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Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new
analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent
learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy
cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear
unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to
predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS,
a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between
EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93
and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously
by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and

0.95, respectively, for milk and fat production.

1. Introduction

Machine learning techniques, such as decision trees and
artificial neural networks (ANN), are used increasingly in
agriculture, because they are quick, powerful, and flexible
tools for classification and prediction applications, particu-
larly those involving nonlinear systems [1]. These techniques
have been used for detection of mastitis [2], detection of
estrus [3], and discovery of reasons for culling [1]. Decision
trees and related methods have also been used for analysis
of lactation curves [4], interpretation of somatic cell count
data [5], and assessment of the efficiency of reproductive
management [6, 7]. In addition, ANN have been used for the
prediction of total farm milk production [8], prediction of
305-day milk yield [9, 10], and detection of mastitis [11, 12].

Fuzzy logic, which involves classification of variables into
fuzzy sets with degrees of membership between 0 and 1,
has recently found its way into agricultural research [13,
14]. Applications have included development of decision-
support systems for analyzing test-day milk yield data from
Dairy Herd Improvement (DHI) programs [15]. Detection
of mastitis and estrus from automated milking systems
[16, 17], and definition of contemporary groups for the
purpose of genetic evaluation [18]. A key challenge in
the use of fuzzy sets is the development of appropriate
membership functions (MF). Due to the relative simplicity
of building ANN, these may be used to reduce the time and
computational burden associated with MF determination. In
fact, developments in neural network-driven fuzzy control
suggest that these technologies may be quite complementary
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[19]. In multivariate prediction models, ANN could be used
to develop MF for fuzzy sets from input variables such as
milk yield, parity, or stage of lactation. Such tools have
been used to develop decision-support software for culling
and replacement decisions [20], as well as for qualitative
assessment of milk production [21] in dairy cattle.

From a dairy cattle breeding viewpoint, accurate and
timely prediction of lactation milk yield of progeny is a key
prerequisite to selection of genetically superior males. In
a breeding program, genetic progress can be maximized
through accurate identification of superior animals that will
be selected as parents of the next generation and therefore
breeding goals can be achieved. A key component of this
process is fast and reliable prediction of breeding values for
selection candidates. However, prediction of breeding values
is often a computationally challenging and time consuming
task, and therefore it is undertaken only periodically (e.g.,
quarterly or semiannually) in most countries. Rapid, low-
cost alternatives that can provide approximate predictions of
breeding values with acceptable accuracy could allow more
timely selection and culling decisions by breeding companies
or dairy producers. Rapid identification of superior males
can lead to earlier collection and distribution of semen and
more rapid genetic progress [21, 22]. In several studies, back-
propagation algorithms have been used to develop ANN for
the prediction of 305-day milk, fat, and protein [21, 23].
However, there has not been any published research into
the application of neuro-fuzzy networks and ANNs in the
prediction of EBV in dairy cows.

The objective of this current study was to investigate the
potential of a hybrid intelligent system that combines
artificial neural networks and fuzzy logic, also known as a
neuro-fuzzy system (NFS) or neuro-fuzzy network (NFN) in
order to compute the breeding values of Holstein cows for
milk and fat production based on their performance data and
EBV of their parents.

2. Material

2.1. Data Collection and Preprocessing. Data were provided
by the Animal Breeding Center of Iran (ABCI, Tehran) and
consisted of 119,899 lactation records of first parity Holstein
cows that calved between 22 and 36 mo of age during the time
period from 1990 to 2005. Milk and fat yield records were
pre-adjusted for milking frequency. Data regarding environ-
mental conditions included ambient temperature, ambient
humidity, and length of the photoperiod. Herds included in
the present study were representative of large commercial
dairy herds in Iran. In Iran, milk production involves tradi-
tional dairy farms, which consist of roughly 6 million native
and crossbred dairy cattle, and large commercial farms,
which consist of approximately 0.8 million Holstein cows.
Herds in the latter group practice intensive management
and feed a total mixed ration containing concentrates (corn
grain, soybean meal, fish meal, cotton seed, cottonseed meal,
barley grain, canola meal, beet pulp, fat powder, vitamins,
and minerals), alfalfa, and corn silage. These herds contain
up to 3000 lactating cows, which are housed in free stalls
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and milked in parlor systems. Average milk production in
these herds ranges from 8000 to 10,000 kg per 305 d lactation,
and this exceeds the national average of about 6300kg for
Iranian Holsteins. Artificial insemination is used in more
than 75% of the herds, and most cows are inseminated
with imported semen or semen provided by ABCI. Generally
speaking, ABCI is responsible for recording data, computing
genetic evaluations, and establishing breeding strategies.
Data regarding production traits (milk, fat, and protein
yield), functional traits (longevity, calving ease, somatic cell
count, and female fertility), and physical conformation traits
are recorded on the majority of large commercial farms, and
EBV for milk and fat yield and fat percentage are provided to
farmers twice a year.

2.2. Genetic Analysis. Data were prepared using Visual
FoxPro v6.0 (Microsoft, Redmond, WA, USA). The following
multiple-trait animal model for best linear unbiased predic-
tion (BLUP) was used to compute EBV for milk and fat yield:

yijki = HYS; + Agej + DIMk + a; + eij, (1)

where y;jx = milk or fat yield observation on the /th animal
in the kth level of days in milk, jth level of age at calving,
and ith herd-year-season class, HYS; = fixed effect of the ith
herd-year-season class, Age; = fixed effect of jth level of age
at first calving, DIMy = fixed effect of kth level of days in
milk, a; = random genetic effect of /th animal, distributed
as Ao2, and eiji; is a random residual effect, distributed as
Io2. The genetic analysis was implemented using the PEST
software [24]. In subsequent analyses using ANN and NFS,
the sire and dam EBV from this genetic analysis were used as
input variables, whereas the individual cow EBV were used
as reference EBV for calculation of predictive ability of the
networks.

2.3. Artificial Neural Networks. An artificial neural network,
or ANN, is often simply referred to as a neural network,
and it represents a nonlinear statistical modeling tool that
is based on the concept of a biological neural network.
Information flows through the network during the learning
phase, and the ANN adapts its structure in order to
model complex relationships between the input and output
variables. The ANN consists of basic units, termed neurons,
whose design is suggested by their biological counterparts.
These artificial neurons have input paths, just as biological
neurons have dendrites, and they have output paths, just
as biological neurons have axons [9]. Both artificial and
biological neurons also have predispositions (biases) that
affect the strength of their output. The neuron combines
the inputs, incorporates effects of the predisposition, and
outputs signals. Learning occurs in both real and artificial
neurons, and this alters the strength of connections between
the neurons and the biases [25].

The training of ANN often facilitates discovery of
previously unknown relationships between input and output
variables, and these relationships have been used successfully
in both classification and prediction problems [26]. Recog-
nition of patterns in ANN occurs through training with data
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samples and is independent of the particular form of the
information [27]. However, the pattern recognition ability of
networks can be improved by various techniques. Common
approaches to improving network performance include:
finding an optimum network architecture, determining an
appropriate number of training cycles, varying the combi-
nations of input variables [28], customizing the values of
learning parameters [23], and preselecting or preprocessing
of the data [27].

In this research, we used a feed forward backpropagation
multilayer perceptron (MLP herein) algorithm. We used a
four layer MLP containing 1 input layer, 2 hidden layers,
and 1 output layer. Each node in the input layer corresponds
to one explanatory variable. Nodes in the hidden layer
contain hyperbolic tangent activation functions [29], h =
(e — e77)/(e” + e and they take a weighted sum of
all input variables, y; = > j WjiXio where y; is an input
variable and wj; is corresponding weight in layer j. Similarly,
the output node(s) take a weighted sum of all nodes in
second hidden layer and use the same activation function to
calculate the output value. Learning (updating weights) in
the backpropagation algorithm starts by summing the errors
over all of the network output unit(s). For each output unit
k, the error term is Ex = ox(1 — ox) (tx — ox), where tx and ok
are target and output for kth output of dth training example,
respectively. Then, for each hidden layer the error term will
be Ey = on(1 = 0n) 2 keoutput WknEk, where oy, is the output of
the hidden layer and wyy, is the weight of kth output neuron.
Eventually, for updating each weight in the network we use
wj; = wj; + Awj; whit Awj; = nE;jx;;, where 7 is called the
learning rate (e.g., 0.05), E; is the error term for the jth node,
and xj; is the input value for jth node in ith layer to which
the weight is applied [30].

The tangent hyperbolic function also ranges from —1 to
1 and is differentiable, which has two advantages. First, it
is necessary when using in backpropagation algorithm and
second it gives a prediction range between —1 and 1 which is
well suited for this study, because in our case, breeding values
can take both positive and negative values.

2.4. Fuzzy Logic. Fuzzy logic is a form of multivalued logic
that deals with approximate (rather than precise) reasoning
and multiple truth values (rather than simply true and
false). It involves the use of fuzzy sets, comprised of various
categories that are expressed qualitatively by an expert, to
which an element could partially belong. The degree to which
an element belongs to a fuzzy set is defined by a membership
function, or MF. For example, the milk production records
of individual cows could be classified by an expert as very
low, low, medium, high or very high. These categories would
be represented by five fuzzy sets, and the record of a specific
cow might belong partially to each of two adjacent sets, such
as very low and low. When using a 100% membership scale,
the expert may infer that a milk production record of 7134 kg
belongs 90% to the very low set and 10% to the low set
[31]. The functions that define the degrees of membership
for specific values of the independent variable (in this case,
milk production) are known as membership functions.

2.5. Neuro-Fuzzy Systems. Neuro-fuzzy systems, or NFS,
are hybrid intelligent systems that combine the subjective
reasoning features of fuzzy logic with the learning structure
of neural networks. As such, NFS represent fuzzy logic
models that are partially designed from expert knowledge
and partially learned from the data. The close linkage
between fuzzy logic models and neural networks motivated
this data-driven approach to fuzzy modeling. Typically, the
fuzzy logic model is represented in the structure of a neural
network, and machine learning methods that have been
established in a neural network context are applied to the
NES. The contemporary viewpoint is that fuzzy models can
be learned directly from data, without first being drawn
in a neural network structure, and some learning methods
that are applied have no relationship to ANN. Nevertheless,
the original terms of fuzzy neural network and neuro-fuzzy
system have persisted for all types of fuzzy models that are
learned from data [32].

The fundamental approach with locally linear neuro-
fuzzy models (LLNF) is to divide the input space into
small linear subspaces with fuzzy validity functions [32, 33].
Each linear part, along with its validity function which
is a normalized Gaussian function, can be described as a
fuzzy neuron. Thus, the total model is a NFS with one
hidden layer, and a linear neuron in the output layer
that simply computes the weighted sum of the outputs of
locally linear neurons. Global optimization of the linear
consequent parameters is carried out by least-squares [32].
An incremental tree-based learning algorithm, known as the
locally linear model tree (LOLIMOT), can be used to tune the
rule premise parameters, that is, to determine the validation
hypercube for each locally linear model. At each iteration,
the worst-performing locally linear neuron is designated to
be divided. This learning algorithm provides an optimal
linear or nonlinear model with maximum generalization,
and it performs well in prediction applications. Only one
parameter, the embedding dimension, must be specified
before implementing the algorithm.

The structure and behavior of the local linear model tree
algorithm is shown in Figures 1(a) and 1(b), respectively. The
output of each local linear model is calculated by y; = wip +
ity + - - -+ wipup, where u = [ur, us,...,u,] is the vector
of inputs, w; s are linear coefficients, and a linear layer in the
output simply calculates the weighted sum of each neuron
(here local linear model outputs) as follows:

~
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The best advantage of LOLIMOT is its low computational
time, which is linear with respect to the number of fuzzy
neurons [32].

2.6. Network Development and Error Criteria. In the imple-
mentation of ANN methodology for predicting EBV of
Iranian Holstein cows for milk and fat yield, several ANN
were designed using forward stepwise selection of input
variables which means that we started with only one input
variable (Milk 2x) and tried to predict EBV for milk. Then
we kept adding other variables to the input vector until we
reached the full set of available input variables, as shown
in Table 1. Only the best-performing networks were selected
based on RMSE and the correlations between predicted
output and actual EBV and are discussed herein. This trial
and error approach for “tuning” the network is neces-
sary to determine the optimum structure and appropriate
parameters. These networks, which were developed using the
multilayer perceptron (MLP) algorithm, have two hidden
layers and tangent hyperbolic activation functions. In the
first hidden layer, the number of nodes was chosen to be
twice the number of input variables, and in second hidden
layer, the number of nodes was chosen to be equal to the
number of inputs. Three learning rules were considered
when training the networks: momentum, conjugate gradient
[34], and Levenberg [35]. However, because results were
nearly identical for all three learning rules, only results from
the conjugate gradient approach are discussed herein. These
algorithms were implemented using NeuroSolutions v5.0
(NeuroDimensions, Gainesville, FL, USA). The maximum
number of epochs was set to 5000. Each network was trained
five times with different initial random weights, and the best
weight was chosen for testing each network.

A “training set,” which consisted of a random sample
of 7000 observations from the full data set, was used for
initial development and each the network. Subsequently, a
“tuning set,” which consisted of a random sample of 1000
additional observations, was used to optimize the structure
of the network and determine appropriate parameter values
via cross-validation. Finally, a “testing set,” which consisted
of a random sample of 2000 independent observations, was
used to validate the performance of the network via testing.
The error criteria used to evaluate network performance
included root mean square error (RMSE) and the correlation
between predicted and reference EBV (r), where reference
EBV correspond to animal model BLUP EBVs from the
genetic analysis described in an earlier section:

Sk — dy)’?

n
S - %) (di —d)/(n - 1) @
r = b
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RMSE =
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where n = number of observations in the data set; d; = ref-
erence output for observation i, with mean d; x; = predicted
output for observation i, with mean X.

The data set described above was also used to train and
evaluate neuro-fuzzy systems with the locally linear model
tree algorithm, or LOLIMOT, using MATLAB v7.0 (The
MathWorks, Natick, MA, USA). In these networks, predic-
tion of desired outputs progressed until 50 locally linear
models were developed. Subsequently, the best model was
chosen according to the RMSE error criterion, and this
model was used for validation of the network in the testing
set.

3. Results and Discussion

A total of 20 networks were evaluated for each multilayer
perceptron and locally linear model tree algorithm. The
input variables considered in each of the 20 networks are
presented in Table 1, and these include: age at first calving,
days in milk, ambient temperature, ambient humidity, length
of the photoperiod, raw and adjusted (for milking frequency)
milk, and fat production of each cow and the average of her
contemporaries, and the milk and fat EBV of her parents. The
output variables included: single-trait milk EBV of the cow
(networks 1 to 13), single-trait fat EBV of the cow (networks
14 and 15), and multitrait milk and fat EBV of the cow
(networks 16 to 20).

3.1. Prediction of EBV for Milk Yield. In experiments 1 to 3,
milk yield EBV were predicted as a single trait, using ANN
via the MLP algorithm and NFS via the LOLIMOT algorithm
as a function of fix effects, milk production, environmental
factors and milk yield EBV of the dams. Results are given
in Table 2. As the number of input variables increased in
networks 1 to 3, the correlation between actual and predicted
EBV increased, and the error criteria decreased, specially
with regard to RMSE. In experiments 1 and 2, NFS had
better performance than the ANN, whereas in experiment 3
performance of ANN was slightly superior.

In experiments 4 to 6, milk yield EBV of the dams were
not considered in the vector of input variables, but milk yield
EBV of the sires were included. This resulted in a substantial
decrease in the correlation between reference EBV and EBV
predicted by the ANN and NFS, suggesting that EBV of the
dam is a more useful variable for prediction of EBV of her
daughters. This was an unexpected result given that sires’
EBV are generally more accurate than dams’ EBV, and it
was most likely due to a common environmental component
between a cow and her dam (note that herd-year-season
was not included in the ANN and NFS because this variable
would have had explanatory power in the training set, while
providing no predictive power in the testing set, even for
future observations in the same herds).

In experiments 7 to 9, environmental variables were
considered along with the EBV of both the cow’s sire and the
cow’s dam. This resulted in higher correlations, as compared
with experiments 1 to 3 and experiments 4 to 6, most notably
the latter. This suggests that both sire and dam EBV can be
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FIGURE 1: (a) Description of LOLIMOT Architecture, (b) description of LOLIMOT algorithm.
TasLE 1: Inputs and outputs of various twenty experiments in this study.
Experiment no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Inputs
Age ok ok ok ok ok sk k% * * * * * * * * * *
Days in milk k% k% k% * * * * * * * * * * *
Milk 2x * ok  x % %k ok ok * * * * * * * * * * * *
Fat 2x * * * * * * * * * * *
Herd mean milk 2x * * * * * * * * * * *
Herd mean fat 2x * * * * * * * * * * *
Herd mean milk total *
Total milk * * *
Temperature * * k% * * * * * * * * * *
Humidity ko ok k * ok ok % * ok ok %
Day length * * * * * * * * * * *
Milk EBV of dam ok % * ok % * * * * * * * * * * *
Fat EBV of dam * * * * * * * * *
Milk EBV of sire * k% ok ok ok ok * * * * *
Fat EBV of sire * * * *
Outputs
Milk EBV ko ok ok ok ok ok ok k% * * * *
Fat EBV * * * * *

useful predictors of the EBV of their offspring, as one would
expect, but that the dam’s EBV provides more information in
this type of analysis for the reason noted previously. In exper-
iments 7 and 8, correlations and RMSE criteria indicated
greater predictive ability for NFS, whereas in experiment 9,
predictive ability was slightly greater for ANN.

In experiments 10 and 11, additional variables such as
herd average, fat yield, humidity and length of day were

included in the input vector. Predictive ability improved with
inclusion of these variables; presumably most of this gain can
be attributed to the inclusion of herd average. In experiment
11, fat yield EBV of the dam was also considered. Unexpect-
edly, addition of this variable improved performance of NFS
slightly, but performance of ANN deteriorated, apparently
because it introduced additional “noise” into the analysis. In
experiments 12 and 13, milk yield EBV of the sire was also



TABLE 2: Mean square error, root mean square error, and correlation
in thirteen MLP and neuro-fuzzy networks for predicting milk EBV.

Networks MLP LOLIMOT

Error criteria RMSE r RMSE r
1 192.3 0.69 184.022 0.81
2 156.5 0.81 154.5 0.82
3 149.8 0.83 153.4 0.83
4 208.1 0.63 210.6 0.63
5 212.0 0.61 206.8 0.66
6 172.8 0.67 205.5 0.68

Experiment no. 7 154.1 0.82 144.2 0.82
8 151.6 0.82 143.1 0.83
9 144.3 0.85 143.4 0.84
10 109.7 0.91 113.1 0.92
11 117.9 0.90 113.0 0.92
12 106.7 0.92 101.8 0.93
13 106.2 0.92 102.0 0.93

TABLE 3: Mean square error, root mean square error, and correlation
in two MLP and neuro-fuzzy networks for predicting fat EBV.

Networks MLP LOLIMOT
Error criteria RMSE r RMSE r
. 14 3.1 0.91 3.3 091
Experiment no.
15 2.7 0.93 2.8 0.93

added to the input vector. In this case, inclusion of the dam’s
EBV for fat yield provided a very small increase in predictive
ability of ANN and a very slight decrease in predictive ability
of NEFS, suggesting that dam’s EBV for fat yield is largely
redundant once milk yield EBV of the sire and dam and milk
and fat yield of the cow have already been considered.

Overall, the predictive ability of the best networks for
milk yield, namely, experiment 13 for ANN and experiment
12 for NFS, was outstanding. Correlations between predicted
milk yield EBV from the ANN and NEFS analyses and
reference EBV from BLUP analysis of the full data set were
0.92 and 0.93, respectively.

3.2. Prediction of EBV for Fat Yield. In experiments 14 and
15, the objective was to predict fat yield EBV in a single trait
analysis. As shown in Table 1, input variables were equivalent
to those used for prediction of milk yield EBV in experiments
12 and 13 with fat EBV of Dam and Sire replacing milk EBV
of Dam and Sire in those experiments. However, as shown
in Table 3, performance was slightly better for prediction of
EBV for fat than for milk, with correlations between ANN
and NFS predictions and reference EBVs of 0.93 and 0.93,
respectively, in experiment 15.

3.3. Simultaneous Prediction of Milk and Fat EBV. In experi-
ments 16 to 20, the objective was to jointly predict EBVs for
milk yield and fat yield in a single analysis. Total milk yield
of the animal (i.e., beyond 305 d) was included as an input
variable in experiments 17, 19, and 20, and herd average for
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total milk yield was also included in experiment 20. As shown
in Table4, the addition of total milk yield provided a
slight improvement in predictive ability in the NFS, but
performance of the ANN deteriorated slightly, perhaps
indicating that the information provided by this variable
was largely redundant. Experiment 18 was equivalent to the
single-trait analyses (i.e., its input variables was union set of
variables in experiments 13 and 15), and predictive ability
was equal to or better than in the single-trait analyses. In
both experiments 18 and 19, performance of the NFS was
superior to that of the ANN. Lastly, in experiment 20, all
available explanatory variables listed in Table 1 were used in
the simultaneous prediction of EBV for milk and fat yield.
As one might expect, this experiment provided the highest
correlations with reference EBV and, in general, the smallest
RMSE of prediction.

Figures 2 and 3 show the relationship between the
number of neurons in the NFS analyses and the root mean
square error of prediction in the training and testing sets.
These figures clearly illustrate the danger of overfitting the
training data. In every case, increasing model complexity
(via the addition of more neurons) continuously improved
predictive ability within the training set. However, predictive
ability within the testing set, which is the true measure of
expected performance in future, independent data sets, can
be compromised by overfitting. In some cases (e.g., Figures
2(a) and 3(a)) the cost of overfitting was small, but in
other cases (e.g., Figure 2(b)) performance in the testing
set was significantly impaired by unnecessary increases in
model complexity. In practice, users should monitor cross-
validation predictive ability in the tuning set (i.e., a “set
aside” portion of the training set) to avoid overfitting and
thereby optimize parameters of the model.

4. Conclusions

The current methods for computing EBV, which involve
simultaneous animal model BLUP analysis of all
performance-recorded animals in the population, are com-
putationally intensive and time-consuming. As such, EBVs
are computed only periodically, usually two or three times
per year. Therefore, it may be useful to develop an alternative
approach for routine computation of EBV of dairy sires and
cows, so that new data can be incorporated as soon as it
becomes available. With this in mind, we evaluated the
possibility of calculating approximate EBV using com-
putationally efficient algorithms from the fields of artificial
intelligence and machine learning, namely, artificial neural
networks, or ANN, and neuro-fuzzy systems, or NEFS.
Using ANN and NEFS approaches, we produced single trait
predictions of milk yield EBV that had correlations of 0.917
and 0.926, respectively, and for fat yield EBV that had
correlations of 0.926 and 0.932, respectively, with reference
EBV. Furthermore, joint prediction of milk and fat yield
EBV in multiple-trait implementations of ANN provided
correlations of 0.925 and 0.930, respectively, with reference
EBV for milk and fat production. The same prediction with
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FIGURE 2: Root mean square error (RMSE) as a function of number of neurons in the single-trait neuro-fuzzy models: (a) prediction of milk
yield EBV in experiment 12, and (b) prediction of fat yield EBV in experiment 15.
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FIGURE 3: Root mean square error (RMSE) as a function of number of neurons in the multiple-trait neuro-fuzzy models: (a) prediction of
milk yield EBV in experiment 20, and (b) prediction of fat yield EBV in experiment 20.

NES provided a correlation of 0.935 and 0.949 with reference
EBV, respectively, for milk and fat.

In most cases, NFS tended to provide greater predictive
ability than ANN. However, the difference in performance
between these two methods was rather small. For both
methods, increasing the number of input variables led
to predictions of EBV with greater accuracy. In general,
however, the NES approach seemed to provide slightly more
consistent results, and this method may be more robust to

“noise” in specific data sets or redundancies among specific
combinations of explanatory variables. Some novel aspects
of the NFS approach are advantageous as compared with
conventional ANN methodology. For example, learning of
model trees in the LOLIMOT algorithm leads to automatic
adaptation of the complexity of the network structure to the
requirements of a particular application. Considerable post-
pruning would be required to achieve similar results using
ANN. In addition, every neuron in the NFS implementation,
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TABLE 4: Mean square error, root mean square error, and correlation in five MLP and neuro-fuzzy networks for predicting milk and fat EBV

simultaneously.

Networks MLP LOLIMOT

Trait Milk Fat Milk Fat

Error criteria RMSE r RMSE r RMSE r RMSE r
16 122.3 0.89 4.45 0.88 113.1 0.92 3.30 0.91
17 117.7 0.90 4.33 0.88 113.7 0.92 3.32 091

Experiment no. 18 105.5 0.90 5.11 0.92 102.6 0.93 2.84 0.94
19 103.8 0.92 5.07 0.92 102.4 0.93 2.77 0.94
20 101.4 0.93 4.93 0.93 100.2 0.94 2.75 0.95

via the LOLIMOT algorithm, is a linear regressor, and
therefore the resulting solution is much more transparent
than that of an ANN. In addition to not having learning
problems such as suboptimality due to local minima, it can
provide a better explanation engine and means to use partial
expert knowledge in the linear form.

Lastly, it must be emphasized that the application of such
novel methods for computation of EBV in animal breeding
is quite new, and as such a period of learning and adaptation
will be required before such approaches can be implemented
in an optimal manner.

Abbreviations

ANN: Artificial neural network
MLP: Multilayer perceptron
LOLIMOT: Locally linear model tree
LLNE: Locally linear neuro-fuzzy
NEFS: Neuro fuzzy system

EBV: Estimated breeding value
MEF: Membership function.
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