
nine deregulated PMPs and PSPs were identified in PCa (DMPK, PLN, KCNQ5, KCNQ4, MYOC,
WIF1, BMP7, F3, and MUC1). We verified the gene expression patterns of Differentially Expressed
Genes (DEGs) in normal and tumoral human samples using the GEPIA tool. DMPK, KCNQ4, and
WIF1 targets were downregulated in PCa samples and in the GSE dataset. A significant association
between shorter survival and KCNQ4, PLN, WIF1, and F3 expression was detected in the MSKCC
dataset. We further identified six validated miRNAs (mmu-miR-6962-3p, mmu-miR- 6989-3p, mmu-
miR-6998-3p, mmu-miR-5627-5p, mmu-miR-15a-3p, and mmu-miR-6922-3p) interactions that target
MYOC, KCNQ5, MUC1, and F3. We have characterized the PCa secretome and membrane proteome
and have spotted new dysregulated target candidates in PCa.

Keywords: prognostic biomarkers; prostate cancer; transcriptomic-based secretome

1. Introduction

Prostate cancer (PCa) is the most frequent cancer and has the second-highest morbidity
and mortality rate among men, with 1,276,106 (7.1%) new cases globally and 358,989 (3.8%)
deaths by cancer [1,2]. In the United States, the estimated number of new cases of PCa
diagnosed in 2021 was 248,530, with 34,130 deaths. PCa in the United States accounts
for 26% of all new cancer cases [3]. Current statistics show that one in seven men will be
diagnosed with prostate cancer during their life and that one in 39 men will die of the
disease [4].

The introduction of novel androgen receptor (AR) antagonists for clinical treatment
has improved outcomes; however, most metastatic castration-resistant prostate cancer
(mCRPC) patients ultimately develop resistance to these therapies. Patients with localized
and advanced prostate tumors are sensitive to androgen deprivation therapy (ADT) and
are highly curable; patients with metastatic prostate cancer acquire resistance to ADT and
succumb to this disease [5]. While a large number of prostate cancer cases are diagnosed at
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a localized stage and are curable, metastatic prostate cancer remains fatal. In the last decade,
large-scale omics analysis has revealed well-established and new master regulators and
pathways involved in the metastatic and lethal behavior of PCa [6]. mCRPC is incurable,
with a median survival rate f two years from diagnosis, and available treatments extend
life for few months [7].

mCRPC commonly exhibits genetic alterations involving the AR, cell cycle and cell
survival pathways such as the phosphatidylinositol-3-kinase (PI3K) and protein kinase
B (PKB/AKT) [8,9]. One of the most frequently deleted genes in PCa, which negatively
regulates PI3K-AKT signaling, is the tumor suppressor phosphatase and tensin homolog
(PTEN) that is consistently associated with more aggressive forms and worse prognosis of
PCa [10,11]. Loss of PTEN function has been well documented in PCa and PTEN mutations
have been found in 40% metastatic PCa tumors [12,13]. Genetically Engineered Mouse
Model (GEMM) Pb-Cre4/Ptenf/f mice have been used since 2003, exhibiting pathological
features similar with human prostate cancers, which includes the progression from intraep-
ithelial neoplasia to invasive well- and poor-differentiated adenocarcinoma [14]. Moreover,
this model has been used to produce new GEMM by combining mutations and to explore
diet manipulation effects on prostate cancer progression [15,16].

Gene expression analysis is an important tool for understanding the behavior of tu-
mors. Gene expression signatures have been successfully applied to define subclasses of dif-
ferent types of cancers with different biological behaviors and responses to therapies [17–21].
Several studies have revealed gene expression signatures of PCa tumors that correlate with
poor prognosis in retrospective analyses [22–24]. Some of these molecular signatures help
stratify patients with a Gleason score of 7, improve prognostic prediction, and provide
appropriate management plans for patients after radical prostatectomy [23–25].

Comprehensive studies of histological, genomic, and transcriptome analyses and their
relationship with PCa are necessary. Abida et. al. (2019) [26] presented an integrative
analysis of genomic alterations with expression and histological evaluation of tumors from
patients with mCRPC, representing the clinical spectrum of advanced disease, and with tis-
sues collected before and after treatment with androgen signaling inhibitors [26]. However,
most molecular signatures do not require validation before clinical use. In addition, some
signatures include too many genes, which are expensive and hard to use in the clinic [23]. In
addition, the list of genes generated in these signatures generally does not overlap between
studies, and no gene sets have been validated for clinical use [27–29]. The search for molec-
ular gene signatures is based on the assumption that a clear distinction between tumors
that will relapse and those that will not is possible using gene expression profiles [29].
Therefore, more studies are needed to identify and validate prognostic markers.

Therapeutic and diagnostic options for PCa are limited, and progress in drug devel-
opment is delayed because most cancers are highly complex at different levels, including
cellular, genomic, and metabolic. The current challenge in PCa diagnosis is the lack of
alternative screening to replace the existing PCa biomarker, prostate-specific antigen (PSA).
Although PSA is widely used, it cannot distinguish between indolent and aggressive
PCa [30–32]. Therefore, exploring new types of biomarkers beyond the conventional AR
and PI3K pathways and/or altered genes, such as PTEN, P53, and RB1, are highly important
in prostate cancer research.

The tumor microenvironment plays an important role in the initiation and progression
of tumors [33–35]. Transcriptome analysis revealed that stromal regions adjacent to the
tumor express genes that allow for re-stratification of the tumor microenvironment [36].
Secreted and membrane proteins play an important role in cancer metastasis by stimulating
cancer cell migration and invasion, consequently increasing cancer metastasis [35–38].
Therefore, investigating potential targets for diagnosis and prognosis that are available in
PCa tumor stroma provides an opportunity to reframe and help treat this disease.

In this study, we used available data to perform an integrative analysis of the PCa
secretome and tumor membrane proteome. Our design consisted of identifying potential
biomarker targets at different stages of PCa progression, demonstrated here by the early
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stages of mouse Prostatic Intraepithelial Neoplasia (mPIN), Middle-stage tumor (MT),
and Advanced-stage tumor (AT), focusing on the tumor microenvironment of PCa. From
the list of targets (genes and proteins) available in the Human Protein Atlas (HPA) se-
cretome, we investigated a commonly deregulated gene network in the transcriptome of
Pb-Cre4/Ptenf/f mice. Enrichment analysis, protein–protein interaction (PPI) network, and in
silico tools allowed us to identify nine membranes and secreted proteins that were either
downregulated or upregulated in PCa. We also compared the transcriptomic profiles of
prostate adenocarcinoma (PRAD) and normal tissue samples using The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data, which revealed that four genes
that encode secreted proteins were downregulated in PRAD. Finally, the gene expression
patterns and prognosis of patients with PCa were analyzed by comparing four published
datasets with disease outcomes (decreased relapse-free survival, overall survival, and
probability of freedom from biochemical recurrence), with subsequent validation of HPA
protein expression in human PCa and normal prostate samples.

2. Results

2.1. Identification of Gene Expression Profile in Prostate Cancer of Pb-Cre4/Ptenf/f Mice

We performed an integrative analysis of the prostate cancer secretome and membrane
proteome data to identify clinically relevant diagnostic and prognostic biomarkers. Ac-
cording to the criteria used and from the list of genes included, our analysis identified
upregulated and downregulated genes in the mPIN, MT, and AT distributed in all Anterior
Prostate (AP), Dorsal Prostate (DP), Lateral Prostate (LP), and Ventral Prostate (VP) lobes.

Analysis of membrane protein targets showed upregulated genes: in the AP lobe
(mPIN = 403 genes; MT = 510 genes; AT = 536 genes), DP lobe (mPIN = 263 genes;
MT = 319 genes; AT = 377 genes), LP lobe (mPIN = 261 genes; MT = 369 genes; AT = 421 genes),
and VP lobe (mPIN = 127 genes; MT = 316 genes; AT = 303 genes). The downregulated genes
for membrane proteins were as follows: in the AP lobe (mPIN = 184 genes; MT = 237 genes;
AT = 192 genes), DP lobe (mPIN = 146 genes; MT = 204 genes; AT = 347 genes), LP lobe
(mPIN = 245 genes; MT = 264 genes; AT = 308 genes), and VP lobe (mPIN = 88 genes;
MT = 207 genes; AT = 181 genes) (Figure 1A).

Figure 1. The proportion of membrane and secreted proteins downregulated and upregulated
found in transcriptomics data of GEMM Pb-Cre4/Ptenf/f PCa. (A) Bar plot showing the proportion
of membrane protein in GEMM Pb-Cre4/Ptenf/f PCa in VP, DP, LP, and AP; (B) Bar plot showing the
proportion of secreted protein in GEMM Pb-Cre4/Ptenf/f PCa in VP, DP, LP, and AP. VP = Ventral
prostate; DP = Dorsal prostate; LP = Lateral prostate; AP = Anterior prostate. mPIN = mouse Prostatic
Intraepithelial Neoplasia; MT = Middle-stage tumor; AT = Advanced-stage tumor.
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Analyses of the secreted protein targets were performed for each prostate lobe, and
we found upregulated and downregulated genes in the three stages, mPIN, MT, and
AT, of PCa progression. The number of upregulated genes was as follows: in the AP
lobe (mPIN = 120 genes; MT = 155 genes; AT = 196 genes), DP lobe (mPIN = 49 genes;
MT = 103 genes; AT = 163 genes), LP lobe (mPIN = 88 genes; MT = 141 genes; AT = 158 genes),
and VP lobe (mPIN = 55 genes; MT = 128 genes; AT = 122 genes). The downregulated
genes for secreted proteins were as follows: AP lobe (mPIN = 86 genes; MT = 100 genes;
AT = 66 genes), DP lobe (mPIN = 69 genes; MT = 97 genes; AT = 101 genes), LP lobe
(mPIN = 112 genes; MT = 87 genes; AT = 99 genes), and VP lobe (mPIN = 49 genes;
MT = 69 genes; AT = 72 genes) (Figure 1B).

After identifying the list of upregulated and downregulated genes in each prostate
lobe, we checked for shared genes present in the AP, DP, LP, and VP lobes. We identified
a list of genes common to the four prostate lobes. The number of upregulated common
genes for membrane proteins was as follows: in mPIN = 98 genes, MT = 124 genes, and AT
= 136 genes (Figure 2A–C). The number of downregulated common genes for membrane
proteins present in the four lobes was as follows: in mPIN = 48 genes, MT = 69 genes, and
AT = 67 genes (Figure 2D–F).

Figure 2. Venn’s diagrams depicting common genes of membrane proteins from Anterior Prostate
(AP), Dorsal Prostate (DP), Lateral Prostate (LP), and Ventral Prostate (VP) PCa in Pten knockout
mice. Venn’s diagrams of exclusive upregulated genes in mPIN (A), MT (B), and AT (C), and
downregulated genes in mPIN (D), MT (E), and HT (F). mPIN = mouse Prostatic Intraepithelial
Neoplasia. MT = Middle-stage tumor. AT = Advanced-stage tumor.

A list of secreted protein genes common to all four prostate lobes was also performed.
The number of genes commonly upregulated for secreted proteins was as follows: in
mPIN = 33 genes, MT = 52 genes, and AT = 63 genes (Figure 3A–C). The number of down-
regulated common genes for secreted proteins present in the four lobes was as follows: in
mPIN = 25 genes, MT = 31 genes, and AT = 26 genes (Figure 3D–F).
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Figure 3. Venn’s diagrams depicting common genes of secreted proteins from Anterior Prostate
(AP), Dorsal Prostate (DP), Lateral Prostate (LP), and Ventral Prostate (VP) PCa in Pten knockout
mice. Venn’s diagrams of exclusive Upregulated genes in mPIN (A), MT (B), and AT (C), and
downregulated genes in mPIN (D), MT (E), and HT (F). mPIN = mouse Prostatic Intraepithelial
Neoplasia. MT = Middle-stage tumor. AT = Advanced-stage tumor.

Our list of downregulated and upregulated PCa genes in mPIN, MT, and AT was
analyzed using the EnrichR platform to identify enriched ontological terms. The most
significant categories were tyrosine kinase activity, an integral component of the plasma
membrane for upregulated genes (Tables 1 and 2). The most enriched terms for downregu-
lated genes were inorganic cation transmembrane transport, potassium channel activity,
and ion transmembrane transport (Tables 3 and 4). This analysis also showed their in-
volvement in biological processes, such as glycolysis, carbohydrate biosynthetic processes,
glycosaminoglycan metabolic processes, and extracellular organization.

Table 1. A gene ontology (GO) enrichment analysis of membrane proteins upregulated in mPIN, MT,
and AT of prostate cancer.

mPIN Upregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0005887 Integral component of plasma membrane 32 1.73 × 10−11 10.76299509
GO:0004713 Protein tyrosine kinase activity 5 0.012138352 1.915840284
GO:0016758 Hexosyltransferase activity 5 0.014297294 1.844746144
GO:0043190 ATP-binding cassette (ABC) transporter complex 2 0.019180885 1.717131357
GO:0008194 UDP-glycosyltransferase activity 4 0.024662147 1.607969117
GO:0009312 Oligosaccharide biosynthetic process 3 0.034162979 1.466444268
GO:0016051 Carbohydrate biosynthetic process 3 0.034162979 1.466444268
GO:0019375 Galactolipid biosynthetic process 2 0.034162979 1.466444268
GO:0006682 Galactosylceramide biosynthetic process 2 0.034162979 1.466444268
GO:0046476 Glycosylceramide biosynthetic process 2 0.0382352 1.417536631
GO:0006681 Galactosylceramide metabolic process 2 0.041917255 1.377607169
GO:0030165 PDZ domain binding 3 0.048747995 1.31204324
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Table 1. Cont.

MT Upregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0005887 Integral component of plasma membrane 43 9.77 × 10−17 16.01024386
GO:0016323 Basolateral plasma membrane 10 0.00000211 5.675736848
GO:0004713 Protein tyrosine kinase activity 7 0.001099549 2.9587853
GO:0019199 Transmembrane receptor protein kinase activity 5 0.002610742 2.5832361

GO:0004714 Transmembrane receptor protein tyrosine kinase
activity 5 0.002610742 2.5832361

GO:0005254 Chloride channel activity 5 0.00268003 2.571860416
GO:0045121 Membrane raft 7 0.002867281 2.542529695
GO:0043005 Neuron projection 11 0.01394385 1.855617311

GO:0007167 Enzyme linked receptor protein signaling
pathway 7 0.024380271 1.612961464

AT Upregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0005887 Integral component of plasma membrane 46 1.74 × 10−17 16.75829697
GO:0030667 Secretory granule membrane 13 0.00000273 5.564593362
GO:0006954 Inflammatory response 11 0.000308 3.511189697
GO:0071345 Cellular response to cytokine stimulus 15 0.000421 3.375939369

GO:0002283 Neutrophil activation involved in immune
response 13 0.00509802 2.292598474

GO:0004713 Protein tyrosine kinase activity 6 0.00518138 2.285554596
GO:0070372 Regulation of ERK1 and ERK2 cascade 9 0.005657676 2.247361946

GO:0032103 Positive regulation of response to external
stimulus 7 0.006311353 2.199877562

GO:0043410 Positive regulation of MAPK cascade 9 0.008909311 2.050155885
GO:0030198 Extracellular matrix organization 9 0.012342256 1.908605459
GO:0005925 Focal adhesion 9 0.013649783 1.864874257
GO:0005789 Endoplasmic reticulum membrane 12 0.028337729 1.547634959

Table 2. A gene ontology (GO) enrichment analysis of secreted proteins upregulated in mPIN, MT,
and AT of prostate cancer.

mPIN Upregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0019221 Cytokine-mediated signaling pathway 10 0.0000154 4.813747101
GO:0062023 Collagen-containing extracellular matrix 7 0.0000354 4.451038902
GO:0016019 Peptidoglycan immune receptor activity 2 0.000428 3.368891105

GO:1902533 Positive regulation of intracellular signal
transduction 7 0.001214858 2.915474599

GO:0042834 Peptidoglycan binding 2 0.002962979 2.528271463

GO:0008284 Positive regulation of cell population
proliferation 6 0.003344125 2.475717449

GO:0001774 Microglial cell activation 2 0.008863214 2.052408777
GO:0030855 Epithelial cell differentiation 3 0.008882339 2.051472641
GO:0033628 Regulation of cell adhesion mediated by integrin 2 0.01496553 1.824907884
GO:0030198 Extracellular matrix organization 4 0.01496553 1.824907884
GO:0010811 Positive regulation of cell-substrate adhesion 2 0.037254018 1.428826881
GO:0060252 Positive regulation of glial cell proliferation 1 0.04201877 1.376556662
GO:0033631 Cell-cell adhesion mediated by integrin 1 0.04201877 1.376556662

GO:0071902 positive regulation of protein serine/threonine
kinase activity 2 0.046363298 1.333825674
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Table 2. Cont.

MT Upregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0034774 Secretory granule lumen 14 4.44 × 10−12 11.35278878
GO:0006954 Inflammatory response 13 2.06 × 10−11 10.6853178
GO:0062023 Collagen-containing extracellular matrix 12 9.21 × 10−9 8.035890283
GO:1905517 Macrophage migration 3 0.000185 3.732564754
GO:0007160 Cell-matrix adhesion 3 0.011210456 1.950376724
GO:0030855 Epithelial cell differentiation 3 0.011480631 1.940034241
GO:0098632 Cell-cell adhesion mediator activity 2 0.025492739 1.5935835
GO:0030203 Glycosaminoglycan metabolic process 2 0.031920127 1.495935395
GO:0045545 Syndecan binding 1 0.045268101 1.344207727
GO:0048708 Astrocyte differentiation 1 0.048279814 1.316234416
GO:0008347 Glial cell migration 1 0.048279814 1.316234416

AT Upregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0048018 Receptor ligand activity 19 3.70 × 10−18 17.43149267
GO:0019221 Cytokine-mediated signaling pathway 23 5.23 × 10−16 15.28185137
GO:0006954 Inflammatory response 15 1.64 × 10−13 12.78451214
GO:0062023 Collagen-containing extracellular matrix 13 1.23 × 10−8 7.90940544

GO:0008284 Positive regulation of cell population
proliferation 13 2.40 × 10−7 6.620158329

GO:0070374 Positive regulation of ERK1 and ERK2 cascade 9 3.14 × 10−7 6.503756602
GO:0030198 Extracellular matrix organization 7 0.0000857 4.066941739
GO:0000165 MAPK cascade 7 0.0000906 4.043108741
GO:1905517 Macrophage migration 2 0.000194 3.712020847
GO:0043062 Extracellular structure organization 5 0.000676 3.170015558
GO:0042834 Peptidoglycan binding 1 0.006637813 2.177975013

Table 3. A gene ontology (GO) enrichment analysis of membrane proteins downregulated in mPIN,
MT, and AT of prostate cancer.

mPIN Downregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0098662 Inorganic cation transmembrane transport 11 2.10 × 10−8 7.677498224
GO:0005887 Integral component of plasma membrane 19 2.38 × 10−8 7.623546608
GO:0016529 Sarcoplasmic reticulum 6 3.99 × 10−8 7.399562462
GO:0042383 Sarcolemma 6 6.56 × 10−8 7.18327432
GO:0051480 Regulation of cytosolic calcium ion concentration 8 3.05 × 10−7 6.516291269
GO:0006874 Cellular calcium ion homeostasis 7 0.00000312 5.505384291
GO:0070588 Calcium ion transmembrane transport 5 0.0000635 4.197087214
GO:0005267 Potassium channel activity 4 0.002683985 2.571219909
GO:0005217 Intracellular ligand-gated ion channel activity 2 0.004871735 2.312316306
GO:0006939 Smooth muscle contraction 2 0.005857764 2.232268112
GO:0005790 Smooth endoplasmic reticulum 2 0.007141408 2.146216169
GO:0015081 Sodium ion transmembrane transporter activity 2 0.017072923 1.76769213
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Table 3. Cont.

MT Downregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0005267 Potassium channel activity 9 3.84 × 10−9 8.415844939
GO:0006813 Potassium ion transport 10 8.24 × 10−9 8.084282366
GO:0016529 Sarcoplasmic reticulum 7 9.40 × 10−9 8.027036253
GO:0005887 Integral component of plasma membrane 20 0.00000197 5.704434553
GO:0005789 Endoplasmic reticulum membrane 11 0.000418 3.37836809
GO:0015085 Calcium ion transmembrane transporter activity 3 0.010602036 1.974610737
GO:0005790 Smooth endoplasmic reticulum 2 0.018509381 1.732608106
GO:0005355 Glucose transmembrane transporter activity 2 0.019938461 1.700308368

AT Downregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0005887 Integral component of plasma membrane 25 2.28 × 10−10 9.642075486
GO:0098662 Inorganic cation transmembrane transport 13 1.98 × 10−9 8.703210974
GO:0006813 Potassium ion transport 10 2.03 × 10−9 8.693400143
GO:0010232 Vascular transport 6 0.0000439 4.357272375
GO:0035725 Sodium ion transmembrane transport 6 0.0000439 4.357272375
GO:0005267 Potassium channel activity 6 0.0001 3.999508817
GO:0016529 Sarcoplasmic reticulum 4 0.000734 3.134317147

GO:0015079 Potassium ion transmembrane transporter
activity 3 0.003470428 2.459616983

Table 4. A gene ontology (GO) enrichment analysis of secreted proteins downregulated in mPIN, MT
and AT of prostate cancer.

mPIN Downregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0062023 Collagen-containing extracellular matrix 6 0.000153 3.814225913
GO:0008237 Metallopeptidase activity 3 0.008113586 2.090787142
GO:0032027 Myosin light chain binding 1 0.049310437 1.307061149
GO:0008270 Zinc ion binding 3 0.049310437 1.307061149

MT Downregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0062023 Collagen-containing extracellular matrix 7 0.0000450 4.34654643
GO:0005604 Basement membrane 2 0.037653103 1.424199233
GO:1903561 extracellular vesicle 2 0.037653103 1.424199233

AT Downregulated Gene Ontology (GO)

Pathway ID Pathway Description Gene Count Adjusted p-Value Log10

GO:0062023 Collagen-containing extracellular matrix 6 0.000226 3.645111972
GO:0001823 Mesonephros development 2 0.028927408 1.538690472
GO:0004518 Nuclease activity 2 0.048024251 1.318539402
GO:0004540 Ribonuclease activity 2 0.048024251 1.318539402

2.2. Protein–Protein Interaction (PPI) Network of Membrane and Secreted Proteins Enriched in
Prostate Cancer

Venn diagrams showing the list of common genes identified in the four prostatic lobes
of predicted membrane proteins are represented in Figure 2; upregulated and downregu-
lated genes are shown in Figure 2A–C, and Figure 2D–F, respectively. The common genes
identified in the predicted secreted proteins are represented in Figure 3 for upregulated
(Figure 3A–C), and downregulated (Figure 3D–F) genes. Next, the common genes were
used to generate a PPI network and GO using the STRING database (Supplementary Data).
Data from this database revealed a complex interaction network among membrane proteins
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(Figure 4) and secreted proteins (Figure 5) with strong associations represented by thick
lines of commonly upregulated genes in mPIN (Figures 4A and 5A), MT (Figures 4B and
5B), and AT (Figures 4C and 5C); a complex interaction network with strong associations of
commonly downregulated genes in mPIN (Figures 4D and 5D), MT (Figures 4E and 5E),
and AT (Figures 4F and 5F) is noted. The disconnected nodes in the network were hidden.

Figure 4. The PPI network involves common genes analysis of a cluster of membrane proteins of
GEMM Pb-Cre4/Ptenf/f PCa. PPI of commonly upregulated genes in mPIN (A), MT (B), and AT (C),
and downregulated genes in mPIN (D), MT (E), and AT (F). Analysis using STRING [39] illustrates
potential interactions. Proteins in the interaction network are represented as nodes connected by lines
whose thickness reflects a confidence index higher than 0.7. mPIN = mouse Prostatic Intraepithelial
Neoplasia; MT = Middle-stage tumor; AT = Advanced-stage tumor.
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Figure 5. The PPI network involves common genes analysis of a cluster of secreted proteins of
PCa in Pten knockout mice. PPI of commonly upregulated genes in mPIN (A), MT (B), and AT (C),
and downregulated genes in mPIN (D), MT (E), and AT (F). Analysis using STRING [39] illustrates
potential interactions. Proteins in the interaction network are represented as nodes connected by lines
whose thickness reflects a confidence index higher than 0.7. mPIN = mouse Prostatic Intraepithelial
Neoplasia; MT = Middle-stage tumor; AT = Advanced-stage tumor.
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GO analysis of upregulated membrane proteins revealed significant protein enrich-
ment in the integral components of the membrane, cell surface, immune system processes,
and cell surface receptor signaling pathways (Supplementary Materials Data; Figure S1).
The GO terms of downregulated membrane proteins revealed significant protein enrich-
ment in the sarcoplasmic reticulum membrane, transmembrane transporter activity, trans-
membrane transporter activity, and ion transport (Supplementary Materials; Figure S1).

GO analysis of upregulated secreted proteins revealed significant protein enrichment
in the categories of immune system process, glycosaminoglycan metabolic process, and cell
migration (Supplementary Materials; Figure S2). The GO terms of downregulated secreted
proteins revealed significant protein enrichment in the extracellular region, glycosamino-
glycan binding, and extracellular space (Supplementary Materials; Figure S2).

The PPI network for membrane proteins showed 28 (mPIN), 34 (MT), and 51 (AT) up-
regulated proteins and 12 (mPIN), 17 (MT), and 10 (AT) downregulated proteins (Figure 4).
Whilst in the secreted proteins the PPI network showed 16 (mPIN), 31 (MT), and 34 (AT)
upregulated proteins, while the PPI network showed 2 (mPIN), 4 (MT), and 9 (AT) down-
regulated proteins (Figure 5).

2.3. Differential Gene Expression of Transcripts Translated into The Membrane and Secreted
Proteins in Prostate Cancer

After identifying all proteins present in the prostatic PPI network in mPIN, MT, and AT
and among lobes, we selected the common upregulated and downregulated protein clusters
in the three stages of PCa progression. The results identified 4 downregulated membrane
proteins: Myotonin-protein kinase or myotonic dystrophy protein kinase (DMPK); Phos-
pholamban (PLN); Potassium voltage-gated channel subfamily KQT member 5 (KCNQ5)
and Potassium voltage-gated channel subfamily KQT member 4 (KCNQ4). We have also
found 3 downregulated secreted proteins: Myocilin (MYOC); Wnt inhibitory factor 1
(WIF1); and Bone morphogenetic protein 7 (BMP7). The results identified Tissue Factor
(F3) and Mucin-1 (MUC1) common upregulated proteins were present in secreted and
membrane proteins.

The gene expression levels of the targets identified in our final list were analyzed
using the online Gene Expression Profiling Interactive Analysis (GEPIA) tool (Tang et al.,
2017). This tool allows the comparison of transcriptome profiles from TCGA and GTEx
using uniformly processed and unified RNA sequencing data from the Toil Pipeline. The
expression profiles of genes encoding secreted and membrane proteins were analyzed
using the GEPIA tool to identify prognostic biomarkers of PRAD. The analysis showed
that three genes (DMPK, KCNQ4, and WIF1) were significantly downregulated in PRAD
(Log2 fold change cutoff = 1 and q-value cutoff = 0.01) when compared to normal tissues
(Figure 6).
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Figure 6. Differential gene expressions of transcripts translated into the membrane and secreted
proteins in prostate cancer. (A)—Genes from downregulated membrane proteins. (B)—Genes from
downregulated secreted proteins. (C)—Genes from upregulated proteins are commonly present
in secreted and membrane proteins. Differential expression levels were calculated using the web
based GEPIA tool [40]. GEPIA analysis revealed that genes of the proteins identified were negatively
regulated in PRAD. Genes were considered positively or negatively regulated written in red and
green, respectively, in PRAD (n = 489–492) relative to normal tissue (n = 150–152) when absolute
values of fold-change were >1.0 and the q-value < 0.01 (ANOVA). Red dots: indicate prostate cancer
tumor samples; green dots: indicate normal prostate samples.

2.4. Survival Analysis and Risk Assessment

The gene (KCNQ4, PNL, F3, and WIF1) expression patterns and prognosis of patients
with PCa were analyzed by comparing four published datasets (MSKCC, Cambridge,
Stockholm, and MCTP). In these analyses, overexpression of the KCNQ4 gene expression
with cut-off >7.83 (red line) and ≤7.83 (blue line) was associated with a reduced time of
biochemical recurrence (p = 0.037) in the MSKCC dataset (Figure 7A). In the MSKCC and
Stockholm datasets PLN (p = 0.019) expression with cut-off >5.28 (red line) and ≤5.28
(blue line), and WIF1 (p = 0.0046) overexpression with cut-off <6.41 (red line), and patients
with WIF1 gene expression with cut-off >6.41 (blue line) were associated with a good
prognosis for biochemical recurrence (Figure 7B,C). In metastatic PCa, the expression of F3
showed the worst probability of overall survival (p = 0.0005807) in the metastatic prostate
adenocarcinoma (MCTP, Nature 2012) study (Figure 7D). The other genes, DMPK, KCNQ5,
MYOC, BPM7, and MUC1 did not show statistical differences in the analysis of Kaplan–
Meier curves for the probability of freedom from biochemical recurrence (BRC) and overall
survival to PCa. A histogram of expression level of KCNQ4, PLN and WIF1 were generated
with a line to indicate the recursive partitioning (RP) cut-off (Supplementary Materials).
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Figure 7. Kaplan–Meier curves displaying the probability of freedom from BRC and overall survival
of PCa with (red) or without (blue) Differentially Expressed Genes (DEGs) overexpression. Analyzed
by the Cambridge Carcinoma of the Prostate App (CamcAPP) (https://bioinformatics.cruk.cam.ac.
uk/apps/camcAPP/) [41] (accessed on 21 December 2021) and the cBioPortal for Cancer Genomics
database (https://www.cbioportal.org/) (accessed on 21 December 2021) [42,43] from an integrative
study. (A)—Kaplan–Meier curve with the probability of freedom from biochemical recurrence of PCa
with (red) or without (blue) KCNQ4 overexpression with cut-off = 7.83 from the MSKCC study [8];
the difference was statistically significant, p = 0.037. (B)—Kaplan–Meier curve with the probability
of freedom from biochemical recurrence of PCa with (red) or without (blue) PLN overexpression
with cut-off = 5.28 from the MSKCC study [8]; the difference was statistically significant, p = 0.0019.
(C)—Kaplan–Meier curve with the probability of freedom from biochemical recurrence of PCa with
WIF1 expression with cut-off <6.02 (black line), WIF1 gene expression with cut-off <6.41 (red line),
and patients with WIF1 gene expression with cut-off >6.41 (blue line) (p = 0.0046) from the Stockholm
study [44]; the difference was statistically significant, p = 0.0046. (D)—Kaplan–Meier curve with the
probability of overall survival of PCa patients with (red) or without (blue) F3 alteration from the
metastatic prostate adenocarcinoma (MCTP, Nature 2012) study [45]; the difference was statistically
significant, p = 0.0005807.

2.5. In Silico Validation of Protein Expression in Membrane and Secreted Proteins in Human
Prostate Cancer

We analyzed the protein expression in human PCa and normal prostate samples from
two upregulated (F3 and MUC1) and downregulated (MYOC and KCNQ5) targets found
in the membrane and secreted protein list. The expression of F3 and MUC1 proteins using
the HPA database showed increased (high or medium) immunostaining intensity in PCa
tumor tissues; however, the expression remained low or undetectable in normal prostate
tissues (Figure 8). Other dysregulated proteins identified in the HPA analyses were KCNQ4,
DMPK, and PLN. At the time of this study, there was no immunohistochemistry tissue data
available in the HPA database on PCa samples for BMP7 and WIF1 proteins.

https://bioinformatics.cruk.cam.ac.uk/apps/camcAPP/
https://bioinformatics.cruk.cam.ac.uk/apps/camcAPP/
https://www.cbioportal.org/
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Figure 8. The validation of target genes in normal and tumor tissues. Immunostaining of normal and
prostate tumor samples, respectively, for targets in our samples are: F3 (A,E); MUC1 (B,F); MYOC
(C,G); and KCNQ5 (D,H), using immunohistochemical data available in the Human Protein Atlas
database (https://proteinatlas.org/ accessed on 21 December 2021).

https://proteinatlas.org/
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2.6. In Silico Prediction of miRNAs-mRNA Regulatory Modules in Prostate Cancer

In order to obtain additional mechanistic information about the regulation of MYOC,
KCNQ5, MUC1, and F3, we evaluated micro-RNAs (miRNAs) that can regulate the ex-
pression of these genes. After identifying the regulated miRNAs, using miRWalk 3.0, we
selected only validated miRNAs interactions in at least three of the four DEGs. After
constructing miRNA-mRNA interaction networks (Figure 9), we identified six miRNAs:
mmu-miR-6962-3p, mmu-miR-6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p, mmu-miR-
15a-3p, and mmu-miR-6922-3p that have a potential interaction that regulate three DEGs
KCNQ5, MUC1, and F3 in PCa (Figure 9).

Figure 9. Dysregulated targets genes and potential association with micro-RNA (miRNA) in prostate
tumor tissues. Alluvial diagram connecting the representative miRNA-mRNA targets, associated
with genes clusters upregulated (MUC1 and F3) and downregulated (MYOC and KCNQ5) in PRAD.
Note the Highlight for mmu-miR-6962-3p, mmu-miR-6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p,
mmu-miR-15a-3p, and mmu-miR-6922-3p regulating MUC1, F3 and KCNQ5.

Figure 10 summarizes the main findings of the functional analysis and main results of
our study.
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Figure 10. An overview of the main methodological strategies and results of prostate cancer secretome
and membrane proteome from Pten conditional knockout mice and human prostate cancer. Here,
we combined the selection of transcripts from the list of protein-coding genes of the secretome and
membrane proteome dataset using The Human Protein Atlas Secretome and the Pten conditional
knockout mice dataset (GSE 94574). After finding the upregulated and downregulated genes in the
mPIN, MT and AT stages of PCa, we performed the GO enrichment analysis, PPI network using the
STRING database, and the gene expression levels of the targets using the online GEPIA tool. Finally,
we obtained nine (DMPK, PLN, KCNQ5, KCNQ4, MYOC, WIF1, BMP7, F3, and MUC1) deregulated
PMPs and PSPs potential biomarker targets in PCa.

3. Discussion

In this study, we first analyzed the PCa transcriptome from a Pten knockout mouse
model for genes encoding membrane proteins and secreted proteins in PCa. We identified
important DEGs in the PCa extracellular matrix (ECM) pertaining to hitherto unexplored
pathways. From an integrative analysis of the secretome and membrane proteome, we
identified 9 altered targets in PCa progression stages. The gene expression profile of these
markers was altered in human PCa patients with worse overall survival and a worse
probability of biochemical recurrence. Our strategy was to identify potential prognostic
biomarker targets at different stages of PCa progression, focusing on the tumor microenvi-
ronment of PCa.

Tumors in patients with PCa present large histological, genetic, and molecular hetero-
geneity. A patient may harbor more than one genomic and phenotypically distinct prostate
cancer; that is, these tumors appear independently and follow separate evolutionary tra-
jectories. These clonally independent tumors exhibit biological differences and contribute
differently to disease progression and clinical outcomes [46–48]. Currently, data on PCa
proteomics and transcriptomes, using different GEMM and human patient samples, have
been explored and integrated to identify potential targets against this disease.

The tumor microenvironment is a dynamic network of cells and structures, including
tumor cells. The surrounding stroma is comprised of cancer-associated fibroblasts (CAFs),
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immune cells, mesenchymal stem cells (MSCs), ECM, cytokines, chemokines, and growth
factors secreted by these cells [33,49]. It is already known that the tumor microenvironment
plays an important role in the formation and progression of metastasis. CAFs deposit
and degrade ECM components and thus remodel it during cancer progression, promoting
immune cell infiltration and cancer cell proliferation, migration, and invasion [33,34]. CAFs
can significantly promote proliferation and migration of prostate cancer cell lines [50,51].
Studies seeking to understand and identify precise biomarker signatures are necessary to
identify effective targeted therapeutics to reduce the clinical and lethal diseases related to
the role of inflammation in PCa progression [52,53]. It is important to note that studies
that identified biomarkers for PCa, derived from markers of stromal infiltration or stromal
transcriptomic and proteomic profiles, have not pointed to any of the markers that we
found in our study [54–57]. Our targets are not directly related to the inflammatory profile
but rather to another class of proteins related to the tumor microenvironment and ECM.

Of note, the findings of these targets were from the PCa transcriptome of knockout
animals for Pten (Pb-Cre4/Ptenf/f GEMM), in which they present important histopathological
characteristics [58,59]. In addition to prostatic intraepithelial neoplastic (PIN) lesions, larger
heterogeneous areas of fully invasive, both well- and poorly differentiated adenocarcinomas
associated with reactive stroma are present in Pb-Cre4/Ptenf/f GEMM. This model also
presents a loss of the basal membrane structure and disorganization of the smooth muscle
cells but shows rare metastasis. Additionally, infiltrated inflammatory cells are commonly
identified in these tumors [58–60].

We believe that we found a set of proteins downregulated in PCa that are biologi-
cally important in (sub)types of human cancers. Myotonin-protein kinase or myotonic
dystrophy protein kinase (DMPK) is a serine/threonine-protein kinase necessary for the
maintenance of muscle structure and function [61]. DMPK is mainly expressed in smooth,
skeletal, and cardiac muscles, and overexpression of DMPK mediated by p53 promotes
contraction of the actomyosin cortex, which leads to the activation of caspases and con-
comitant cell death by apoptosis [61,62]. DMPK also phosphorylated phospholamban
(PLN), another downregulated protein determined in our analyses. PLN is a small, and
reversibly phosphorylated transmembrane protein found in the sarcoplasmic reticulum.
Depending on its phosphorylation state, PLN binds to and regulates the activity of Ca2+

pumps [63]. These two proteins are downregulated during PCa progression. We believe
that this was due to the loss of smooth muscle cells [58]. Our enrichment analysis also
showed changes in the sarcoplasmic reticulum membrane and ion transport, which may be
related to autophagy processes, calcium homeostasis, and endoplasmic reticulum stress, as
previously reported [64,65].

We also identified potassium voltage-gated channel subfamily KQT member 5 (KCNQ5)
and member 4 (KCNQ4), both of which are important in regulating neuronal excitabil-
ity. Voltage-gated potassium channels are responsible for the repolarization phase of the
membrane action potential and play crucial roles in the excitability of neurons and other
cells (Li et al., 2021). Several studies have proposed the use of KCNQ5 gene for the early
clinical detection of colorectal precancerous lesions and cancer [66–68]. Downregulated
expression of KCNQ5 has also been observed in other diseases [69,70]. These proteins play
an important role in potassium homeostasis and are related to the enriched terms of potas-
sium channel activity and potassium ion transport at different levels of PCa progression
presented in our results. In our analysis, patients with altered KCNQ4 and PLN genes
showed the shortest time for biochemical recurrence. The downregulation of these genes
may be related to PCa progression.

In addition to membrane proteins, Myocilin (MYOC) was identified in our study.
MYOC is a secreted glycoprotein that regulates the activation of different signaling path-
ways in adjacent cells to control different processes, including cell adhesion, cell-matrix
adhesion, cytoskeleton organization, and cell migration [71]. Mutations in the MYOC
gene are an important cause of glaucoma with dominant inheritance (Liuska [72,73]. How-
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ever, other types of cancer, such as thymoma, exhibit MYOC downregulation, thereby
corroborating our results [74].

Wnt inhibitory factor 1 (WIF1) is a secreted protein that binds to WNT proteins and
inhibits their activities. WNT signaling mainly controls cell proliferation, differentiation,
and maintenance of stem cells (β-catenin-dependent pathway), cell polarity, and migration
(β-catenin-independent signaling). The WNT/Ca2+ signalling pathway is also associated
with the release of Ca2+ from intracellular stores [75,76]. A large body of evidence has
shown that activation of the WNT signaling pathway contributes to the proliferation and
transformation of malignant cells with metastatic activity [77,78]. The WNT protein is
regulated by a variety of secreted extracellular proteins that interfere with the formation
of the WNT-receptor complexes. Extracellular inhibition of the WNT signaling pathway,
WIF1, plays an important role in controlling cell proliferation and acts as a tumor suppres-
sor [79]. Owing to its biological function, interest in using WIF1 as a biomarker for the
early detection, diagnosis, and prognosis of cancer has increased in recent years [80–83].
As shown here, WIF1 was associated with favorable overall survival in PCa, corroborating
other studies [84].

Bone morphogenetic protein 7 (BMP7) (https://www.uniprot.org/uniprot/P18075
(accessed on 21 December 2021)) is a growth factor of the TGF-β superfamily that plays
important role in various biological processes, including proliferation, differentiation, and
apoptosis in many different cell types [85,86]. Bone morphogenetic proteins can act as
either tumor suppressors or oncogenes, depending on the cellular context and tumor
type [87,88]. Studies have suggested that BPM7 inhibition may represent a target for
overcoming resistance to cancer immunotherapies [85], and the use of BPM7 overexpression
is a strong predictor of the risk of tumor recurrence in gastric cancer [87].

The upregulated gene in the common membrane and secreted proteins, tissue factor
(F3) (https://www.uniprot.org/uniprot/P13726 (accessed on 21 December 2021)), is a
transmembrane glycoprotein and primary initiator of the extrinsic blood coagulation
cascade and ensures rapid hemostasis in case of organ damage [89]. F3 has been associated
with strong tumor growth enhancement and poor prognosis in cancer [90]. In our analyses,
we found that PCa patients with altered F3 gene expression had reduced survival rate. F3
expression is increased in tumors and is associated with tumor progression, particularly in
pancreatic [91,92], cervical [93], breast [94], and prostate cancers [95].

The transmembrane glycoprotein Mucin-1 (MUC1) is highly glycosylated and is
normally expressed in glandular and luminal epithelial cells. MUC1 provides protection
and creates a physical barrier to negatively charged sugars, limiting accessibility, and
preventing pathogenic colonization [96,97]. MUC1 is overexpressed and has been identified
as a potential target for diagnosis, prognosis, and therapy in most human cancers and
plays an important role in tumor progression [96–100]. Recently, we reported a family
of deregulated mucins, including MUC1, in PCa progression, where it was shown that
mucin cells (mucinous metaplasia) are in AR-negative areas of proliferation, and that
mucin-associated genes have a worse prognosis in PCa and have significant prognostic
value for PCa patients [58].

miRNA controls gene expression by targeting mRNA based on sequence comple-
mentarity and can serve as oncomiR or tumor suppressor miRs by targeting mRNA that
encode oncoproteins or tumor suppressor proteins [101,102]. Using miRNA-mRNA tumor
expression data, we identified deregulated miRNA that was validated in the regulatory
networks of the four target genes. Some miRNAs found in our analysis that regulate MYOC,
KCNQ5, MUC1, and F3 mRNAs has been also described in other cancers, such as colorectal
cancer cells [103] and identified as biomarkers in lung cancer [104], osteosarcoma [105],
ovarian cancer [106] and penile cancer [107].

The miR-15a-3p miRNA has been associated with the three DEGs (KCNQ5, MUC1,
and F3) in PCa in our analysis. The miR-15a-3p has been shown to suppress proliferation
and migration inhibiting the expression of BCL2 and MCL1 in epithelial cells [108] and
restrains the growth and metastasis of ovarian cancer cells by regulating Twist1 [106].

https://www.uniprot.org/uniprot/P18075
https://www.uniprot.org/uniprot/P13726
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Evidence has shown that miR-15a-3p overexpression also suppressed cell proliferation via
down-regulating Wnt/β-catenin signaling in PCa cells [109]. Moreover, the mir-671-5p was
previously described to function as a tumor suppressor, inhibiting tumor proliferation by
blocking cell cycle in osteosarcoma and negatively regulates SMAD3 to inhibit migration
and invasion of osteosarcoma cells [110,111]. The mir-671-5p interacts with MYOC and
KCNQ5 and may be down-regulating the expression of these genes in PCa.

Here, our strategy consisted of selecting upregulated and downregulated membrane
and secreted proteins identified in PCa transcriptome analysis, which stratifies a group
of unexplored proteins with high prognostic value and a potential target for therapy in a
subgroup of patients. Although we tried to avoid bias in our study, certain limitations still
need to be considered. Experimental in vivo and in vitro analysis should be performed to
confirm our findings. Investigate the role and function of these miRNAs in PCa and their
regulation of these genes are required. The experimental validation of the membrane and
secreted proteins identified in this study could help correlate the results obtained herein
with another group of patients’ prognoses, diagnosis, and/or overall survival. Despite
the above limitations, we have demonstrated a well-characterization of secretome and
membrane proteome and have spotted new dysregulated target candidates in PCa.

4. Materials and Methods
4.1. Analysis of RNA-Seq Data of the Genetically Engineered Mouse Model (GEMM) for PCa: The
Pten Conditional Knockout

We used RNA-seq data derived from the analysis of samples from the four prostatic
lobes obtained from the GEMM Ptenf/f, control, and Pb-Cre4/Ptenf/f mice. We accessed RNA
sequencing data derived from all prostate lobes using the NCBI Gene Expression Omnibus
platform (GEO, https://www.ncbi.nlm.nih.gov/geo/ (accessed on 21 December 2021)),
reference number GSE94574. Briefly, 72 samples were submitted for RNA-seq analysis,
including 20 prostate samples from wild-type (WT), 16 mouse prostatic intraepithelial
neoplasia (mPIN), 20 well-differentiated tumors (middle-stage tumor, MT), and 16 poorly
differentiated tumors (advanced-stage tumor, AT). A minimum of four samples for each
prostatic lobe and pathological condition for RNA-seq analysis were used. A detailed
description of the histopathological aspects of each prostatic lobe and tumor stage of the
mouse model has been previously described [59,112]. First, we explored genes that were
differentially expressed in each lobe and at different stages of tumor progression (mPIN,
MT and AT); we used Log2FC ≥ |+1| ≤ |−1| and adjusted the p-value < 0.05. The
transcriptome used in this study was generated from animals provided by Dr. David Neal
with experiments approved by the CRUK Institute Ethics Committee of the Cambridge
University, UK, under design license 80/2435, and by the Ethics Committee on Animal
Experimentation of the Institute of Biosciences of Botucatu (IBB)—UNESP, Brazil (Protocol
CEUA 613/2014, 1145/2019 and 4921200721).

4.2. Integration of Secretome and Membrane Proteome Analyses to Identify Prostate
Cancer Biomarkers

The DEGs from RNA-seq were used to predict membrane and secretome proteins
using a known list of 5520 genes of Predicted Membrane Proteins and 1708 genes of
Predicted Secreted Proteins available in The Human Protein Atlas Secretome (https://www.
proteinatlas.org/humanproteome/tissue/secretome) [113,114] (accessed on 21 December
2021). The Predicted Membrane Proteins are a selection of seven prediction algorithms
used to create a majority decision-based method (MDM) using the combined results from
the chosen tools to estimate the human membrane proteome [115]. The human secretome
was predicted by a whole-proteome scan using three methods for signal peptide prediction:
SignalP4.0, Phobius, and SPOCTOPUS, which have all been shown to produce reliable
prediction results in comparative analysis and selected the genes that were altered in at
least three prostatic lobes in mPIN, MT, and/or AT.

https://www.ncbi.nlm.nih.gov/geo/
https://www.proteinatlas.org/humanproteome/tissue/secretome
https://www.proteinatlas.org/humanproteome/tissue/secretome
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4.3. Protein–Protein Interaction Network and Functional Enrichment Analysis

We used EnrichR software from Ma’ayan Lab (https://maayanlab.cloud/Enrichr/)
(accessed on 21 December 2021) to determine the enrichment of ontological terms and
molecular pathways related to DEGs [116,117]. The cutoff criteria used for both analyses
were adjusted to a p-value of ≤ 0.05. Gene ontology (GO) enrichment analysis of secreted
and membrane proteins was grouped into a single list. The ontological terms downregu-
lated and upregulated in the biological process, molecular function, and cellular component
categories with the lowest adjusted p-values were selected.

We used the STRING database (https://string-db.org/) [39] to identify the protein–
protein interaction (PPI) network by individually analyzing the upregulated and downreg-
ulated genes. The minimum interaction score required was 0.700 (high confidence), and
the nodes disconnected from the network were hidden to simplify the display. The PPI
enrichment p-value indicated the statistical significance provided by STRING (accessed on
21 December 2021).

The ShinyGO application (version 0.741) (http://bioinformatics.sdstate.edu/go/) [118]
(accessed on 21 December 2021) was used to explore the enrichment of ontological terms in
GO (http://geneontology.org/) (accessed on 21 December 2021) categories for the biologi-
cal process of proteins from PPI. The cut-off criterion used for both analyses was a false
discovery rate (FDR) p-value < 0.05.

4.4. Gene Expression Profile in Prostate Cancer

Differential expression levels were calculated using a web-based gene expression
profiling analysis (GEPIA) tool [40]. GEPIA analysis revealed that genes encoding secreted
proteins are regulated in PRAD (http://gepia.cancer-pku.cn/detail.php) (accessed on
21 December 2021). DEGs between tumor and normal samples were determined by one-
way analysis of variance (ANOVA), applying the log2 fold-change > 1 and q-value < 0.01.
Genes were considered positively or negatively regulated and indicated in red and green,
respectively, in PRAD (n = 489–492) relative to normal tissue (n = 150–152).

4.5. Survival Analysis and Risk Assessment

After identifying the secretome and membrane proteome targets of knockout mice,
we performed analyses using data from publicly available databases. We investigated gene
expression using the Cambridge Carcinoma of the Prostate App (CamcAPP) database and
developed the CamcAPP (https://bioinformatics.cruk.cam.ac.uk/apps/camcAPP/) [41]
(accessed on 21 December 2021) and the cBioPortal for Cancer Genomics database (https://
www.cbioportal.org/) [42,43] (accessed on 21 December 2021), to determine the association
of gene alterations with patient clinical data, such as tumor risk development, prognosis,
and survival rates. Survival curves were constructed using the Kaplan–Meier method.
The expression of genes was associated with disease outcomes (decreased relapse-free
survival and an increased expression level of genes in advanced prostate cancer) in several
published PCa datasets, namely Memorial Sloan-Kettering Cancer Center (MSKCC) [8]
and Cambridge and Stockholm integrative studies [44] performed using CamcAPP [41].
The published PCa datasets used was Metastatic Prostate Adenocarcinoma (MCTP, Nature
2012) [45] performed using the cBioPortal for Cancer Genomics database [42,43]. The
grouping of samples found by recursive partitioning (RP) was used to construct a Kaplan-
Meier plot by CamcAPP.

4.6. In Silico Validation of Differentially Expressed Genes (DEGs)

After gene expression analysis, the deregulated genes identified in our analysis of
GEMM Pb-Cre4/Ptenf/f PCa were assessed using the HPA (https://www.proteinatlas.org/)
database (accessed on 21 December 2021) [113,114] to identify the distribution and localiza-
tion of proteins in normal and tumor prostate samples via immunohistochemistry.

https://maayanlab.cloud/Enrichr/
https://string-db.org/
http://bioinformatics.sdstate.edu/go/
http://geneontology.org/
http://gepia.cancer-pku.cn/detail.php
https://bioinformatics.cruk.cam.ac.uk/apps/camcAPP/
https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.proteinatlas.org/
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4.7. Prediction of Commonly Dysregulated miRNAs-mRNA Targets

We used the miRWalk 3.0 tool (http://mirwalk.umm.uni-heidelberg.de/) [119] to
perform the regulatory interaction between miRNA and mRNA (MYOC, KCNQ5, MUC1,
and F3); the algorithm for target validation was used in other available databases of Homo
sapiens. The miRNA was considered significant when involved with at least three of the four
genes selected. An alluvial plot diagram was generated using the online tool SankeyMATIC
(http://sankeymatic.com/) to demonstrate the interaction networks between the miRNA
and mRNA.

4.8. Data Representation and Analysis

Venn diagrams were plotted using Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/
venny/) [120]. The STRING database was used (https://string-db.org/) [39] to construct a
protein-protein interaction network. Differential expression levels were calculated using the
web based GEPIA [40] (http://gepia.cancer-pku.cn/detail.php). The CamcAPP database
(https://bioinformatics.cruk.cam.ac.uk/apps/camcAPP/) [41] and cBioPortal for Cancer
Genomics database (https://www.cbioportal.org/) [42,43] were used for survival analysis.
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