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Background: 5-methylcytosine/N6-methyladenosine/N7-methylguanosine (m5C/m6A/m7G)-related genes 
play a critical role in tumor occurrence and progression, and non-apoptotic regulatory cell death (NARCD) 
is closely linked to tumor development and immunity. However, the role of m5C/m6A/m7G-related NARCD 
genes in hepatocellular carcinoma (HCC) remains unclear. We used m5C/m6A/m7G-related NARCD genes 
to construct a prognostic model of HCC for prognostic prediction and clinical treatment of patients.
Methods: We obtained transcriptome data for HCC from The Cancer Genome Atlas (TCGA) and the 
International Cancer Genome Consortium (ICGC). Using the least absolute shrinkage and selection 
operator (LASSO) regression, we identified m5C/m6A/m7G-related NARCD genes and constructed a 
prognostic model through multivariate Cox regression. Model performance was assessed using Kaplan-
Meier and receiver operating characteristic (ROC) curves, with external validation using the ICGC. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to study 
differentially expressed genes between high- and low-risk groups. We also examined immune cell infiltration, 
drug response, and cell communication between tumor cells and immune cells in high-risk groups.
Results: We identified 140 m5C/m6A/m7G-related NARCD genes, using five of them to build the 
prognostic model. Functional enrichment analysis revealed enrichment in tumor and immune-related 
pathways for risk genes. The high-risk group displayed increased immune cell infiltration and better 
responses to immune checkpoint inhibitors (ICIs). High-risk patients were more responsive to cisplatin, 
doxorubicin, and mitomycin C, while low-risk patients were more sensitive to erlotinib. Cell communication 
analysis indicated that high-risk tumor cells used insulin-like growth factor (IGF) and macrophage migration 
inhibitory factor (MIF) signaling pathways to send signals to immune cells and received signals through the 
bone morphogenetic protein (BMP) and lymphotoxin-related inducible ligand (LIGHT) pathways.
Conclusions: We have developed a prognostic model with m5C/m6A/m7G-related NARCD genes 
to predict the prognosis of HCC patients. This model can offer insights into the effectiveness of 
immunotherapy and chemotherapy for HCC patients.
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Introduction

Liver cancer ranks as the sixth most prevalent malignancy 
worldwide and represents the third leading cause of cancer-
related mortality. In 2022 alone, there were approximately 
865,000 new cases, resulting in 757,948 fatalities (1). 
Hepatocellular carcinoma (HCC) accounts for over 90% 
of all liver cancer cases, making it the primary type of 
liver cancer. Its principal etiological factors include viral 
hepatitis, cirrhosis, alcohol consumption, and exposure to 
aflatoxin-containing foods (2). Despite remarkable advances 
in surgical techniques, chemotherapy, and nanoparticle 
technology (3), the prognosis for HCC remains bleak, with 
a less than 20% 5-year survival rate (4). This underscores 
the pressing need for a novel prognostic model to facilitate 
clinical treatment decisions. Regulatory cell death (RCD), 
often referred to as programmed cell death (PCD), is a 
precise mechanism for regulating cell demise through well-
defined signaling pathways vital for maintaining internal 
homeostasis and normal tissue growth. RCD can be 
categorized into apoptotic and non-apoptotic forms. Non-
apoptotic RCD (NARCD) encompasses various modalities, 

including autophagy, ferroptosis, pyroptosis, and necroptosis 
(5-7). Recent research highlights the considerable influence 
of NARCD on tumor development. For instance, inhibition 
of STAT3 triggers ferroptosis, inhibiting gastric cancer 
progression (8). USP15 enhances autophagy via the 
TRAF6-BECN1 axis, promoting lung cancer migration and 
invasion (9). Downregulation of NEK7 induces pyroptosis, 
inhibiting HCC progression (10). Resibufogenin hinders 
colorectal cancer growth and metastasis through RIP3-
mediated necroptosis (11). Additionally, NARCD is closely 
associated with antitumor immunity. Autophagy represents 
an immunogenic cell death (ICD) process that augments 
the antitumor immune response to chemotherapeutic 
drugs, reversing chemoresistance in cancers like non-small-
cell lung and bladder cancer (5,12). Ferroptosis, pyroptosis, 
and necroptosis trigger robust antitumor immunity, even 
in immune checkpoint inhibitor (ICI)-resistant tumors, 
synergistically enhancing ICI efficacy, holding substantial 
promise for immunotherapy (13).

Common RNA methylation modifications encompass 
5-methylcytosine (m5C), N6-methyladenosine (m6A), and 
N7-methylguanosine (m7G). Recent studies have revealed 
that the expression levels of m5C/m6A/m7G-related genes are 
closely associated with HCC occurrence and progression. 
Notably,  NSUN2-mediated m5C promotes  HCC 
progression by upregulating the expression of the target long 
non-coding RNA (lncRNA) H19 (14). METTL14-mediated 
m6A promotes pancreatic cancer growth and metastasis 
by downregulating PERP expression (15). METTL1, 
upregulated in HCC, impacts HCC progression via the 
PTEN/AKT signaling pathway (16). Furthermore, m5C/
m6A/m7G-related genes play a pivotal role in regulating 
NARCD processes (17,18). METTL1 promotes esophageal 
squamous cell carcinoma through the RPTOR/ULK1/
autophagy axis (19). m6A modification enhances ferroptosis 
by inhibiting SLC7A11 deadenylation in HCC (20). 
METTL3-mediated m6A promotes necroptosis in colon 
cancer by reducing TRAF5 expression (21). YTHDF1 
enhances autophagy in HCC by promoting the translation 
of autophagy-related genes, ATG2A and ATG14 (22). 
Resistance to cell death is a hallmark of cancer cells, and 
m5C/m6A/m7G-related genes emerge as pivotal players 
in HCC progression. Thus, studying m5C/m6A/m7G-
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related NARCD genes offers new avenues for identifying 
prognostic biomarkers and exploring innovative approaches 
to treat HCC.

We curated m5C/m6A/m7G-related genes and NARCD-
related genes from both literature and public databases and 
subsequently identified m5C/m6A/m7G-related NARCD 
genes. Through the utilization of least absolute shrinkage 
and selection operator (LASSO) regression, we minimized 
the inclusion of overfitted genes and employed multivariate 
Cox regression to establish prognostic models. Our model’s 
accuracy was validated using the International Cancer 
Genome Consortium (ICGC) database. Furthermore, 
we delved into the biological functions of the risk genes, 
immune profiles, and drug responses in both high- and low-
risk groups. These findings hold significant promise for the 
discovery of new biomarkers and the exploration of novel 
therapeutic strategies for HCC. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-24-
499/rc).

Methods

Data acquisition and preparation

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Transcriptome 
data from 374 HCC samples were sourced as our training 
dataset from The Cancer Genome Atlas (TCGA) database 
(https://www.ncbi.nlm.nih.gov/geo/). For validation, 243 
HCC samples were secured from the ICGC database 
(https://dcc.icgc.org/). Additionally, we obtained m5C/m6A/
m7G-related genes from the scientific literature (23-27) 
and the Molecular Signatures Database (MSigDB; http://
software.broadinstitute.org/gsea/index.jsp) (28). NARCD-
related genes were gleaned from prior research studies, the 
Human Autophagy database (http://www.autophagy.lu/
index.html), the FerrDb database (http://www.zhounan.org/
ferrdb), and MSigDB (29-34).

Cluster analysis

The “limma” package of the R software was used 
for the identification of differential m5C/m6A/m7G-
related genes between normal and tumor HCC groups, 
employing stringent criteria: |log2fold change (FC)| >1 
and P<0.05. Subsequently, we conducted a univariate Cox 
analysis on these differentially expressed genes. Then, 

the “ConsensusClusterPlus” package of R software was 
used for cluster analysis of the HCC sample. The optimal 
clustering configuration was determined based on the 
cumulative distribution function (CDF) and the area under 
the CDF curve. The survival divergence among clusters was 
visualized via Kaplan-Meier curves.

Uncovering NARCD genes linked to m5C/m6A/m7G

To identify NARCD genes associated with m5C/m6A/
m7G, we employed the “pheatmap” package to depict the 
expression of prognostic genes within distinct groups. 
Differential gene analysis was performed on groups 
showcasing high and low expressions using the “limma” 
package with stringent criteria (|log2FC| >1 and P<0.05). 
We uncovered intersection genes between differential genes 
and NARCD genes using a Venn diagram. Co-expression 
analysis of these intersection genes and m5C/m6A/m7G 
prognostic genes, driven by Pearson correlation (cor >0.3, 
P<0.001), unveiled the m5C/m6A/m7G-related NARCD 
gene.

Construction of a prognostic model

To construct a robust prognostic model, we initiated 
with univariate Cox analysis of the m5C/m6A/m7G-
related NARCD genes. Employing LASSO regression 
acted as a measure to prevent overfitting. Multifactorial 
Cox regression was subsequently employed for model 
development. Risk scores were calculated using the 
gene expression and the corresponding Cox regression 
coefficients (coef). Risk score = Σcoef × gene expression. 
Patients were then classified into high- and low-risk groups 
based on their median risk scores. Kaplan-Meier curves, 
crafted using the “survival” and “survminer” packages, 
highlighted survival disparities. The predictive power of 
the model was evaluated via 1-/2-/3-year receiver operating 
characteristic (ROC) curves using the “timeROC” package. 
External validation was conducted using the ICGC 
database, and risk scores were computed identically to 
the training group, with Kaplan-Meier and ROC curves 
employed for validation.

Nomogram development

For the construction of a prognostic nomogram predicting 
1-/2-/3-year survival rates in HCC patients, we harnessed 
the “rms” package. The accuracy of the nomogram in 
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predicting patient survival was assessed through calibration 
curves.

Functional enrichment analysis

Differential gene analysis was employed for the high- and 
low-risk groups using the “limma” package with a stringent 
threshold of |log2FC| >1 and P<0.05. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were conducted to unveil the biological functions 
associated with these differentially expressed genes.

Analysis of immune cell infiltration

The quantification of immune cell infiltration was 
conducted with a suite of sophisticated computational 
too l s ,  namely  XCELL,  TIMER,  QUANTISEQ, 
MCPCOUNTER, EPIC, CIBERSORT-ABS,  and 
CIBERSORT. Spearman correlation analysis was employed 
to scrutinize the association between risk scores and 
immune cell infiltration. Furthermore, to gain insight into 
the immune landscape, a single sample gene set enrichment 
analysis (ssGSEA) (35) was executed, revealing the scores 
pertaining to immune cells and immune function within 
both high- and low-risk cohorts. The evaluation of Tumor 
Immune Dysfunction and Exclusion (TIDE) scores, which 
mirror immunotherapeutic efficacy, was facilitated through 
the TIDE database (http://tide.dfci.harvard.edu) (36) for 
the high- and low-risk groups.

Cell communication analysis

For an in-depth examination of cellular communication, 
single-cell transcriptome data from 12 primary HCC 
samples and six recurrent HCC samples were obtained from 
the Chinese National Genebank database (https://db.cngb.
org/cnsa/; CNSA: CNP0000650) (37). The transcriptome 
data underwent normalization via the “Seurat” package’s 
NormalizeData function, and the top 2,000 variably 
expressed genes were identified using FindVariableFeatures. 
Cell types were annotated using data provided by the  
source (38). Subsequently, the “CellChat” package 
was leveraged to unravel the intricacies of cell-to-cell 
communication networks.

Drug sensitivity analysis

In the pursuit of assessing drug sensitivity, the “pRRophetic” 

package in R software was engaged to determine the half-
maximal inhibitory concentration (IC50) for chemotherapy 
drugs within the high- and low-risk cohorts. An exploration 
of potential therapeutic compounds was undertaken, 
utilizing the CMAP database (https://clue.io/) (39). 
Compound assessments spanned a range from −100 to 100, 
where a positive score indicated the potential to induce or 
exacerbate the disease, and a negative score suggested the 
potential to mitigate or reverse the ailment. Compounds 
with scores less than −80 were pinpointed as promising 
candidates for disease treatment.

Quantitative real-time polymerase chain reaction  
(qRT-PCR)

Human normal hepatocyte cell line (HL7702) and HCC 
cell lines (Huh7, HepG2, Hep3B) were sourced from 
Beyotime Biotechnology (Shanghai, China). RNA extraction 
from these cell lines was conducted using TRIzol reagent 
(Beyotime Biotechnology). Subsequent complementary 
DNA (cDNA) synthesis was executed according to the 
manufacturer’s stipulations, utilizing moloney murine 
leukemia virus (M-MLV) reverse transcriptase (Beyotime 
Biotechnology). To ensure data fidelity, the robust reference 
gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
was employed as an endogenous control, and each sample 
was subjected to three replicates. The 2−∆∆CT method was 
employed for the precise quantification of the relative 
expression of risk genes.

Statistical analysis

The statistical backbone of this study was R software version 
4.1.2. Differences between the two groups were rigorously 
examined via the Wilcoxon test, while proportions were 
compared using the Chi-squared test. A threshold of P<0.05 
was upheld, signifying statistical significance in the analysis.

Results

Differential expression and prognostic analysis of m5C/
m6A/m7G-related genes

We gathered a total of 81 m5C/m6A/m7G-related genes 
from published sources and MSigDB, revealing differential 
expression in 70 genes. Upon analysis, we observed 15 
differential genes in m5C: 14 were upregulated, and one 
was downregulated (Figure 1A). For m6A, all 24 differential 
genes were upregulated (Figure 1B), and for m7G, 31 
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differential genes were found—29 were upregulated, and 
two were downregulated (Figure 1C). We also mapped the 
frequency and locations of copy number mutations in m5C/
m6A/m7G-related genes (Figure 1D-1I). Subsequently, we 
conducted a prognostic analysis, identifying 52 prognostic 
genes in total: 14 from m5C, 19 from m6A, and 19 from 
m7G (Figure 2A).

Identification of NARCD genes associated with  
m5C/m6A/m7G

Utilizing CDF and the area under the CDF curve, 
we determined that k=3 was the optimal clustering  
(Figure 2B-2D). Principal Component Analysis (PCA) 
showcased significant distinctions among the three groups 
(Figure 2E). Survival analysis demonstrated varied survival 
rates; cluster B had the higher survival rates compared to 

clusters A and C (Figure 2F). We visualized the expression 
of m5C/m6A/m7G-related prognostic genes in the three 
clusters using a heatmap, revealing cluster A with the highest 
gene expression and cluster B with the lowest (Figure 3A).  
By comparing the high-expression cluster (cluster A) and 
the low-expression cluster (cluster B), we identified 9,949 
differential genes and found 175 genes in common between 
the differential genes and NARCD genes (Figure 3B). We 
further explored the correlation between these 175 genes 
and the m5C/m6A/m7G-related prognostic genes (Figure 3C)  
and ultimately pinpointed 140 m5C/m6A/m7G-related 
NARCD genes (Figure 4A,4B).

Establishment and validation of the prognostic model

We  c o n d u c t e d  u n i v a r i a t e  C o x  a n a l y s i s  o n  1 4 0 
NARCD genes related to m5C/m6A/m7G, resulting 

Figure 1 Expression and mutations of m5C/m6A/m7G-related genes. (A-C) The expression of m5C/m6A/m7G-related genes in both HCC 
and normal tissues. (D-F) The copy number mutation frequency of m5C/m6A/m7G-related genes. (G-I) The locations of copy number 
variant of m5C/m6A/m7G-related genes on human chromosomes. *, P<0.05; **, P<0.01; ***, P<0.001. CNV, copy number variant; m5C/m6A/
m7G, 5-methylcytosine/N6-methyladenosine/N7-methylguanosine; HCC, hepatocellular carcinoma.
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in the identification of 97 prognosis-associated genes  
(Figure 4C,4D). Using LASSO regression, we eliminated 
overfit genes (Figure 5A,5B) and subsequently constructed 
a multivariate Cox regression model. The risk score was 
calculated as follows: Risk score = 0.007733 × ATIC + 
0.005042 × STMN1 + 0.011566 × HILPDA + 0.003343 × 
TXNRD1 + 0.076860 × MAPT. Patients were categorized 
into high- and low-risk groups based on the median 
risk score. Compared to the high-risk group, the low-
risk group exhibited significantly higher overall survival 
(OS), disease-specific survival (DSS), disease-free interval 
(DFI), and progression-free interval (PFI) rates (Figure 5C,  
Figure S1A-S1C). Model performance was assessed using 
the area under the ROC curve (AUC). The AUC for 
predicting 1-, 2-, and 3-year OS were 0.784, 0.700, and 

0.692, respectively (Figure 5D). The AUC for predicting 
1-, 2-, and 3-year DSS were 0.809, 0.733, and 0.730, 
respectively (Figure S1D). The AUC for predicting 1-, 2-, 
and 3-year DFI were 0.654, 0.631, and 0.625, respectively 
(Figure S1E). Finally, the AUC for predicting 1-, 2-, and 
3-year PFI were 0.658, 0.650, and 0.636, respectively 
(Figure S1F). Survival status distribution plots show that as 
risk scores increase, patients have higher mortality rates and 
lower survival rates. Heatmap showing 5 risk genes highly 
expressed in the high-risk group (Figure 5E-5G). To validate 
our findings, we employed the ICGC dataset for external 
validation. The risk score was computed using the same 
formula as the training group. Patients were categorized 
into high- and low-risk groups based on the median risk 
score. The results revealed that the high-risk group had 

Figure 2 Cluster analysis. (A) Prognostic analysis of m5C/m6A/m7G-related genes. (B) Cluster matrix at k=3. (C) Cluster CDF at k=2–9. 
(D) Changes in the area under the CDF curve at k=2–9. (E) PCA reveals differences between the three groups. (F) Kaplan-Meier survival 
curves for the three groups. m5C, 5-methylcytosine; m6A, N6-methyladenosine; m7G, N7-methylguanosine; CI, confidence interval; CDF, 
cumulative distribution function; PC, principal component; PCA, principal component analysis.
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significantly lower OS than the low-risk group (Figure 6A). 
The AUC for predicting 1-, 2-, and 3-year OS were 0.783, 
0.785, and 0.803, respectively (Figure 6B). Heatmap of the 
validation group showed high expression of risk genes in the 
high-risk group (Figure 6C-6E). In summary, our m5C/m6A/
m7G-related NARCD prognostic model demonstrates good 
accuracy in predicting HCC outcomes.

Clinical correlation analysis

Our study aimed to unveil the intricate relationship between 
risk scores and clinical attributes. In the TCGA cohort, 
analysis of the correlation between gender and risk scores 
showed P=0.97 and the analysis of the correlation between 
gender and risk score showed P=0.40. However, a parallel 
rise in risk scores with the increasing severity of both tumor 
grade and clinical stage (Figure S2A-S2D). The same 

pattern held true within the ICGC cohort, where analysis 
of the correlation between age and risk scores showed 
P=0.09 and the analysis of the correlation between gender 
and risk score showed P=0.78. Furthermore, it was evident 
that patients in clinical stages III–IV bore higher risk 
scores compared to their counterparts in clinical stages I–II  
(Figure S2E-S2G).

Building a nomogram

In our pursuit of enhancing the precision of prognostication 
for HCC patients, we devised nomograms incorporating 
age, gender, tumor grade, tumor-node-metastasis (TNM) 
classification, and risk scores (Figure 7A). These nomograms 
prophesied the survival rates of HCC patients at 1-, 2-, 
and 3-year, yielding values of 0.826, 0.725, and 0.679. The 
outcomes of the calibration curve unequivocally affirmed 

Figure 3 Identification of m5C/m6A/m7G-related NARCD genes. (A) Expression of prognostic genes related to m5C/m6A/m7G in three 
groups. (B) Venn diagram depicting the intersection of differentially expressed genes between clusters A and B with NARCD genes. (C) 
Co-expression analysis between NARCD genes and m5C/m6A/m7G prognostic genes. DEGs, differently expressed genes; NARCD, non-
apoptotic regulatory cell death; m5C/m6A/m7G, 5-methylcytosine/N6-methyladenosine/N7-methylguanosine.
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Figure 4 Univariate Cox analysis of m5C/m6A/m7G-related NARCD genes. (A) Co-expression relationships between autophagy and 
pyroptosis genes and the most relevant m5C/m6A/m7G prognostic genes. (B) Co-expression relationships between ferroptosis and 
necroptosis genes and the most relevant m5C/m6A/m7G prognostic genes. (C) Univariate Cox analysis of autophagy and pyroptosis genes. 
(D) Univariate Cox analysis of ferroptosis and necroptosis genes. Cor, correlation; CI, confidence interval; m5C/m6A/m7G, 5-methylcytosine/
N6-methyladenosine/N7-methylguanosine; NARCD, non-apoptotic regulatory cell death.
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Figure 5 Construction of prognostic model for m5C/m6A/m7G-related NARCD genes. (A) LASSO regression coefficients of 97 m5C/m6A/
m7G-related NARCD prognostic genes. (B) Ten-fold cross-validation results of the LASSO regression for the 10 genes. (C,D) Kaplan-
Meier and ROC curves for OS of the high- and low-risk groups. (E-G) Distribution of risk scores, patient survival status, and heatmaps 
of risk gene expression for the prognostic model. AUC, area under the ROC curve; ROC, receiver operating characteristic; m5C/m6A/
m7G, 5-methylcytosine/N6-methyladenosine/N7-methylguanosine; NARCD, non-apoptotic regulatory cell death; LASSO, least absolute 
shrinkage and selection operator; OS, overall survival.
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Figure 6 Validation of the prognostic model in ICGC database. (A,B) Kaplan-Meier survival curves and ROC curves for the ICGC cohort. 
(C-E) Distribution of risk scores, patient survival status, and heatmaps of risk gene expression in the ICGC cohort. AUC, area under the 
ROC curve; ROC, receiver operating characteristic; ICGC, International Cancer Genome Consortium.
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Figure 7 Construction of nomogram. (A) Nomogram integrating risk scores and clinical characteristics. (B) Calibration curve demonstrating 
the accuracy of the nomogram in predicting survival rates. (C-E) Multi-index ROC curves for 1-, 2-, and 3-year survival. N, node; M, 
metastasis; T, tumor; OS, overall survival; AUC, area under the ROC curve; ROC, receiver operating characteristic.
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the nomogram; acumen in prognosticating survival rates for 
HCC patients (Figure 7B). Furthermore, the ensemble of 
multiple ROC curves underscored the preeminence of the 
combined predictive power of clinical factors and risk scores 
over that of individual factors (Figure 7C-7E).

Gene enrichment analysis

To delve into the biological functionalities of risk genes, 
we meticulously subjected 2,196 differentially expressed 
genes between the high- and low-risk groups to KEGG 
and GO analyses. These analyses showed that KEGG 
pathways exhibited pronounced enrichments in cancer-
related domains, for example, bladder cancer, small-cell 
lung carcinoma, HCC, and the p53 signaling pathway  
(Figure 8A). The GO analysis encompassed molecular 
functions (MFs), biological processes (BPs), and cellular 
components (CCs). Notably, MF enrichments featured 
functions associated with antigen binding, immunoglobulin 
receptor binding, and Toll-like receptor binding. The 
BP category was notably rich in processes including 
phagocytosis ,  immunoglobulin-mediated immune 
responses, and cellular responses to tumor necrosis factors. 
Furthermore, the CC category enrichments in domains 
such as immunoglobulin complexes, chromosomal regions, 
and gene nuclei (Figure 8B). It is worth emphasizing that 
the GO enrichment results were inherently intertwined 
with immune-related functions.

Analysis of the immune cell infiltration

We conducted an analysis to establish the relationship 
between risk scores and immune cell infiltration. Our 
findings indicated a positive correlation between risk 
scores and the majority of immune cell types (Figure 9A). 
Following this, we delved into a ssGSEA analysis comparing 
the high- and low-risk groups, focusing on variations in 
both immune cell abundance and immune-related functions. 
Within the realm of immune cell populations, several were 
significantly elevated in the high-risk group, including 
activated dendritic cells (aDCs), immature dendritic cells 
(iDCs), macrophages, follicular helper T (Tfh) cells, T 
helper 1 (Th1) cells, and regulatory T (Treg) cells. On the 
contrary, mast cells and natural killer (NK) cells displayed a 
marked reduction in the high-risk group. We also observed 
noteworthy increases in immune-related functions such 
as antigen-presenting cells (APCs) co-stimulation, C-C 
chemokine receptor (CCR), and checkpoint-related 

activities, alongside elevated expression of human leukocyte 
antigen (HLA) and major histocompatibility complex I 
(MHC I) within the high-risk group. Intriguingly, there was 
a decreased type II interferon (IFN) response in the same 
high-risk group (Figure 9B). Human tumors are known to 
exhibit a spectrum of immune subtypes, categorized as C1 
(wound healing), C2 (IFN-γ dominant), C3 (inflammation), 
C4 (lymphocyte depletion), C5 (immunosilence), and C6 
[transforming growth factor-β (TGF-β) dominant] (40). 
Notably, it was evident that both C5 and C6 were absent in 
the context of HCC. Further exploration of the correlation 
between each immune subtype and risk scores yielded a 
significant connection between C1 and high-risk scores, 
while C3 exhibited a distinct association with low-risk 
scores (Figure 9C). ICIs hold a pivotal role in the realm 
of tumor immunotherapy. Our investigation assessed the 
expression levels of three common immune checkpoints—
programmed cell death protein 1 (PD-1), programmed 
cell death ligand 1 (PD-L1), and cytotoxic T-lymphocyte-
associated protein 4 (CTLA4)—in both high- and low-risk 
groups. Strikingly, our analysis illuminated that all three 
immune checkpoints were robustly expressed in the high-
risk group (Figure 9D-9F). Subsequently, TIDE scores 
were calculated for the high- and low-risk groups, unveiling 
a higher TIDE score in the low-risk group (Figure 9G).  
This intriguing discovery hints at potentially reduced 
responsiveness to immunotherapy among patients in the 
low-risk group.

Cell communication analysis

The analysis of immune cell infiltration yielded intriguing 
results, indicating a heightened level of immune cell 
infiltration within the high-risk group. This prompted 
us to delve further into the intricate realm of cellular 
communication between tumor cells and immune cells 
in the context of the high-risk group. Our exploration 
into this cellular communication revealed a network of 
interactions that sheds light on the signaling mechanisms 
at play. Specifically, we observed that tumor cells 
within the high-risk group engaged in active signaling 
processes through the insulin-like growth factor (IGF) 
and macrophage migration inhibitory factor (MIF) 
signaling pathways, reaching out to a spectrum of 
immune cell types. This communication was directed 
towards myeloid cells, NK cells, T cells, plasmacytoid 
dendritic cells (pDCs), and B cells (Figure 10A-10D).  
Expanding our analysis, we uncovered an intricate interplay 
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Figure 8 Biological function of high- and low-risk groups. (A) KEGG and (B) GO analysis of differentially expressed genes between high- 
and low-risk groups. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.
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where tumor cells in the high-risk group also acted as signal 
receivers, responding to signals from a variety of immune 
cells. This dynamic interaction unfolded through the bone 
morphogenetic protein (BMP) and lymphotoxin-related 
inducible ligand (LIGHT) signaling pathways, allowing 
tumor cells to accept signals from myeloid cells, NK cells, 
T cells, pDCs, and B cells (Figure 10E,10F).

Drug sensitivity analysis

In our investigation, we harnessed the capabilities of the 
“pRRophetic” package within the R software to delve 
into the sensitivities of the high- and low-risk groups 
to a selection of drugs: cisplatin, doxorubicin, erlotinib, 
and mitomycin C. The results showed that the high-
risk group demonstrated heightened sensitivity to 

Figure 9 Immune status of high- and low-risk groups. (A) Correlation between immune cell infiltration and risk scores. (B) ssGSEA-
calculated scores for immune cells and immune-related functions between high- and low-risk groups. (C) Risk scores for different immune 
subtypes. (D-F) Expression of PD-1, PD-L1, and CTLA4 in high- and low-risk groups. (G) TIDE scores for high- and low-risk groups. 
*, P<0.05; **, P<0.01; ***, P<0.001. Th1, T helper 1; Th2, T helper 2; NK, natural killer; Treg, regulatory T; aDCs, activated dendritic 
cells; APC, antigen-presenting cell; CCR, C-C chemokine receptor; DCs, dendritic cells; HLA, human leukocyte antigen; iDCs, immature 
dendritic cells; MHC, major histocompatibility complex; Tfh, follicular helper T; TIL, tumor-infiltrating lymphocyte; IFN, interferon; PD-
1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4; TIDE, 
Tumor Immune Dysfunction and Exclusion; ssGSEA, single sample gene set enrichment analysis.
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Figure 10 Cellular communication between tumor cells and immune cells in the high-risk group. (A) Annotation of each cell type. (B) 
Visualization of tumor cells from high- and low-risk groups. (C-F) Cellular communication between high-risk group tumor cells and immune 
cells in the IGF, MIF, BMP, and LIGHT signaling pathways. NK, natural killer; T, thymus dependent lymphocyte; HSC, hepatic stellate cell; B, 
bursa dependent lymphocyte; pDC, plasmacytoid dendritic cell; tSNE, t-distributed stochastic neighbor embedding; IGF, insulin-like growth 
factor; MIF, macrophage migration inhibitory factor; BMP, bone morphogenetic protein; LIGHT, lymphotoxin-related inducible ligand. 
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cisplatin, doxorubicin, and mitomycin C, while the low-
risk group exhibited a greater susceptibility to erlotinib 
(Figure 11A-11D). Delving deeper into the analysis, we 
took advantage of the CMAP database to scrutinize the 
differential genes between these two groups. This inquiry 
yielded a repertoire of 17 small molecular compounds, 
each linked to their respective targeted biological pathways 
(Figure 11E).

qRT-PCR

qRT-PCR was used to verify the expression of five risk 
genes in normal tissue and HCC. The results showed that 
the five risk genes ATIC, HILPDA, MAPT, STMN1, and 
TXNRD1 (Figure 12A-12E) were more highly expressed in 
HCC compared to normal tissues.

Discussion

HCC represents a foremost contributor to cancer-
related mortalities globally, distinguished by its aggressive 
invasiveness and propensity for metastasis. HCC typically 
remains asymptomatic in its early stages, affording patients 
a mere 3-month survival window when detected at advanced 
stages. This presents a formidable challenge in the realms of 
diagnosis and treatment, with currently available therapeutic 
options for HCC remaining notably constrained (41-43). 
Notably, NARCD plays a pivotal role in the promotion 
of tumor cell demise and the modulation of tumor  
immunity (5). Genes associated with m5C/m6A/m7G 
modifications have been implicated in the initiation and 
progression of tumors (14-16). Recent investigations have 
illuminated the role of m5C/m6A/m7G-related genes in 
influencing tumor progression in HCC through their impact 
on NARCD (19-22). Nevertheless, the specific implications 
of m5C/m6A/m7G-related NARCD in HCC prognosis and 
immune cell infiltration remain unclear. In response, we have 
developed a prognostic model for m5C/m6A/m7G-related 
NARCD, providing a novel predictive tool for clinicians in 
assessing the prognosis of HCC patients.

A prognostic model has been formulated, comprising 
five genes: ATIC, STMN1, HILPDA, TXNRD1, and 
MAPT. ATIC, a versatile enzyme, plays a pivotal role in 
catalyzing the final two steps of de novo purine synthesis in 
the body. The research underscores a notable upsurge in 
ATIC expression within HCC, and high ATIC expression 
correlates with adverse prognostic outcomes. ATIC exerts 
its influence by orchestrating the AMPK-mTOR-S6K1 

signaling cascade, thereby fostering HCC proliferation. 
Notably, reducing ATIC levels has shown the potential to 
curb HCC proliferation and migration (44). Additionally, 
experimental evidence indicates that ATIC can inhibit 
autophagy in HCC via the AKT/FOXO3 pathway (44). 
STMN1, characterized as a microtubule-binding protein, 
possesses the capacity to either promote microtubule 
depolymerization or suppress microtubule assembly (45). 
Simultaneously, STMN1 emerges as an oncogenic force, 
elevated in numerous cancer types and tightly linked to 
unfavorable cancer prognosis. STMN1 overexpression 
accelerates HCC cell proliferation, migration, and underpins 
resistance to sorafenib (46). Investigations suggest STMN1’s 
ability to activate the HGF/c-MET pathway, thereby 
stimulating HCC cell growth and invasion (46). FoxM1, by 
upregulating STMN1 expression, can effectively promote 
HCC proliferation (45). Furthermore, STMN1 facilitates 
HCC invasion and metastasis by modulating the epithelial-
mesenchymal transition (47). HILPDA, also referred to as 
HIG2, is a novel lipid droplet protein that can be induced 
under hypoxic and glucose-deprived conditions, thereby 
encouraging lipid storage within cells. Research has unveiled 
a significant upregulation of HIG2 in HCC, correlating 
with an unfavorable prognosis. Silencing HIG2 has been 
shown to effectively inhibit the migration and invasion of 
HCC cells in both in vitro and in vivo settings, while also 
augmenting the cytotoxicity of NK cells against tumor cells 
(48). The PVT1/miR-150/HIG2 axis is recognized for its 
involvement in regulating iron metabolism in HCC (49). 
TXNRD1, a crucial redox enzyme, plays a pivotal role in 
maintaining the body’s redox equilibrium. It is noteworthy 
that TXNRD1 experiences significant upregulation in HCC, 
which is associated with an adverse prognosis. Reducing 
TXNRD1 levels can suppress HCC cell proliferation 
by restraining reactive oxygen species (ROS) levels and 
enhancing patient sensitivity to sorafenib (50). miR-125b-5p  
can impede HCC proliferation by inhibiting TXNRD1 
expression (51). The inhibition of TXNRD1 through the 
KEAP1/NRF2 pathway by SLC27A5 effectively curbs 
HCC proliferation (52). MAPT, classified as a microtubule-
associated protein, actively promotes microtubule 
assembly and preserves microtubule stability (53).  
Its principal expression occurs within nerve cells and is 
closely intertwined with neurodegenerative conditions, such 
as Alzheimer’s disease (54). MAPT’s role in regulating the 
sensitivity of breast cancer and non-small cell lung cancer to 
paclitaxel has been well-documented (53,55). Nevertheless, 
there exists no current literature directly substantiating a 
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Figure 11 Drug sensitivity analysis. (A-D) Sensitivity of high- and low-risk patients to cisplatin, doxorubicin, erlotinib, and mitomycin C. 
(E) Small molecule compounds and their corresponding target biological pathways selected from the CMAP database. IC50, half-maximal 
inhibitory concentration.

A

C

E

B

D

Mechanism of action

ATPase inhibitor 

Protein synthesis inhibitor

Aurora kinase inhibitor 

Carbonic anhydrase activator

EGFR inhibitor 

FLT3 inhibitor, JAK inhibitor 

Glucocorticoid receptor agonist, phospholipase inhibitor

Haemostatic agent 

Leucine rich repeat kinase inhibitor 

Leucine rich repeat kinase inhibitor, MAP kinase inhibitor

LXR agonist 

MAP kinase inhibitor 

Phenylalanyl tRNA synthetase inhibitor

PPAR receptor agonist

Low High

Low High

P=1.5e−13

P<2.22e−16

Low High

Low High

Count

In
hi

bi
to

rs

C
ep

ha
el

in
e

D
ig

ito
xi

ge
ni

n

D
ig

ito
xi

n

E
m

et
in

e

E
pi

ne
ph

rin
e

E
po

xy
ch

ol
es

te
ro

l

Fe
no

fib
ra

te

H
yd

ra
st

in
in

e

K
IN

00
1-

22
0

Lo
te

pr
ed

no
l

O
ch

ra
to

xi
n-

a

P
ro

sc
ill

ar
id

in

TG
-1

01
34

8 

Ty
rp

ho
st

in
-A

G
-1

47
8

X
M

D
-1

15
0

X
M

D
-8

85

X
M

D
-8

92

7.5 

5.0 

2.5 

0.0

−2.5

12

8

4

0

0

−1

−2

−3

−4

5

0

−5

−10

C
is

pl
at

in
 s

en
si

tiv
ity

 (I
C

50
)

E
rlo

tin
ib

 s
en

si
tiv

ity
 (I

C
50

)

D
ox

or
ub

ic
in

 s
en

si
tiv

ity
 (I

C
50

)
M

ito
m

yc
in

 C
 s

en
si

tiv
ity

 (I
C

50
)

Risk

Risk

Risk

Risk

P=5.6e−08

P=2.3e−11



Translational Cancer Research, Vol 13, No 9 September 2024 4731

© AME Publishing Company.   Transl Cancer Res 2024;13(9):4714-4735 | https://dx.doi.org/10.21037/tcr-24-499

connection between MAPT and HCC, necessitating further 
experimental exploration.

In the pursuit  of  understanding the biological 
functionality of risk genes, we embarked on a quest to 
scrutinize the differential genes that set high- and low-risk 
groups apart. Employing KEGG and GO analyses, we found 
risk genes linked to cancer and immunity. What ensued 
was an exploration of immune cell infiltration within these 
two groups. A plethora of algorithms, including XCELL, 
TIMER, QUANTISEQ, MCPCOUNTER, EPIC, 
CIBERSORT-ABS, and CIBERSORT, were harnessed to 
calculate the relative proportions of immune cells, all with 
the aim of dissecting their interplay with risk scores. We 
found the majority of immune cells displayed a positive 
correlation with risk scores. ssGSEA painted a picture of 
differences in immune functionality between the high- and 
low-risk groups. It was evident that immune players such as 

aDCs, macrophages, Treg cells, and the MHC class I and 
II IFN responses, along with the APC co-inhibition, bore 
significant distinctions between the groups. Dendritic cell 
(DC) is an APC that activates a tumor-specific cytotoxic 
immune response to kill tumor cells (56). DCs are APCs 
that activate tumor-specific cytotoxic immune responses 
to kill tumor cells (56). Macrophages can be classified 
into two phenotypes, M1 and M2. Tumor-associated 
macrophages are predominantly M2 in solid cancers such as 
HCC and have anti-inflammatory and immunomodulatory 
effects.M2 macrophages can promote HCC migration by 
enhancing IL-1β secretion (57). Treg cells can mediate 
immunosuppression leading to the development of 
immune tolerance in HCC (58). Type II IFN response 
can promote cell death in HCC by inducing autophagy 
through IFN regulatory factor 1 (59). In the quest for 
deeper understanding, the relationship between immune 

Figure 12 qRT-PCR of (A) ATIC, (B) HILPDA, (C) MAPT, (D) STMN1, and (E) TXNRD1 in normal and HCC tissues. *, P<0.05; **, 
P<0.01. mRNA, messenger RNA; qRT-PCR, quantitative real-time polymerase chain reaction; HCC, hepatocellular carcinoma.
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subtypes and risk scores was probed, ultimately revealing 
that C1 and C2 subtypes were intimately entwined with 
high-risk scores, and C3 and C4 subtypes were intimately 
entwined with low-risk scores. ICIs of PD-1, PD-L1, and 
CTLA4 are currently approved for the immunotherapy of 
cancer patients. We delved into the expressions of these key 
regulators in both the high- and low-risk groups, unveiling 
higher expression levels within the high-stratum. This 
intriguing revelation suggests that ICIs might manifest 
superior therapeutic efficacy among patients in the high-
risk category. A pivotal tool in our assessment arsenal 
was the TIDE score, a metric instrumental in gauging 
the ability of highly infiltrated cytotoxic T cells to curtail 
tumor escape (36). Calculating TIDE scores for both the 
high- and low-risk cohorts we found the low-risk assembly 
displayed elevated TIDE scores, signifying an augmented 
probability of immune evasion and subsequently, a less 
favorable immunotherapeutic response. Beyond the realm 
of immunotherapy, we embarked on an exploration of 
platinum, docetaxel, paclitaxel, and erlotinib sensitivities 
in the high- and low-risk segments. Our observations 
showed that the high-risk group showcased heightened 
responsiveness to platinum, docetaxel, and paclitaxel, while 
the low-risk cohort demonstrated increased sensitivity to 
erlotinib. We leveraged differential gene expression profiles 
between the high- and low-risk populations to unearth 17 
small molecular compounds from the CMAP database.

Given the higher level of immune cell infiltration in the 
high-risk group, we delved into the cellular communications 
between tumor cells and immune cells within this group. 
The findings unveiled that tumor cells in the high-risk 
group signal to myeloid cells, NK cells, T cells, pDC 
cells, and B cells through the IGF and MIF signaling 
pathways. Simultaneously, they are receptive to signals 
from myeloid cells, NK cells, T cells, pDC cells, B cells, 
and plasma cells through the BMP and LIGHT signaling 
pathways. The IGF signaling pathway, highly conserved 
and pivotal in regulating growth and development, has 
been demonstrated to play a crucial role in various cancers, 
including HCC (60,61). Stromal stem cells recruited to 
the tumor microenvironment can downregulate IGF 
signaling pathway transmission, thus inhibiting HCC cell 
proliferation. Cancer-associated fibroblasts (CAFs) have the 
capacity to upregulate IGF signaling pathway transmission 
in non-small cell lung cancer, thereby promoting tumor 
cell proliferation (62). MIF, an inflammatory factor, can 
suppress the tumor microenvironment’s immune regulation 
and, in turn, facilitate tumor progression through the 

MIF signaling pathway (63). BMP is a member of the 
TGF-β family. The BMP signaling pathway has the 
capacity to exert influence on various immune cells, 
including its impact on the maturation and differentiation 
of DCs, the polarization of macrophages, activation and 
homeostasis of T cells, and the differentiation of innate 
lymphoid cells (ILC) (64). LIGHT belongs to the tumor 
necrosis factor family. The LIGHT signaling pathway 
plays a pivotal role in regulating both innate and adaptive 
immunity. This pathway can regulate immune responses 
by enhancing T cell proliferation, cytokine secretion, 
promoting DC maturation, and inducing the infiltration 
of naïve T lymphocytes, thus augmenting anti-tumor  
immunity (65,66).

Nonetheless, this study retains certain limitations. The 
data originated from the TCGA database and were validated 
by the ICGC database. While the findings offer valuable 
insights, the sample size remains limited, underscoring 
the need for additional data collection and validation. 
Furthermore, the mechanistic underpinnings of the five risk 
genes in HCC necessitate further experimental exploration.

Conclusions

In summary, we used the TCGA data to construct a 
prognostic model based on five m5C/m6A/m7G-related 
NARCD genes and validated using data from the ICGC 
database. Moreover, prognostic models are shown to be  
related to immunotherapy and chemotherapeutic drug 
sensitivity, which may provide a reference for predicting the 
effects of immunotherapy and chemotherapy.
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