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Abstract: The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer,
and modification of extracted α-cellulose for application in enzyme immobilization can be extremely
vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized
(Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The
developed material was characterized by high-resolution transmission electron microscopy (HR-
TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD),
vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier trans-
form infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs
(α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading
potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for
temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles
shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-
Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase
shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX
degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h),
pH (3), temperatures (30 ◦C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-
Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly
capable, and super-magnetic nanocomposite for enzyme immobilization applications.

Keywords: α-Cellulose; waste-paper-biomass; chitosan; laccase immobilization; super-magnetic

1. Introduction

Paper and cardboards related waste count near about 30% of the total urban solid
waste produced worldwide [1]. Despite recycling rates is higher in most of the developed
countries, solid paper waste [2], and food waste [3,4], remained as a significant concern to
the landfill sites. At the same time, the growing population worldwide, and the emergence
of linear bio economies in addition to the growing demand for end-use products causing
over-exploitation of natural resources at a rapid pace [5,6]. On average about 55% of
the slurry from the paper industry globally are made from the secondary fibers called
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recycled fibers; however, for some other paper grades, such as cardboard or newspaper, this
percentage can be close to about 99%, while achieving zero waste [7]. Therefore, sustainable
practices to extract cellulosic fibers from waste wood, paper waste, and cardboard waste
are suggested to compensate the principle called the “cellulose gap” include decrease
dependence on wood cellulose and increase material reuse, and circular bio-economy
practices [8–10].

Though cellulosic fibers share only a small stake in the manmade fiber sector, their
unique properties related to moisture absorption [11], mechanical strength [12], biocompat-
ibility, and some other functionalities renders cellulosic fibers are indispensable for various
processes, products, and ultimately numerous technologies [13,14]. The consumption of
cellulosic per capita is anticipated to be increasing constantly [1], but the cultivation of trees
as the major source of cellulosic fibers have limited scope to expand [15–17]. Therefore,
recycling cellulose from waste is generally considered as a more sustainable alternative
from an environmental protection point of view [18], meanwhile, it allows the reuse of the
cellulose fibers to produce new paper, cardboards, value-added materials (α-cellulose, cel-
lulose nanofibers, nanocomposites) and, thus, minimize the consumption load on natural
resources, and simultaneously reduces the generation of waste [19].

The term “circular economy” was predominantly developed by the Ellen MacArthur
Foundation [20]. This can be archived by two major routes: Those from where biodegrad-
able waste having nutrients are suitable to return to nature or reuse [21–23] and non-
degradable waste needs cycling for biopolymers to reduce pollution, for the paper sector
as well [24]. However, cellulose fiber processing from paper pulp involves different
chemical–physical processes and specific operating conditions to facilitate the dissolution
and regeneration of cellulose materials [25–29]. The extraction of cellulose from paper
waste and its utilization has to be made evident to exert an excellent response on the
circular economy projects worldwide with the involvement of sustainability [30]. Our
group has recently reported a greener method for the production of α-cellulosic fibers from
print paper waste and their utilization in the remediation of nanomaterial waste [31,32] and
preparation of super-magnetic α-cellulose fiber-chitosan composite for covalent laccase
immobilization [33].

An alternative method for enzyme immobilization using biocompatible nano-supports
is an attractive approach for the improved stability and economic feasibility of potential
biocatalysts [34–36]. The immobilization of laccase and exploring its environmental ap-
plications has received enormous attention due to ease of separation, long-term stability,
and reuse of the immobilized biocatalysts [37,38]. Thiolation of the CTNs surfaces is an
emerging methodology for enzymes, peptides, and proteins immobilization, as well as
for developing potential biotechnological and environmental applications-degradation
of metabolic disruptors as well [39–42]. Antibiotics used for livestock, fish farms, and
humans are evolving as a serious pollutant in aquatic environments [43]. Their presence in
numerous other environmental fragments including surfaces, soils, and groundwater, and
some other biota is of great concern include environmental protection, antibiotic resistance,
animal and human health [44,45]. Our group has reported a mechanism for thiolation of
CTNs surfaces supported onto the magnetized halloysite nanotube and their application in
the degradation of ampicillin and other organic compounds [46].

In this report, we propose immobilization of laccase enzyme using thiolation (–SH)
mechanism of the amino (–NH2) groups of the CTNs supported by magnetized-α-cellulose
and further employed for degradation of sulfamethoxazole a potent metabolic disruptor.
The magnetized nanocomposite of CTNs supported by α-cellulose was prepared, and
further thiolated the (–NH2) groups of CTNs, and applied effectively for immobilization
laccase and degradation of the pharmaceutical compound sulfamethoxazole. Moreover, dif-
ferent factors including immobilization activity recovery, laccase loading capacity, the stabil-
ity of pH, temperature, and storage, were first optimized. We performed the morphological
and structural characterization of developed materials using independent techniques in-
cluding high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction
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(XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS),
and Fourier transform infrared spectroscopy (FT-IR) analyses. The immobilized laccase
enzyme in the biocompatible α-cellulose-Fe3O4-CTNs-SH-Laccase can be a novel efficient
material for successfully treating water containing sulfamethoxazole antibiotics.

2. Materials and Methods
2.1. Materials

FeCl2·4H2O, FeCl3·6H2O, glutaraldehyde, and NH3·H2O were obtained from Daejung
Chemicals, Sheung-si, Gyeonggi-do, South Korea. Chitosan (CTNs, low molecular weight),
guaiacol (GUA, assay ≥ 98%), 2,2-Azino-bis(3 ethylbenzothiazoline-6-sulfonic acid) di-
ammonium (ABTS, Liquid Substrate System), laccase from Trametes Versicolor (powder),
N,N-dimethylformamide (99.8% DMF), thioglycolic acid (≥98%), N-hydroxysuccinimide
(≥97.0% (titration) NHS), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochlo-
ride (≥98% (titration), EDAC.HCl), and sulfamethoxazole (SMX) were obtained by the
Sigma Aldrich, St. Louis, MO, USA.

2.2. Synthesis

The extraction of α-cellulose from paper waste biomass, the magnetization of ex-
tracted α-cellulose (α-Cellulose-Fe3O4), and CTNs loading over magnetized α-cellulose
(α-Cellulose-Fe3O4-CTNs) was carried out as previous report [33]. The thiolation of α-
Cellulose-Fe3O4-CTNs was carried out in the following steps. First, α-Cellulose-Fe3O4-
CTNs was washed thoroughly with distilled water to remove impurities. This well washed
100 mg of α-Cellulose-Fe3O4-CTNs was added to a 20 mL glass tube. The 15 mL of
Na-acetate buffer (pH 5.0 100 mM) was added to the tube. The mixture was ultrasoni-
cated for 15 min with power—130 W, frequency—20 kHz, and amplitude—60 µM (Sonics
Vibra-Cell VC130 Ultrasonic Processor, Sonics & Materials, Inc., Newtown, CT, USA). The
NHS-ester solution was prepared as per the previous report [46]. In a typical NHS-ester
reaction, NHS (5.79 mM), EDAC (6.08 mM), and finally 5 mL of TGA were added to
10 mL DMF, and resulting mixture was held for shaking conditions of 200 rpm for 24 h at
25 ◦C. After the formation of NHS-ester, its reaction with α-Cellulose-Fe3O4-CTNs was
carried out. For this, NHS-ester (0.67 mL/L) was added to ultrasonicated 15 mL solution
of α-Cellulose-Fe3O4-CTNs. The mixture was kept in shaking conditions for 4 h, 25 ◦C,
and at 200 rpm under dark conditions. After completion of this reaction, the thiolated
α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-SH) were separated magnetically. The
separated α-Cellulose-Fe3O4-CTNs-SH was washed thoroughly with Na-acetate buffer
(pH 5.0 100 mM) several times. The well washed α-Cellulose-Fe3O4-CTNs-SH was further
applied in laccase immobilization experiments.

2.3. Laccase Immobilization on α-Cellulose-Fe3O4-CTNs-SH

The laccase (1.5 mg/mL) immobilization on α-Cellulose-Fe3O4-CTNs-SH (1 g/L) was
carried out in a 20 mL glass tube containing 10 mL of Na-acetate buffer (pH 4.0, 100 mM).
The mixture was gently mixed and incubated at shaking conditions of 200 rpm, 20 ◦C,
and 24 h. After completion of the immobilization experiment, α-Cellulose-Fe3O4-CTNs-
SH-Laccase was separated magnetically. The α-Cellulose-Fe3O4-CTNs-SH-Laccase was
washed thoroughly with Na-acetate buffer (pH 4.0, 100 mM). The activity of laccase was
done in a reaction mixture of 2 mL composed of substrate 1 mL of ABTS solution (90 µM),
free laccase (0.1 mL from 1.5 mg/mL of laccase solution) or α-Cellulose-Fe3O4-CTNs-SH-
Laccase (0.1 mL solution containing 1 mg of α-Cellulose-Fe3O4-CTNs-SH-Laccase), and
0.9 mL of sodium acetate buffer (100 mM, pH 4). The activity testing reaction was carried
out at 200 rpm, 20 ◦C, and for 20 min. The immobilization parameters, such as activity
recovery (%), relative activity (%), and laccase loading capacity (mg/g), were measured
as per equations reported in earlier reports [46]. The details of these equations are given
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as follows. The formulae of the measurements of activity recovery (%) were given by
Equation (1):

Activity recovery (%) = AIL/AFL × 100 (1)

where AIL is the immobilized laccase activity, and AFL is the free laccase activity before
the immobilization procedure. The laccase loading capacity on the α-Cellulose-Fe3O4-
CTNs-SH (mg/g) was obtained by the Bradford method by using the Pierce™ Coomassie
(Bradford) Protein Assay Kit, Thermo Scientific™, Massachusetts, MA, USA. The measure-
ments of laccase loading capacity (mg/g) were given by Equation (2):

Laccase loading (mg/g) = (Cbi − Cai)V/W (2)

where Cbi is laccase concentration before immobilization (mg/L), Cai is retained laccase
concentration in solution after immobilization (mg/L), V is the volume of the solution in
liters (L), and W is the weight of α-Cellulose-Fe3O4-CTNs-SH in gram (g). Furthermore,
the relative activity is given by the following Formulae (3):

Relative activity (%) = Ae/Ai × 100 (3)

where Ae is the activity after the stability experiment, and Ai is the initial activity before
the stability experiment. The effect of initial laccase concentrations 0.3, 0.6, 0.9, 1.2, 1.5, and
1.8 mg/mL on activity recovery (%) and laccase loading capacity (mg/g) on α-Cellulose-
Fe3O4-CTNs-SH (1 g/L) was tested in Na-acetate buffer (pH 4.0, 100 mM), at 200 rpm,
20 ◦C, and 24 h. Further, the thermal stability of α-Cellulose-Fe3O4-CTNs-SH-Laccase
was carried out by incubating α-Cellulose-Fe3O4-CTNs-SH-Laccase and free laccase at
60 ◦C for 180 min in Na-acetate buffer (pH 4.0, 100 mM). The relative activity (%) was
tested after each 40 min interval. The temperature for testing the temperature stability
was used to be 60 ◦C. The reason behind this is to evaluate the stability variations in the
immobilized laccase than free laccase at the higher temperature. Furthermore, the pH
stability study for α-Cellulose-Fe3O4-CTNs-SH-Laccase was carried out by incubating
it at various pH (1–9) at 200 rpm, 20 ◦C, and 1 h. The relative activity (%) was tested
after completion of the incubation. The storage stability study was done by incubating
α-Cellulose-Fe3O4-CTNs-SH-Laccase at 4 ◦C for 30 days. After every 5 days, samples were
tested for the relative activity (%). Finally, the re-usability experiment for α-Cellulose-
Fe3O4-CTNs-SH-Laccase was done. The reactants in first cycle include; substrate ABTS
1 mL (90 µM), α-Cellulose-Fe3O4-CTNs-SH-Laccase (0.1 mL solution containing 1 mg
of α-Cellulose-Fe3O4-CTNs-SH-Laccase), and 0.9 mL of sodium acetate buffer (100 mM,
pH 4) solution. The first cycle reaction was carried out at 200 rpm, 20 ◦C, and for 20 min.
After completion of the first cycle, resulting α-Cellulose-Fe3O4-CTNs-SH-Laccase was
separated magnetically, added with a fresh reactant, and incubated at 200 rpm, 20 ◦C,
and for 20 min to carry out the second cycle. Similar, 10 cycle reactions were carried out
to assess the reusability potential of α-Cellulose-Fe3O4-CTNs-SH-Laccase. The details of
material characterizations were given in Supplementary Materials Method S1.

2.4. SMX Degradation by α-Cellulose-Fe3O4-CTNs-SH-Laccase

In the typical reaction mixture, SMX (25 ppm), α-Cellulose-Fe3O4-CTNs-SH-Laccase
(0.1 mL solution containing 1 mg of α-Cellulose-Fe3O4-CTNs-SH-Laccase), redox-mediator
GUA (500 µM) and sodium acetate buffer (100 mM, pH 3) was taken and kept shaking at
200 rpm, 30 ◦C for 20 h. After completion of the reaction, α-Cellulose-Fe3O4-CTNs-SH-
Laccase separated magnetically, and retained solution analyzed spectrophotometrically
at 287 nm to determine SMX degradation [47]. The optimization of reaction time for SMX
degradation was done studying SMX degradation at 4, 8, 12, 16, 20, and 24 h. The pH
and temperature optimum for SMX degradation by α-Cellulose-Fe3O4-CTNs-SH-Laccase
study was carried out by varying the initial pH of reaction from 2–8 and temperature of 20,
30, 40, and 50 ◦C. The effect of shaking conditions was studied by carrying out a reaction
at 50, 100, 150, 200, and 250 rpm. Finally, the repeated cycle degradation of SMX was



Polymers 2021, 13, 581 5 of 17

carried by α-Cellulose-Fe3O4-CTNs-SH-Laccase. In this experiment, after completion of
first degradation cycle, α-Cellulose-Fe3O4-CTNs-SH-Laccase separated magnetically, and
fresh reactants were added for the second cycle. Similarly, 10 degradation cycles were
carried out.

2.5. Statistical Analysis

All the values are the average of the three experiments with ± SD (standard deviation).

3. Results and Discussion
3.1. Synthesis and Strategy

The typical synthesis process and strategy of the study have been elaborated in
Figure 1. The α-cellulose fibers were extracted from paper-waste, magnetized and chitosan
modified (α-Cellulose-Fe3O4-CTNs) [33]. In this study, thiolation of α-Cellulose-Fe3O4-
CTNs was carried out (α-Cellulose-Fe3O4-CTNs-SH) for immobilization of laccase. The
typical thiolation of α-Cellulose-Fe3O4-CTNs was shown in Figure 1. The thioglycolic
acid and EDAC reacts to form the unstable reactive o-acylisourea ester. The NHS re-
acts with the unstable reactive o-acylisourea ester to form the reactive NHS-ester. The
NHS-ester attacks the amino groups of the α-Cellulose-Fe3O4-CTNs, and transfer the thiol
group to form α-Cellulose-Fe3O4-CTNs-SH [46]. Further, the laccase was immobilized
on the α-Cellulose-Fe3O4-CTNs-SH (α-Cellulose-Fe3O4-CTNs-SH-Laccase). This devel-
oped nano-bio-catalyst α-Cellulose-Fe3O4-CTNs-SH-Laccase was further investigated the
environmental application of SMX degradation (Figure 1).
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Figure 1. Schematic presentation of a chemical scheme for laccase immobilization on α-Cellulose-
Fe3O4-CTNs-SH and its environmental application.

3.2. Characterizations
3.2.1. HR-TEM Analysis

Figure 2 shows HR-TEM imaging, high-angle annular dark-field imaging (HAADF)-
STEM, and EDS analysis of the α-Cellulose-Fe3O4-CTNs-SH. Figure 2A represents the
surface of a particular α-cellulose loaded with Fe3O4 NPs all-round the surface area. We
found the Fe3O4 NPs size distribution from 4 to 12 nm range with an average of about
8 nm ± 3. The shape of Fe3O4 NPs were mostly observed for having circular to quasi-
polyhedral. The magnified HR-TEM image shown in Figure 2B confirms α-cellulose
effectively provides surface area and sites for nucleation and in-situ growth of Fe3O4 NPs.
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Figure 2. High-resolution transmission electron microscopy (HR-TEM) image of (A) α-Cellulose-
Fe3O4-CTNs-SH, (B) Zoomed view of the α-Cellulose-Fe3O4-CTNs-SH HR-TEM image, (C) high-
angle annular dark-field imaging (HAADF) analysis of the α-Cellulose-Fe3O4-CTNs-SH, HR-TEM
HAADF elemental mapping (D) carbon (C), (E) oxygen (O), (F) nitrogen (N), (G) iron (Fe), and
(I) sulfur (S), and (J) HR-TEM EDS profile of the α-Cellulose-Fe3O4-CTNs-SH.

The waste-paper obtained α-cellulose acted as both template and spacer to result in
Fe3O4 NPs having narrow distribution, without any undesirable aggregation or agglomer-
ation. Figure 2C also shows HAADF-STEM scan images of the carbon (Figure 2D), oxygen
(Figure 2E), nitrogen (Figure 2F), Fe (Figure 2G), and sulfur (Figure 2I), for the selected
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area (Figure 2C). The elemental mapping results showed that the distribution of Fe and
O in Fe3O4 were consistently validated. Furthermore, it was significant to reveal that the
subsequent modification of the Fe3O4 loaded α-cellulose with CTNs. The presence of
surface element S was clearly evident confirmation of thiolation onto the CTNs surfaces.
Besides, the EDX pattern exhibited prominent peaks for iron, oxygen, carbon, and sulfur
in the elemental composition of α-Cellulose-Fe3O4-CTNs-SH. This observation also con-
firmed the successful thiolation of α-Cellulose-Fe3O4-CTNs. As one can see in Figure 2J,
α-Cellulose-Fe3O4-CTNs-SH was prepared successfully with element composition com-
prising, Fe (22.52%), O (18.46%), C (57.51%), N (1.05%), and S (0.04%). These all HR-TEM
results confirmed that α-cellulose was successfully modified with the Fe3O4 loading, CTNs
grafting, and thiolation grafted chitosan.

3.2.2. XRD, VSM, XPS, and FT-IR Analysis

Figure 3 displays the XRD patterns of composite α-Cellulose-Fe3O4-CTNs-SH. The
XRD curve was approximately similar to that of Fe3O4 NPs [48], and there was no diffrac-
tion peak belonging to sulfur at 2θ = 20 to 70◦, indicating that -SH or thiol is organic and
amorphous. XRD results revealed the excellent stability of Fe3O4 NPs after the thiolation
process performed for the immobilization of laccase enzymes. The Fe3O4 NPs diffraction
peaks were assigned at 22.57◦, 35.61, 43.39, 57.09, and 62.88◦ 2θ angles conforming to the
crystalline planes for the (111), (311), (400), (511), and (440), respectively as reported in the
previous report [31]. The typical XRD peak for cellulose-I was observed at 14.76 attributed
to the plane (110), this peak is in agreement with a previous report [49]. The characteristic
XRD peaks specify that the α-cellulose surface was well decorated with Fe3O4 NPs, thus
clear diffraction peaks appeared with strong intensity. Thus, the XRD analysis confirms
successful loading and excellent stability of Fe3O4 NPs onto the α-cellulose surfaces.

The magnetic properties of nano-supports developed for enzyme immobilization were
highly important. As it allows to retrieve enzyme-immobilized nano-support from the
reaction solution by applying external magnetic force. This removes immobilized-enzyme
from the solution very easily, and it can be further applied in the next reaction or next
cycle. To confirm the magnetic properties, VSM analysis of α-Cellulose-Fe3O4-CTNs-SH
was performed. Figure 4 gave VSM plot of the α-Cellulose-Fe3O4-CTNs-SH. The obtained
curve showed typical magnetic hysteresis with zero coercivity and remanence values. The
obtained magnetic saturation value was found to be 17.38 emu/g. All these properties
confirmed the super-para-magnetic nature of the α-Cellulose-Fe3O4-CTNs-SH.

XPS analysis was used to characterize the elemental profile of α-Cellulose-Fe3O4-
CTNs-SH-Laccase. Figure 5A shows the XPS spectra and their peaks C 1s, N 1s, O 1s, and
Fe 2p, at binding energies (BEs) of 284.6, 399.70, 529.52, and 710.0 eV, respectively. Among
them, peak at 399.7 eV assigns to -NH2 of The CTNs and laccase. XPS spectra and elements
confirm successful loading of the presence of Fe3O4 NPs and CTNs. Furthermore, the
high-resolution spectra of Fe 2p were performed for α-Cellulose-Fe3O4-CTNs-SH-Laccase
by curve fitting analysis (Figure 5B). One can see the curve fittings results obtained for
Fe 2p shows two basic peaks of Fe 2p3/2 and Fe 2p1/2 at the BEs of 724.17 and 710.16 eV,
respectively. The spin energy separation of Fe 2p3/2 and Fe 2p1/2 was found to be 14.01 eV,
which in agreement with the previous report on Fe3O4 NPs [50]. Since Fe 2p curve fitting
analysis indicated the presence of both the oxidation states of Fe2+ and Fe3+ [51]. The XPS
results revealed that Fe3O4 was remained stable onto the α-cellulose ever after modified
using CTNs and laccase immobilization.
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The surface functional groups of α-Cellulose-Fe3O4-CTNs-SH and α-Cellulose-Fe3O4-
CTNs-SH-Laccase biocatalyst was examined by the FT-IR analysis, shown in Figure 6. The
absorption peak observed at 442 cm−1 attributes to the Fe–O bond results from Fe3O4
NPs [33]. The absorption peaks of 1116, 1318, 1450, 1631, and 3450 cm−1 obtained in all
the samples, corresponds to the C–OH stretching, C–N vibrations, C–H deformation, N–H
deformation, O–H stretching vibrations either from α-cellulose or CTNs as reported previ-
ously [46]. The α-cellulose materials consist of three types of atoms, carbon, oxygen, and
hydrogen, which creates a straight-chain biopolymer having OH groups, and glucose rings.
However, both the samples resulted in a similar peak profile consistent to the α-Cellulose-
Fe3O4-CTNs-SH and α-Cellulose-Fe3O4-CTNs-SH-Laccase. However, samples after laccase
enzyme immobilization resulted in FTIR peak at 1644 cm−1 (amide I) with absorption
intensity owing to successful laccase enzyme immobilization. However, prominent FTIR
peaks were observed for α-Cellulose-Fe3O4-CTNs-SH and α-Cellulose-Fe3O4-CTNs-SH-
Laccase at 1644, 1235, and 626 cm−1 corresponds to the stretching vibrations from amides,
C–SH stretching, and C–S stretching from thiol, respectively [52,53]. The appearance of
the C–SH stretching peak effectively validates the thiolation of the CTNs. However, as the
C–S stretching appeared in both samples, the distinctive FT-IR absorption peak for –S-S–
(disulfide bond) was not observed in α-Cellulose-Fe3O4-CTNs-SH-Laccase. This might
be due to the complex nature of nano-composite or overcrowding of the laccase over the
surface of the α-Cellulose-Fe3O4-CTNs-SH. We found the FTIR spectral analysis in good
agreement with HR-TEM, HAADF-STEM, and EDS elemental mapping results.
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3.3. Laccase Immobilization Studies
3.3.1. Activity Recovery and Laccase Loading Capacity Evaluations

The laccase loading pattern and subsequent activity recoveries with increasing initial
laccase concentrations were shown in Figure 7. The laccase immobilized on α-Cellulose-
Fe3O4-CTNs-SH gave laccase loading capacities of 27.87, 59.87, 83.76, 107.04, 139.89, 169.36,
and 169.0 mg/g at initial laccase concentrations of 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, and 2.1 mg/mL,
respectively. Initially, with an increase in laccase concentration, the loading capacity was
enhanced. At the concentration of laccase (1.8 mg/mL), loading reached a peak and
remained constant further increase in the initial laccase concentration. This might be
due to occupying all the immobilization sites to reach the confluence. Simultaneously,
the activity recoveries of immobilized laccase was increased with an increase in initial
laccase concentrations (Figure 7). The laccase activity recoveries of α-Cellulose-Fe3O4-
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CTNs-SH with initial laccase concentrations of 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, and 2.1 mg/mL,
were found to be 66.22, 73.85, 79.76, 88.69, 99.16, 94.86, and 93.28%, respectively (Figure 7).
In comparison, the activity recoveries increase with an increase in the laccase loading
capacity until the concentration of the 1.5 mg/mL (Figure 7). The higher enzyme activity
recovery by immobilization support mainly defends upon the optimum active enzyme
loading. Sometimes, a further increase in the enzyme loading causes crowding of the
enzyme and results in a decrease in activity recovery. Thus, nano-support α-Cellulose-
Fe3O4-CTNs-SH showed higher activity recovery with an initial laccase concentration of
1.5 mg/mL. This suggests that further increase in initial laccase concentration from the 1.5
to 1.8 mg/mL, laccase loading increases, while activity recovery remains constant. This
might be due to overloading or crowding of the laccase over the surface of α-Cellulose-
Fe3O4-CTNs-SH. Hence, the detailed activity recovery and laccase loading capacity data
provided the information about immobilization behavior of α-Cellulose-Fe3O4-CTNs-SH.
The significant laccase loading obtained by α-Cellulose-Fe3O4-CTNs-SH was quite high
among the recently reported materials [33,46,54–61]. Thus, the developed α-cellulose based
material has significant potential to look like an enzyme immobilization material.
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3.3.2. Stability Studies of Immobilized Laccase

The immobilization strategy provides several advancements for enzyme biocataly-
sis [34,37]. This mainly includes temperature stability, pH stability, and storage stability
compared to the free laccase. The temperature stability of α-Cellulose-Fe3O4-CTNs-SH-
Laccase was explained in Figure 8A. The α-Cellulose-Fe3O4-CTNs-SH-Laccase exhibited
relative activity (%) of 98, 97, 94, 90, 85, and 81%, at 30, 60, 90, 120, 150, and 180 min of the
incubation at temperature 60 ◦C, respectively (Figure 8A). However, free laccase possessed
90, 85, 81, 74, 69, and 65% of relative activity, at 30, 60, 90, 120, 150, and 180 min of the
incubation at 60 ◦C temperature. The obtained data suggest that the thermal stability of
immobilized laccase enhanced significantly. The binding of the enzyme to support provides
additional support for the enzyme to enhance thermal stabilities [37].

Further, the stability of free and immobilized laccase was assessed at various pH
(Figure 8B). At the incubation pH of 1, 2, 3, 4, 5, 6, 7, 8, and 9, free laccase possessed
relative activities of the 6, 10, 99, 99, 88, 39, 13, 5, and 3%, and immobilized laccase shown
relative activities of 80, 82, 97, 98, 91, 47, 18, 16, and 13%, respectively (Figure 8B). These
results depict enhanced pH stabilities. Particularly, at acidic pH immobilized laccase
performed excellent catalysis compared to the free laccase. It is well known that the pH of
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the reaction is a very curtail parameter for the enzymatic reaction, hence enhancing pH
stabilities at pH range (1–9) by immobilized laccase will open new facets of applications
that can be exploited and studied. Thus, the α-Cellulose-Fe3O4-CTNs-SH-Laccase exhibited
excellent pH stability at 1–2, and hence this immobilized system can be applied in the
particular field of laccase application where acidic pH is mandatory. Similar, results of
higher low pH stability obtained by previous reports [33]. The higher activity observed
at the lower pH by immobilization might be due to the enhanced lower pH stability
by multipoint attachment of laccase with α-Cellulose-Fe3O4-CTNs-SH. Additionally, the
microenvironment of α-Cellulose-Fe3O4-CTNs-SH-Laccase and bulk-solution typically
takes unequal distributions of H+ and OH− ion-concentrations, due to their electrostatic
interactions with nano-support. This mostly results in the displacements in the pH activity
profile of free and immobilized laccase.

Moreover, the storage of free enzyme solution is also one of the major concerns [38].
Long-term storage will enhance the applicability and cost-effectiveness of the biocata-
lyst [39]. The free and immobilized laccase was tested for storage stability by incubating
it at 4 ◦C for 30 days. The obtained results are displayed in Figure 8C. The free laccase
gave relative activity of the 78, 72, 56, 48, 44, and 37% and immobilized laccase gave 91,
83, 77, 76, 71, and 68% relative activity, at the 5, 10, 15, 20, 25, and 30 days incubation, re-
spectively. Thus, the obtained data revealed that the α-Cellulose-Fe3O4-CTNs-SH-Laccase
displayed improved storage stability over free laccase. Therefore, all the stability analysis
(Figure 8A–C) of α-Cellulose-Fe3O4-CTNs-SH-Laccase corroborated better biocatalysis
than free laccase. Being immobilization material developed from paper-waste material and
having excellent biocatalysis performance, this will be an excellent and valuable strategy
to convert waste material to the best material.

3.3.3. Reusability Studies of Immobilized Laccase

The industrial application of free enzymes is mostly possible in one attempt only, as
the separation of products, reactant, and enzyme from solution extremely cost-effective
task [38]. Hence, immobilizing the enzyme on nano-support with excellent magnetic
property is significantly valuable to apply enzyme-biocatalysis in multiple cycles. Hence,
in this study, laccase was immobilized on super-magnetic α-Cellulose-Fe3O4-CTNs-SH and
applied in the 10 repeated cycles (Figure 8D). The α-Cellulose-Fe3O4-CTNs-SH-Laccase
gave 97, 97, 95, 90, 89, 88, 87, 86, 83, and 80% relative activity. The obtained reusability
results are highly encouraging and important to apply laccase biocatalysis for various
applications. Thus, all these biocatalysis studies confirmed the potential of the α-Cellulose-
Fe3O4-CTNs-SH-Laccase as a novel, cost-effective, and environmental-friendly biocatalyst
for laccase based applications.

By considering the valuable materials like α-Cellulose-Fe3O4-CTNs, and its applica-
tion in the development of new enzyme immobilization techniques were highly essential.
In previous work, laccase immobilization on α-Cellulose-Fe3O4-CTNs was done by cross-
linking agent glutaraldehyde (GTA) [33]. Therefore, we compared the obtained results of
this study with “GTA modified α-Cellulose-Fe3O4-CTNs” for laccase immobilization. The
thiol modified α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-SH) gave a significantly
higher capacity of the laccase loading (169 mg/g) than the GTA modified α-Cellulose-
Fe3O4-CTNs (73.30 mg/g) [33]. Similarly, the stability of temperature was improved with
α-Cellulose-Fe3O4-CTNs-SH-Laccase [33]. Looking at the obtained results, thiol modified
α-Cellulose-Fe3O4-CTNs were found to be an excellent material for enzyme immobiliza-
tion strategy.
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3.4. Degradation of SMX by α-Cellulose-Fe3O4-CTNs-SH-Laccase

Laccase is a well-known biocatalyst for the degradation of environmental pollu-
tants [60,61]. The pharmaceutical compound “SMX” causes serious environmental and
health issues [61]. Hence, in this study immobilized laccase was tested for the degradation
of SMX. The degradation of SMX by α-Cellulose-Fe3O4-CTNs-SH-Laccase was assessed for
incubation time 4 to 24 h (Figure 9A). At the 4, 8, 12, 16, 20, and 24 h, α-Cellulose-Fe3O4-
CTNs-SH-Laccase gave 35, 48, 63, 70, 83, and 82% degradation of the SMX, respectively
(Figure 9A). The increase in incubation time of SMX with α-Cellulose-Fe3O4-CTNs-SH-
Laccase increases the degradation of SMX until 20 h. After 20 h, SMX degradation remains
constant. Hence, the optimum time for SMX degradation was found to be 20 h. Further,
the effect of pH on SMX degradation was evaluated (Figure 9B). At the pH of 2, 3, 4, 5,
6, 7, 8, and 9, α-Cellulose-Fe3O4-CTNs-SH-Laccase gave 82, 83, 81, 60, 51, 44, 16, and 5%
degradation, respectively. The higher SMX degradation was observed at the acidic pH
range of 2–4. After understanding the effect of pH, the effect of temperature was assessed
for α-Cellulose-Fe3O4-CTNs-SH-Laccase mediated degradation of the SMX (Figure 9C).
At the temperatures of 20, 30, 40, and 50, SMX degradation of 81, 83, 61, and 50 was
observed. The higher SMX degradation was observed at 30 ◦C. Moreover, the effect of
shaking conditions on the SMX degradation by α-Cellulose-Fe3O4-CTNs-SH-Laccase was
displayed in (Figure 9D). The shaking conditions of 50, 100, 150, 200, and 250 rpm yielded
79, 80, 81, 83, and 79% SMX degradation. The higher degradation was observed at 200 rpm.
However, not significant difference or effect of shaking condition was observed on the
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degradation of SMX by α-Cellulose-Fe3O4-CTNs-SH-Laccase. Thus, all the optimized
parameters; incubation time, pH, temperatures, and shaking conditions were highly im-
portant to scale-up of the treatment protocol for α-Cellulose-Fe3O4-CTNs-SH-Laccase
mediated SMX degradation.
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Furthermore, the repeated degradation of SMX by α-Cellulose-Fe3O4-CTNs-SH-
Laccase was performed in a repeated cycle experiment (Figure 10). The free laccase
can access its application of SMX degradation in only one cycle. After completion of the
first degradation cycle, α-Cellulose-Fe3O4-CTNs-SH-Laccase was retrieved by an external
magnet, washed thoroughly with acetate buffer solution (100 mM, pH 3), and added with
the fresh reactants. Such 10 number of cycles yielded 81, 81, 80, 78, 67, 63, 59, 55, 52, and
51% of the SMX degradation. At the end of the 10th cycle, α-Cellulose-Fe3O4-CTNs-SH-
Laccase exhibited 51% of SMX degradation. These all results corroborated the potential
of α-Cellulose-Fe3O4-CTNs-SH-Laccase biocatalysts for environmental application and
possibilities of developing a reactor scale treatment approach for decontamination of the
pharmaceuticals contaminants. Thus, all biocatalysis and SMX degradation studies marked
the importance of α-Cellulose-Fe3O4-CTNs-SH-Laccase catalysis.
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