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Background: Sleep disturbances are widespread among patients with essential

tremor (ET) and may have adverse effects on patients’ quality of life. However, the

pathophysiology underlying poor quality of sleep (QoS) in patients with ET remains

unclear. Our study aimed to identify gray matter (GM) network alterations in the

topological properties of structural MRI related to QoS in patients with ET.

Method: We enrolled 45 ET patients with poor QoS (SleET), 59 ET patients

with normal QoS (NorET), and 66 healthy controls (HC), and they all underwent a

three-dimensional T1-weighted MRI scan. We used a graph-theoretical approach to

investigate the topological organization of GM morphological networks, and individual

morphological brain networks were constructed according to the interregional similarity

of GM volume distributions. Furthermore, we performed network-based statistics, and

partial correlation analyses between topographic features and clinical characteristics

were conducted.

Results: Global network organization was disrupted in patients with ET. Compared

with the NorET group, the SleET group exhibited disrupted topological GM network

organization with a shift toward randomization. Moreover, they showed altered

nodal centralities in mainly the frontal, temporal, parietal, and cerebellar lobes.

Morphological connection alterations within the default mode network (DMN), salience,

and basal ganglia networks were observed in the SleET group and were generally

more extensive than those in the NorET and HC groups. Alterations within the

cerebello-thalamo-(cortical) network were only detected in the SleET group. The nodal

degree of the left thalamus was negatively correlated with the Fahn-Tolosa-Marin Tremor

Rating Scale score (r = −0.354, p =0.027).

Conclusion: Our findings suggest that potential complex interactions underlie tremor

and sleep disruptions in patients with ET. Disruptions within the DMN and the

cerebello-thalamo-(cortical) network may have a broader impact on sleep quality in

patients with ET. Our results offer valuable insight into the neural mechanisms underlying

poor QoS in patients with ET.
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INTRODUCTION

Essential tremor (ET) is one of the most common movement
disorders, with an overall prevalence of ∼0.32–1% in the
general population (1). The traditional conception of ET as a
mono-symptomatic disorder has been challenged by growing
evidence of various additional neurological signs and non-
motor symptoms that accompany ET. Among the non-motor
symptoms associated with ET, sleep disturbances have gained
increased attention and include increased daytime sleepiness
(2) and decreased nighttime sleep quality (3) in patients with
ET compared with healthy controls (HCs). Poor quality of
sleep (QoS) is often distressing and impairs the quality of
life of patients with ET. However, previous studies concerning
poor QoS in patients with ET have mainly focused on the
comparisons of symptoms (3, 4), and the neural substrates
of poor QoS have not yet been investigated. Thus, whether
neural changes underlying ET are precursors to the development
of poor QoS remains unknown. Therefore, investigations of
brain morphological changes would provide evidence of the
interactions of ET and poor QoS and broaden our knowledge
of the neural mechanisms underlying the heterogeneity among
patients with ET.

Neuroimaging, especially MRI, has been widely utilized to
investigate functional andmorphological connectivity alterations
in patients with ET. Knowledge of the neural basis of ET outside
the traditional “tremor network,” also known as the cerebello-
thalamocortical network (5), has improved considerably over the
past 5 years. Evidence from structural MRI has demonstrated
that specific damage to motor network structures, such as the
supplementary motor area (SMA), and alterations in the integrity
of frontal and parietal areas contribute to the heterogeneity of ET
motor symptoms (6, 7). Furthermore, patients with ET exhibit
widespread disrupted brain functional networks, which include
those irrelevant to tremors (8). In our previous study, we found
gray matter (GM) dysconnectivity within the frontal, parietal,
and cerebellar lobes in drug-naive patients with ET based on T1-
weighted MRI (9). Moreover, MRI studies have shown that poor
QoS in healthy adults is associated with higher amyloid burden,
brain cortical thinning, and functional/structural connectivity
alterations of distinct networks, especially the default mode
network (DMN) (10–12). These findings indicate progress in
understanding the role of QoS in disease and suggest potential
interference of poor QoS in patients with ET.

The graph theory approach models the human brain as
a complex network that is constructed by nodes and edges
to create a delicate mathematical framework to characterize
the topological organization of the human brain (13). Based
on this framework, the human brain exhibits a “small world”
organization, which allows the optimal balance between the
segregation and integration of information processing (14). By
using this method, previous studies have identified large-scale
topological dysconnections of functional networks in patients
with ET (8, 15), although only one study has explored GM
morphological networks (9). We used a new method proposed
by Kong et al. (16) to construct a GM structural covariance
network, based on the graph theory approach using structural

MRI, by computing morphological similarity relationships of
GM at the individual level (17). This approach can quantify
the interregional relationships within each patient’s brain and
also estimate the structural complexity of the cerebral cortex.
Therefore, applying this promising approach to investigations
of morphological networks could provide new insights into the
causes and interference of whole-brain GM network alterations
in patients with ET having poor QoS.

This study is the first structural MRI study using the graph
theory approach to investigate brain morphological network
alterations in patients with ET having poor QoS. We aimed
to identify structural connectome alterations in the topological
properties of T1-weightedMRI to evaluate the effect of subjective
poor QoS in patients with ET and explore the underlying
neural bases. We hypothesized that patients with ET would
show disrupted topological organization in GM morphological
networks in comparison with HCs, and the extent of disruption
would be greater in patients with ET having poorer QoS (SleET).
In addition, given reports demonstrating the vital role of the
DMN in QoS (18) and the potential association between tremor
and the cerebello-thalamocortical network (5), we hypothesized
that nodes involving the DMN and the cerebello-thalamocortical
network would exhibit altered nodal topological properties in
patients in the SleET group compared with patients with ET
having normal QoS (NorET) and HCs.

MATERIALS AND METHODS

Participants
Patients with ET were consecutively recruited from the
outpatient clinic of the Neurology Department of West China
Hospital, Sichuan University, from July 2015 to June 2021.
The study was approved by the local ethics committee of West
China Hospital, and all participants provided written informed
consent before enrollment. The diagnosis of ET was based
on the Consensus Criteria of Clinical Diagnosis of Essential
Tremor of the Movement Disorder Society (MDS) 1998 (19).
Participants were then screened for eligibility according to the
following inclusion/exclusion criteria. The inclusion criteria
for patients with ET were the following: (a) postural and/or
kinetic tremor involving both upper extremities; (b) disease
duration of 3 years or more; (c) aged between 20 and 80 years;
(d) right-handedness. Right-handed, age-, and sex-matched
healthy controls were recruited through poster advertisements
or unrelated family members or friends of patients. The
exclusion criteria for all participants were the following: (a)
identifiable brain lesions on T1- or T2-weighted MRI; (b)
presence of head movement artifacts on scanning; (c) patients
with dystonia or bradykinesia related to Parkinsonism; (d)
presence of other neurological signs that indicate secondary
tremor disorders; (e) obvious stepwise tremor progression; (f)
history of psychological disorders or dementia; (g) obvious
symptoms of depression/anxiety; (h) traumatic or stressful life
events within the last year; (i) history of receiving anti-dementia,
antidepressant, anticholinergic, sedative, or anti-tremor
medications (including beta-blockers and gamma-aminobutyric
acid [GABA] derivatives). Demographic information (including
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sex, age, and years of education) was collected and basic blood
tests were performed during the first visit. Clinical evaluations
were then performed during face-to-face interviews on the same
day before the scheduled MRI examination. All assessment
was performed before patients were administered medication
treatments for tremor and sleep disturbances to exclude any
confounders of medication.

We used the Fahn-Tolosa-Marin Tremor Rating Scale (TRS)
(20) to assess tremor severity (the TRS contains TRS-A, TRS-B,
and TRS-C domains). The Pittsburg Sleep Quality Index (PSQI)
(21) was used to evaluate subjective QoS. ET patients with a
PSQI score of ≥6 were regarded as having poor QoS (SleET),
and those with a PSQI score of < 6 were regarded as having
normal QoS (NorET). In addition, we used theMini-Mental State
Examination (MMSE) (22) to evaluate cognitive function and
excluded those with an MMSE score <24, which indicated mild
cognitive impairment. TheHamiltonAnxiety Scale (HAMA) (23)
and the Hamilton Depression Scale (HAMD-24) (24) were used
to assess mood symptoms, and we excluded participants with
a HAMA score of >14 or a HAMD score of >17 (25), which
indicated symptoms of anxiety or depression, respectively. The
final sample comprised 45 patients in the SleET group, 59 patients
in the NorET group, and 66 HCs.

Data Acquisition and Data Processing
All participants underwent an MRI scan on the same scanner
(3 T Siemens Trio, Erlangen, Germany) using the same sequence
and an eight-channel phased-array head coil. Whole-brain high-
resolution three-dimensional (3D) T1-weighted images were
acquired with the following parameters: echo time (TE) 2.26ms,
repetition time (TR) 1,900ms, inversion time 900ms, flip angle
9◦, slice thickness 1mm, no inter-slice gap, single excitation, field
of view 256mm × 256mm, voxel size 1m × 1m × 1mm, 176
sagittal slices, and matrix size 176 × 202 × 200. Participants’
heads were immobilized using foam pads to minimize motion
artifacts. We manually verified the quality of the rawMRI images
and evaluated clinical abnormalities in a double-blinded manner.

Data processing was performed using the SPM12 software
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in the
MATLAB 2013b software environment (MathWorks, Natick,
MA, United States). Processing steps included the following: (a)
conversion of DICOM data into NIFTI data; (b) segmentation
of 3D T1-weighted MRI images to obtain GM images; (c)
manual checking of image quality; (d) using the Diffeomorphic
Anatomical Registration through Exponential Lie Algebra
(DARTEL) tool within the SPM12 package to create a custom
template from related tissue segments and performing nonlinear
transformation of the original image to the normalized image;
(e) conversion of the segmented image to Montreal Neurological
Institute stereotactic space; (f) resampling GM images into 2mm
× 2mm × 2mm voxels; (g) spatial smoothing of GM images
using a 6mm full-width at half-maximum Gaussian kernel.

Network Construction
Network construction was performed in MATLAB 2013b. A
critical task for constructing the human brain network is defining
the nodes and edges. First, the whole-brain GM image was

divided according to the automated anatomical labeling (AAL)
algorithm nodes into 116 regions of interest (ROIs), which were
defined as the nodes. We then extracted GM volume (GMV)
values for all the voxels within each ROI. The probability density
functions (PDFs) of the GMV values were estimated using kernel
density estimation (26). The details of the analyses are described
elsewhere (16, 27). Kullback-Leibler divergence-based similarity
(KLS) values (possible KLS values range from 0 to 1, with one
representing two identical distributions) (17) were calculated
between all possible pairs of ROIs using their PDFs. The network
edges were then defined as interregional connections based
on the quantified morphological similarity between two ROIs.
Finally, a KLS-based 116× 116morphological connectionmatrix
was generated for each participant.

Network Properties
The calculation of GM network properties was performed in
the MATLAB 2013b software environment using the Graph
Theoretical Network Analysis (GRETNA) graph-based network
analysis toolkit (http://www.nitrc.org/projects/Gretna/) (28). A
wide range of sparsity (S) thresholds was applied to each
correlation matrix to ensure that the thresholded networks
were estimable for small-worldness with sparse properties and
minimum spurious edges (29). Thus, we calculated both global
and nodal network metrics at S thresholds ranging from 0.1
to 0.35, with an interval of 0.01. We then calculated the
area under the curve (AUC) for the above S range, in line
with previous studies (30, 31), to characterize brain networks
that were free of the potential bias introduced by any single
threshold. The properties of the GM network at each S level were
calculated using the following parameters: (1) global network
measures, including network efficiency (i.e., global efficiency
[Eglobal] and local efficiency [Elocal]), the clustering coefficient
(Cp), characteristic path length (Lp), normalized clustering
coefficient (γ ), normalized characteristic path length (λ), and
small-worldness (σ ); (2) nodal centrality measures for each node,
including nodal degree, nodal betweenness, and nodal efficiency.

Statistical Analysis
Demographics and clinical characteristics were analyzed using
SPSS 24 (IBM Corporation, Armonk, NY, United States).
Continuous variables were analyzed using a univariate one-
way ANOVA, followed by post-hoc t-tests between each pair
of groups. The continuous variables were compared between
the two ET groups using two-sample t-tests. Categorical
variables were analyzed using chi-squared tests. We then used
nonparametric permutation tests for the AUC of each network
measure to detect significant differences among the three groups
(32). Post-hoc pairwise permutation tests were conducted for
measures with significant group differences. The randomization
was repeated 10,000 times. the false discovery rate (FDR)
correction method was applied for multiple comparisons at a
significance level of 0.05 (33).

Region pairs with between-group differences in nodal
properties were identified using the network-based statistics
(NBS) method (http://www.nitrc.org/projects/nbs/) (University
of Melbourne, Melbourne, Victoria, Australia) (34). We included
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nodes that exhibited significant between-group differences (p <

0.05, FDR corrected). First, a one-way ANOVA was performed
to define a set of significant changes between the connected
regions (p< 0.05, threshold F= 4.64). Then, post-hoc t-tests were
performed between each pair of subgroups (p< 0.05, threshold T
= 2.64). All connections were then tested for significance using a
nonparametric permutation method with 10,000 permutations.

Finally, we conducted partial correlations to explore the
relationships between significant GM network values and clinical
characteristics, with age, sex, years of education, HAMA score,
and HAMD score as covariates. The clinical variables included
were the age of onset, disease duration, TRS score, and
PSQI score.

RESULTS

Demographic and Clinical Characteristics
The final sample comprised 45 patients in the SleET group, 59
patients in the NorET group, and 66 HCs. The demographic
and clinical data are summarized in Table 1. No significant
differences were found among the three groups for age, sex,
or years of education (p > 0.05). The SleET group were older
at age of onset (p = 0.001) and had higher TRS (p = 0.012),
TRS-B (p = 0.006), HAMA (p < 0.001), and HAMD scores
(p < 0.001) than the NorET group. There were no significant
differences between the SleET and NorET groups for disease
duration, tremor distribution, tremor type, tremor asymmetry,
or MMSE score (p > 0.05).

Alterations in Global Brain Network
Properties
All three groups exhibited λ ≈ 1 and λ > 1, which indicated
small-world organization in the defined threshold range. There
were significant group effects in λ, Eglob, Eloc, Cp, and Lp
among the global network measures of the three groups (Table 2;
Figure 1). Post-hoc comparisons showed that, relative to HCs,
both ET groups showed lower Lp and λ, and the SleET group
showed higher Eglob (p < 0.001), Eloc (p < 0.001), and Cp (p =

0.0023). Moreover, relative to the NorET group, the SleET group
showed higher Eglob (p < 0.001) and Eloc (p = 0.0016) and lower
Lp (p=0.0038).

Alterations of Nodal Brain Network
Properties
Brain regions with altered nodal centrality in at least one nodal
property are listed in Table 2 (FDR corrected, p < 0.05). Post-
hoc comparisons showed that relative to HCs, both ET groups
showed lower nodal centralities in the right triangular part
of the inferior frontal gyrus (IFGtriang), left medial superior
frontal gyrus (SFGmed), right precuneus (PCUN), and left
thalamus (THA), and higher nodal centralities in the left
hippocampus (HIP), right amygdala (AMYG), bilateral pallidum
(PAL), right cerebellum 8, and vermis 10. Additionally, in the
SleET group relative to HCs, there were lower nodal centralities
in the bilateral middle frontal gyrus (MFG) and higher nodal
centralities in the left IFGtriang, right calcarine fissure, the
surrounding calcarine cortex (CAL), left supramarginal gyrus

(SMG), and bilateral THA. Finally, relative to the NorET group,
the SleET group showed lower nodal centralities in the right
MFG, right IFGtriang, left HIP, and bilateral PAL and higher
nodal centralities in the right (SMA), left SMG, right PCUN, right
AMYG, medial cingulate and paracingulate gyri (DCG), right
cerebellum 8, and vermis 10 (Figure 2).

Alterations of Morphological Connection
Characteristics
We used the NBS tool to explore morphological network
alterations in brain regions that showed significant between-
group differences in nodal properties. In the SleET group
relative to the NorET group, we identified two disconnected
subnetworks. One subnetwork, which comprised 11 nodes
and 21 increased connections, were mainly contained in the
DMN (left SFGmed, left HIP, right PCUN, and right temporal
pole: superior temporal gyrus [TPOsup]), the central-executive
network (CEN; right IFGtriang), salience network (SN; right
AMYG), cerebello-thalamo-(cortical) network (left THA, right
cerebellum 8, and vermis 10), and basal ganglia network (bilateral
PAL). One subnetwork comprised six nodes and seven decreased
connections, which was mainly within the DMN and basal
ganglia network. Furthermore, in the SleET group relative to
HCs, we identified one subnetwork, comprising 10 nodes and
22 increasing connections, which was mainly within the DMN
(left SFGmed, left HIP, right PCUN, and right TPOsup), SN
(right AMYG), cerebello-thalamocortical network (left THA,
right cerebellum 8, and vermis 10), and basal ganglia network
(bilateral PAL). An additional subnetwork, comprising eight
nodes and 12 decreased connections, was mainly located in the
DMN and CEN (Figure 3).

Correlations Between Network Properties
and Clinical Variables
Partial correlation analysis was performed between significant
GM network centralities and clinical variables (including age
of onset, disease duration, TRS score, and PSQI score). Results
showed that there were no significant correlations in the NorET
group between significant nodal centralities and clinical variables
(p > 0.05). In the SleET group, the nodal degree of the
left THA was negatively correlated with the TRS score (r =

−0.336, p =0.039; Figure 4). All results are presented in the
Supplementary Tables S1, S2.

DISCUSSION

This Is the first structural MRI study to investigate brain
morphological network alterations in patients with ET having
poor QoS. We found morphological disruptions of single-subject
brain networks in patients included in the SleET and NorET
groups. Our findings demonstrated that (a) global network
organization in patients with ET was disrupted, with patients in
the SleET group exhibiting a greater disruption of topological
GM network organization with a shift toward randomization
than that of patients in the NorET group; (b) patients in the
SleET group have a greater extent of altered nodal centralities in
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TABLE 1 | Demographic and clinical characteristics of the patients having poor quality of sleep (QoS; SleET), patients having normal QoS (NorET), and healthy control

(HC) participants.

SleET NorET HC p

ANOVA Sle-ET vs. Nor-ET

Age 54.29 ± 14.783 53.69 ± 14.695 52.55 ± 11.169 0.163 0.221

Sex (M/F) 13/32 20/39 21/45 0.076 0.064

Years of Education 10.27 ± 4.059 11.36 ± 4.246 10.583 ± 3.914 0.091 0.135

Handedness (Right/Left) 45/0 59/0 66/0 >0.999 >0.999

Age of onset 42.98 ± 16.876 31.56 ± 16.424 – – 0.001

Disease duration 11.800 ± 10.612 11.856 ± 9.952 – – 0.978

Positive family History 19 (42.2%) 29 (49.2%) – – 0.558

Tremor distribution

Upper limbs 45 (100%) 59 (100%) – – > 0.999

Head 16 (41.0%) 12 (23.5%) – – 0.097

Voice/Tongue/face 9 (25.7%) 13 (28.3%) – – 0.808

Legs 5 (14.3%) 5 (11.4%) – – 0.743

Trunk 1 (3.0%) 0 – – 0.440

Tremor type – –

Postural tremor 45 (100%) 59 (100%) – – > 0.999

Kinetic tremor 13 (28.9%) 19 (32.2%) – – 0.831

Rest tremor 17 (37.8%) 14 (23.7%) – – 0.135

Intention tremor 16 (35.6%) 15 (25.4%) – – 0.286

Tremor asymmetry – –

Left = Right 19 (43.2%) 35 (59.3%) – – 0.224

Left > Right 14 (31.8%) 11 (18.6%) – – 0.207

Left < Right 11 (25.0%) 13 (22.0%) – – 0.203

TRS 25.82 ± 16.395 17.00 ± 13.000 – – 0.003

TRS-A 6.53 ± 4.916 5.31 ± 3.715 – – 0.150

TRS-B 14.09 ± 7.885 8.61 ± 6.571 – – < 0.001

TRS-C 5.02 ± 5.483 3.10 ± 3.759 – – 0.037

MMSE 26.89 ± 3.164 27.17 ± 4.568 27.94 ± 1.788 0.219 0.725

PSQI 17.55 ± 5.509 3.91 ± 2.933 2.64 ± 2.377 < 0.001 < 0.001

HAMA 9.20 ± 6.147 4.66 ± 4.622 3.79 ± 3.571 < 0.001 < 0.001

HAMD 9.89 ± 6.147 4.25 ± 4.241 2.91 ± 2.653 < 0.001 < 0.001

Bold numbers in the last column are statistically significant at p < 0.05.

SleET, essential tremor with poor sleep quality; NorET, essential tremor with normal sleep quality; HC, healthy controls; TRS, Fahn-Tolosa-Marin Tremor Rating Scale; MMSE, Mini-mental

State Examination; PSQI, Pittsburg Sleep Quality Index; HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Depression Rating Scale.

the IFGtriang, SFGmed, AMYG, THA, TPOsup, and cerebellum
and additional altered nodal centralities in the MFG, DCG, SMG,
SMA and CAL relative to HCs; (c) morphological connection
alterations within the DMN and basal ganglia network were
more common across the ET groups than they were to HCs and
generally to a greater extent than patients in the SleET group,
and alterations within the cerebello-thalamocortical network
were only found among patients in the SleET group; (d) in the
SleET group, the nodal degree of the left THA was negatively
correlated with TRS score. The observed topological organization
alterations of the GM morphological network among patients
in the SleET and NorET groups extend our understanding of
the underlying neural mechanisms of patients with ET having
poor QoS from a morphological network perspective and may
contribute to future improvements in diagnosis and treatment.

A small-world network is an optimal model between
randomized and regularized networks, allowing a good balance
of network segregation (reflected by Eloc, Cp, and λ) and
integration (reflected by Eglob, Lp, and λ) (14). Specifically, a
higher Eglob and lower Lp in the SleET group relative to the
NorET group indicated a global GM network with significantly
more randomization and higher integration (35). Therefore, the
SleET-related changes in small-world parameters may reflect
a less optimal topological organization. However, these results
differ from those of several previous studies on topological
functional brain networks in patients with ET and have shown
that patients with ET are shifted toward weaker small-world
characteristics (8, 36). Several factors may contribute to this
difference. First, functional connections between regions may
not be structurally connected (37). Second, connections within
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TABLE 2 | Brain topological metrics showing differences among the SleET and NorET patient groups and HCs.

Measurements ANOVA P (F-values) Post-hoc p (t-values)

SleET vs. NorET SleET vs. HC NorET vs. HC

Eglob 0.0001 (16.065) 0.0001 (3.924) 0.0001 (5.633) 0.0650 (1.550)

E loc 0.0018 (6.629) 0.0016 (3.056) 0.0001 (3.504) 0.3784 (0.315)

Cp 0.0256 (3.689) 0.0762 (1.440) 0.0023 (2.774) 0.0734 (1.421)

Lp 0.0001 (15.132) 0.0038 (−2.697) 0.0001 (−5.562) 0.0027 (−2.878)

γ 0.0001 (12.034) 0.0257 (1.964) 0.0070 (−2.503) 0.0001 (−4.834)

Nodal degree

Frontal_Mid_L 0.0001 (12.481) 0.0021 (−4.374) 0.0001 (−4.497) 0.1889 (–0.9127)

Frontal_Mid_R 0.0001 (20.883) 0.0001 (−4.564) 0.0001 (−6.509) 0.0164 (–2.155)

Frontal_Inf_Tri_R 0.0001 (71.636) 0.0001 (−6.002) 0.0001 (−8.519) 0.0001 (−8.534)

Frontal_Sup_Medial_L 0.0001 (26.360) 0.0001 (−5.418) 0.0001 (−6.780) 0.0189 (–2.384)

Cingulum_Mid_L 0.0053 (5.616) 0.0022 (2.376) 0.0019 (4.849) 0.3698 (0.347)

SupraMarginal_L 0.0016 (7.064) 0.0274 (1.101) 0.0004 (4.898) 0.2621 (0.639)

Precuneus_R 0.0001 (58.472) 0.0001 (5.665) 0.0001 (−4.549) 0.0001 (−9.938)

Pallidum_L 0.0001 (48.201) 0.0001 (−5.944) 0.0030 (2.727) 0.0001 (7.954)

Pallidum_R 0.0001 (24.474) 0.0001 (−3.765) 0.0028 (2.635) 0.0001 (6.359)

Thalamus_L 0.0001 (14.739) 0.0028 (−2.746) 0.0001 (−6.697) 0.0002 (−4.003)

Temporal_Pole_Sup_R 0.0001 (31.387) 0.0016 (3.120) 0.0001 (−4.418) 0.0001 (−7.627)

Cerebellum_Crus2_R 0.0006 (8.282) 0.0003 (2.657) 0.0166 (1.670) 0.0225 (1.995)

Cerebellum_8_R 0.0001 (8.688) 0.0226 (1.899) 0.0001 (4.613) 0.0006 (3.033)

Vermis_10 0.0001 (57.353) 0.0001 (5.376) 0.0001 (9.229) 0.0001 (6.878)

Nodal betweenness

Frontal_Inf_Tri_R 0.0001 (10.041) 0.0036 (−2.494) 0.0001 (−3.945) 0.0041 (−2.615)

Supp_Motor_Area_R 0.0011 (7.367) 0.0019 (3.089) 0.0002 (3.579) 0.3459 (0.391)

Hippocampus_L 0.0001 (23.451) 0.0008 (−3.056) 0.0005 (3.008) 0.0001 (7.362)

SupraMarginal_L 0.0024 (5.816) 0.0344 (2.908) 0.0024 (3.226) 0.3573 (0.412)

Vermis_10 0.0001 (11.861) 0.0011 (3.045) 0.0001 (4.343) 0.0121 (2.221)

Nodal efficiency

Frontal_Mid_L 0.0127 (4.486) 0.0254 (–1.445) 0.0073 (−2.721) 0.1992 (–0.842)

Frontal_Mid_R 0.0001 (12.234) 0.0001 (−4.978) 0.0008 (−3.089) 0.0167 (–2.162)

Frontal_Inf_Oper_L 0.0288 (3.678) 0.0185 (1.339) 0.0073 (2.386) 0.1929 (0.869)

Frontal_Inf_Tri_R 0.0001 (53.188) 0.0001 (−5.960) 0.0001 (−8.676) 0.0001 (−6.163)

Frontal_Sup_Medial_L 0.0001 (23.751) 0.0001 (−4.273) 0.0001 (−6.388) 0.0011 (−3.091)

Cingulum_Mid_L 0.0001 (14.691) 0.0001 (5.052) 0.0001 (5.071) 0.4891 (0.016)

Amygdala_R 0.0001 (30.158) 0.0012 (3.027) 0.0001 (6.124) 0.0001 (5.335)

Calcarine_R 0.0008 (7.501) 0.0178 (1.106) 0.0015 (3.858) 0.2643 (0.608)

Pallidum_L 0.0001 (53.562) 0.0001 (−5.195) 0.0001 (5.425) 0.0001 (9.296)

Pallidum_R 0.0001 (32.961) 0.0010 (−3.278) 0.0001 (5.217) 0.0001 (7.697)

Thalamus_R 0.0010 (4.946) 0.0266 (1.773) 0.0001 (3.612) 0.0243 (1.986)

Temporal_Pole_Sup_R 0.0001 (29.294) 0.0015 (−3.242) 0.0002 (3.998) 0.0001 (7.009)

Cerebellum_8_R 0.0001 (20.014) 0.0001 (4.182) 0.0001 (5.872) 0.0016 (3.111)

Vermis_10 0.0001 (46.082) 0.0001 (6.930) 0.0001 (8.534) 0.0008 (3.366)

Comparisons of global and nodal measures among the three groups (p < 0.05, shown in bold) were performed using nonparametric permutation tests.

SleET, essential tremor with poor sleep quality; NorET, essential tremor with normal sleep quality; HC, healthy controls; ANOVA, analysis of variance; Eglob, global efficiency; Eloc, local

efficiency; Cp, clustering coefficient; Lp, characteristic path length; γ, normalized clustering coefficient; L, left; R, right; Mid, middle; Inf, inferior; Tri, triangular; Sup, superior; Post,

posterior; Supp, supplementary; Oper, opercular.
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FIGURE 1 | Global gray matter network properties differed significantly among the SleET, NorET, and HC groups. Black asterisks indicate significant differences in the

post-hoc comparisons between SleET and NorET. ET, essential tremor; SleET, ET with poor sleep quality; NorET, ET with normal sleep quality; HC, healthy control;

AUC, area under the curve; Eglob, global efficiency; E loc, local efficiency; Cp, clustering coefficient; Lp, characteristic path length; γ , normalized clustering coefficient;

σ , small-worldness.

FIGURE 2 | Brain regions with significant group effects in the nodal centralities of morphological brain networks compared among the SleET, NorET, and HC groups.

Regions are located according to their centroid stereotaxic coordinates. ET, essential tremor; SleET, ET with poor sleep quality; NorET, ET with normal sleep quality;

HC, healthy control; MFG, middle frontal gyrus; IFGtriang, inferior frontal gyrus, triangular part; SFGmed, superior frontal gyrus, medial; SMA, supplementary motor

area; PCUN, precuneus; HIP, hippocampus; AMYG, amygdala; DCG, medial cingulate and paracingulate gyri; CAL, calcarine fissure; SMG, supramarginal gyrus; PAL,

pallidum; THA, thalamus; CRBL, cerebellum; L, left; R, right.

structural networks reflect physical connections (synapses or
axonal projections) (38); thus, disruptions within such networks
may trigger a reciprocal compensatory mechanism with the
functional network, which may result in inconsistent results.

Moreover, sleep plays an essential role in the clearance of
neurotoxic waste (i.e., amyloid β peptides) (39), and a previous
study of 18F-fluorodeoxyglucose positron emission tomography
(PET) in healthy older adults showed that poor QoS is associated
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FIGURE 3 | Networks showing altered morphological connections compared among the SleET, NorET, and HC groups. Red nodes denote brain regions, and lines

denote connections. Yellow/blue lines represent increased/decreased morphological connections. ET, essential tremor; SleET, ET with poor sleep quality; NorET, ET

with normal sleep quality; HC, healthy control; IFGtriang, inferior frontal gyrus, triangular part; SFGmed, superior frontal gyrus, medial; PCUN, precuneus; HIP,

hippocampus; AMYG, amygdala; DCG, medial cingulate and paracingulate gyri; PAL, pallidum; THA, thalamus; CRBL, cerebellum; L, left; R, right.

with a greater burden of cerebral amyloid β (40, 41). Bellesi et
al. suggested that sleep is associated with increased expression
of genes related to myelin formation (42). Therefore, poor QoS
may negatively impact the brain structure of patients with ET
and cause global disruption of their GM network. Furthermore, a
surface-based morphometric study of primary insomnia patients
showed increased cortical volume, rather than atrophy, in
multiple brain regions, including frontal, cingulate, and fusiform
cortices; moreover, the cortical thickness of these brain regions
was positively correlated with PSQI score (43). In our case, the
increased integration ability of the global GM network in patients

with ET may contribute to increased reactivity to stimuli, which
may induce a high arousal state and in turn, signify vulnerability
to poor QoS.

In regard to nodal topological properties, we found altered
nodal centralities in mainly the frontal regions and the DMN.
Although previous neuroimaging studies of ET using volumetric
structural MRI methods showed heterogeneous brain volume
changes in cerebral cortical and subcortical structural regions
(44), several studies identified frontal regions (including the SFG
and MFG) with a decrease in volume or cortical thickness (45,
46). Notably, our results showed that the altered nodal properties
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FIGURE 4 | Partial correlations between the nodal degree of the left thalamus

and TRS scores among patients in the SleET group. SleET, essential tremor

with poor sleep quality; TRS, Fahn-Tolosa-Marin Tremor Rating Scale.

within the frontal lobes exhibited a decreasing trend from HCs,
patients in the NorET group, to patients in the SleET group.
Correspondingly, disruption of the cognitive system, primarily
within the frontal lobe, has also been shown to contribute to
the pathogenesis of insomnia patients (47), and the decline
in subjective QoS is correlated with frontal GMV loss (48,
49). Andre et al. suggested that slow-wave sleep disruption is
associated with frontal amyloid deposition in older adults (50).
In addition, apart from frontal regions, most of the brain regions
with altered nodal centralities have been located in the DMN.
Previous studies have reported significant changes within the
DMN in patients with ET using functional (51) and structural
MRI (8). Our NBS results revealed distinct network disruptions
within the DMN, including the PCUN, which is a core midline
structure within the DMN that plays the most critical role in
this task-negative network (52). Poor QoS is related to frequent
daydreaming, rumination, and mind wandering, which require
the involvement of the DMN (53). Studies from insomnia
patients have shown abnormal increases or imbalances in
connectivity within the DMN (54). A hyperaroused state of the
DMN can persist at night and possibly during sleep stages. In
healthy adolescents, QoS is related to weaker intrinsic DMN
functional connectivity (18), and loss of DMN integrity may
be a state marker for insufficient sleep or poor QoS (55).
Accordingly, it appears that altered top-down, rather than
bottom-up, integration in sleep regulation contributes to the
poor QoS in patients with ET. Furthermore, the pathogenesis
underlying ET may interfere with networks responsible for sleep
regulation, which may, in turn, cause poor QoS.

Additionally, the poor QoS of patients with ETmay contribute
to a decline in affective state. Our study excluded patients
with substantial depressive or anxiety symptoms to minimize
the possible confounding effects. As a result, the SleET group
had higher HAMA and HAMD scores relative to the NorET
group. The identified regions with altered nodal properties,

which included the left HIP and right AMYG, both play critical
roles in the emotion regulation system. Evidence has shown
that insomnia patients exhibit increased AMYG responses to
sleep-related stimuli relative to controls (56). Alterations in the
AMYG-related network have also been found in patients with
affective disorders (57); poor QoS is a common symptom of
affective disorders andmay negativelymediate affective behaviors
(58). Moreover, it has also been reported that adequate non-
rapid eye movement (NREM) sleep may proffer an anxiolytic
benefit by restoring cingulate regions (59). Thus, patients in
the SleET group may experience greater anxiety. However, we
found no statistically significant correlation between altered
nodal centralities and HAMA or HAMD scores. Therefore, the
interaction between emotional scores and QoS in patients with
ET may only partially contribute to the identified GM network
alterations as a primary cause.

Furthermore, despite the distinct DMN connection alterations
discussed above, the NBS results demonstrated that the
alterations within the cerebello-thalamo-(cortical) network (also
known as the “tremor network”) were greater in the SleET group
than those in the NorET group. Although the pathogenesis
of ET is currently unclear, functional MRI studies have
consistently found altered intrinsic cerebellar and cerebello-
thalamocortical connectivity (44), and magnetic resonance
spectroscopy studies have also reported reduced GABAergic
function in the cerebellum and thalamus (60). Remarkably, the
SleET group showed significantly higher TRS and TRS-B scores
than the NorET group, which indicated higher tremor severity
among patients in the SleET group. Moreover, patients in the
SleET group had higher age of onset than those in the NorET
group, which may be associated with a faster rate of tremor
progression (61). Thus, we postulate that the deterioration of
QoS in patients with ET may be associated with an advanced
pathology of ET. Contrary to our expectations, the partial
correlation analysis failed to find any significant associations
between PSQI score and topological properties in either ET
group. This may be partially due to the cross-sectional design of
our study. It remains unclear whether poorQoS in E patients with
ET is a consequence of disease progression or a precursor to ET.
Further investigations with follow-up assessments are needed to
clarify how QoS develops with the progression of ET.

In the SleET group, the nodal degree of the left THA
was negatively correlated with the TRS score. The THA is
also part of the tremor network and plays an essential role
in tremor genesis. Specifically, the tremor network primarily
connects the cerebellum and primarymotor cortex via the ventral
intermedius nucleus of the THA (62). Previous studies have
reported GM volume loss (6) and altered functional connectivity
(63) of the THA in patients with ET. Evidence from studies
using deep brain stimulation targeting the ventral intermedius
nucleus of the THA and magnetic resonance-guided focused
ultrasound thalamotomy for the treatment of ET suggests an
interaction between the pathophysiology and the genesis of
tremor within the THA (64, 65). Consequently, the altered nodal
degree of the left THA in the SleET group would contribute to
more severe tremor manifestation. Despite this, the THA also
mediates neocortical arousal throughout the sleep-wake cycle
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(66). Animal experiments have demonstrated that the burst and
tonic firing patterns of the centromedial THA exhibited dual
control of NREM sleep-wake transitions and sleep slow waves
(67). Although we did not find significant correlations between
PSQI score (i.e., QoS) and nodal properties of the THA, the
significant correlation between the nodal degree of the left THA
and TRS score within the SleET group suggests a link between the
tremor network and QoS.

There are several limitations of our study that are worth
noting. First, our study used a cross-sectional design; therefore,
we could not examine the progression of QoS alongside
the progression of tremors or the dynamic alterations of
GM networks in patients with ET. Second, although we
calculated interregional similarity quantified by Kullback-Leibler
divergence-based similarity to construct the GM connectivity
network, which has been used widely in the exploration
of morphological connectivity in various diseases, the direct
biological basis of the similarity remains unclear, and additional
neuroanatomical and neurophysiological evidence is needed.
Third, we used the AAL algorithm for brain parcellation, which
did not include subcortical regions of the locomotor network
(e.g., the subthalamic nucleus). Fourth, the PSQI is a widely
used tool with high sensitivity (89.6%) and specificity (86.5%)
for assessing QoS (68) that is based on a subjective rather than
an objective evaluation (e.g., polysomnography). Therefore, the
QoS of patients with ET may have been underestimated. Fifth,
the diagnosis of ET was based on the 1998 MDS criteria. Thus,
the ET patients group included a mixture of pure ET and ET-plus
patients. However, no significant differences were found between
patients in the SleET and NorET groups when it comes to tremor
distribution, tremor type, or tremor asymmetry. Nevertheless,
the plus symptoms (i.e., resting tremor and impaired tendon
gait) may have an impact on the results. The comparisons of
the accompanying soft signs between patients in the SleET and
NorET groups are provided in Supplementary Table S3. Finally,
the topological analysis was based on 3D T1-weighted MRI
data, and there is a lack of neuroimaging evidence for sleep
disturbances in patients with ET. Future research targeting QoS
of patients with ET using multimodal neuroimaging data with a
longitudinal design is needed.

CONCLUSION

Essential tremor patients with poor QoS exhibited disrupted
topological GM network organization with a shift toward
randomization. Furthermore, disrupted nodal centralities in the
DMN, SN, and cerebello-thalamo-(cortical) network may have a
broader impact on the QoS of patients with ET. The nodal degree

of the left THA was negatively correlated with tremor severity
among patients in the SleET group. Overall, this study suggests
that complex interactions underlie tremor and sleep disruptions.
Our findings offer valuable insight into the neural mechanisms
underlying poor QoS in patients with ET.
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