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Abstract: The stubborn and complex structure of lignocellulose hinders the valorization of each
component of cellulose, hemicellulose, and lignin in the biorefinery industries. Therefore, efficient
pretreatment is an essential and prerequisite step for lignocellulose biorefinery. Recently, a consid-
erable number of studies have focused on peroxyacetic acid (PAA) pretreatment in lignocellulose
fractionation and some breakthroughs have been achieved in recent decades. In this article, we aim
to highlight the challenges of PAA pretreatment and propose a roadmap towards lignocellulose
fractionation by PAA for future research. As a novel promising pretreatment method towards lig-
nocellulosic fractionation, PAA is a strong oxidizing agent that can selectively remove lignin and
hemicellulose from lignocellulose, retaining intact cellulose for downstream upgrading. PAA in
lignocellulose pretreatment can be divided into commercial PAA, chemical activation PAA, and enzy-
matic in-situ generation of PAA. Each PAA for lignocellulose fractionation shows its own advantages
and disadvantages. To meet the theme of green chemistry, enzymatic in-situ generation of PAA has
aroused a great deal of enthusiasm in lignocellulose fractionation. Furthermore, mass balance and
techno-economic analyses are discussed in order to evaluate the feasibility of PAA pretreatment in
lignocellulose fractionation. Ultimately, some perspectives and opportunities are proposed to address
the existing limitations in PAA pretreatment towards biomass biorefinery valorization. In summary,
from the views of green chemistry, enzymatic in-situ generation of PAA will become a cutting-edge
topic research in the lignocellulose fractionation in future.

Keywords: lignocellulose; peroxyacetic acid (PAA) pretreatment; mass balance; economic evaluation;
biorefinery

1. Introduction

Due to serious environmental issues and global climate change, researchers all over
the world are trying their best to convert the fossil fuel-based society into a bio-economical
society, advancing the goal of reaching peak carbon and realizing carbon neutrality [1,2].
Although fossil fuels play a critical role in social industrialization, these non-renewable and
unsustainable fuels have negative effects on the environment and humans [3,4]. Lignocel-
lulose, such as forest residues (branches, leaves, etc.), agricultural residues (wheat straw,
rice straw, etc.), energy crops (willow, poplar, etc.), and cellulosic waste (e.g., municipal
solid waste and food waste) are abundant and cost-effective renewable resources with an
annual production of 15–17 × 1010 Mt [5,6]. Lignocellulose can be upgraded into biofuels,
biochemicals, and biomaterials [7,8]. Therefore, lignocellulose biorefinery is expected to
replace the traditional petroleum refining, and this will mitigate energy crisis and environ-
mental pollution [9]. The United Nations Conference on Environment and Development
(UNCED) predicts that the utilization of biomass resources may reach half of the world’s
total resource use by 2050 [10].

However, pretreatment processes are required to destroy the stubborn structure of
lignin, resulting in the improvement of the accessibility of cellulase to cellulose for the
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downstream utilization [11]. At present, four major methods of lignocellulose pretreatment
are described in the literature [12]. Each method has its own advantages and disadvantages.
For instance, physical pretreatment, such as milling and grinding, can improve the surface
area and porosity of lignocellulose, but the high energy consumption of this pretreatment
increases the operational costs and limits its practical applications [13]. Chemical pretreat-
ment of dilute acids, bases, organic solvents, ionic liquids, and low eutectic solvents can
remove lignin and hemicellulose to improve the enzymatic accessibility of cellulose, and
can also reduce the degree of polymerization (DP) and crystallinity (Crl) of cellulose [14].
However, a critical issue in chemical pretreatment is that chemical reagents are expen-
sive and prone to corrode equipment. Physico-chemical pretreatment is a combination of
physical and chemical pretreatment; this method can dissolve lignin and hemicellulose to
facilitate the utilization of cellulose [15]. Typical physicochemical pretreatment includes
steam explosion, liquid hot water, ammonia fiber explosion, ammonia cycle permeation,
electrocatalysis, CO2 explosion, and SO2 explosion [16]. The drawbacks of physicochemical
pretreatment are that it requires high temperatures and high-pressure reaction conditions.
Biological pretreatment uses microbial communities such as fungi or bacteria to damage the
lignocellulosic structure. It is a novel pretreatment method with low energy consumption
and low environmental impact [17]. However, an unsatisfactory aspect is that the low
efficiency of biodegradation pretreatment limits its large-scale industrial applications [18].

Peroxyacetic acid (PAA), an organic peroxy acid, has been extensively regarded as a
disinfectant, strong oxidizer, preservative, bactericide, and polymerization catalyst [19]. In
recent years, PAA has been employed as a strong oxidant to oxidize the hydroxyl group
in the lignin side chain to the carbonyl group, and it will cleave the β-aryl bond of lignin
to reduce the molecular weight and introduce hydrophilic groups [20]. PAA will also
oxidize the hydroxyl group in the lignin side chain to hydroquinone; it is subsequently
oxidized to quinone, whose ring opening generates water-soluble hydroponic acid, maleic
acid, and fumaric acid derivatives [20]. Through these reactions, lignin is depolymerized
and the fragments will dissolve in water, leading to effective removal from lignocellulosic
biomass [21]. In addition, the oxidized lignin shows low hydrophobicity and weakens the
ability to bind to cellulase. Therefore, an increasing number of studies have been focusing
on PAA pretreatment in lignocellulosic biorefinery.

In this article, we aim to highlight the challenges of PAA pretreatment and propose a
roadmap towards future research into lignocellulose fractionation by PAA. We start with
introducing of lignocellulose structure, and reviewing three kinds of PAA in lignocellulose
pretreatment, including commercial PAA, chemical activation PAA, and enzymatic in-situ
generation of PAA. Subsequently, the advantages and disadvantages of each PAA towards
lignocellulose fractionation are extensively analyzed. To meet the theme of green chemistry,
this article focuses on enzymatic in-situ generation of PAA and highlights its probable
challenges in lignocellulose fractionation at this current stage. Furthermore, the mass
balance and techno-economic feasibility of PAA pretreatment in lignocellulose fractionation
are extensively discussed. At the end of the paper, critical perspectives and opportunities
are proposed based on the existing limitations in PAA pretreatment towards biomass
biorefinery valorization.

2. Lignocellulose Structure

Lignocellulose biomass is an abundant, diverse, and inexpensive renewable resource in
nature. It has been universally converted into biofuels, biochemicals, and biomaterials [22].
As shown in Figure 1, lignocellulose is mainly composed of cellulose (40–45%), hemicellu-
lose (20–40%), and lignin (10–25%), which are tightly bound together to form the skeletal
framework of plant. The three-dimensional network structure shows that cellulose and
hemicellulose are mainly connected by hydrogen bonds, and lignin and hemicellulose are
also linked with chemical bonds, such as hydrogen bonds, ionic bonds, covalent bonds,
and hydrophobic interactions [23].
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2.1. Cellulose

Cellulose, the most abundant polymer on Earth, is a linear intercalation (alternating
spatial arrangement of side chains) homopolymer. It consists mainly of β-(l-4) glycosidic
bonds linked by alternating arrangements [24]. Due to its unique structure of ordered
bundle arrangement and highly crystalline structure, cellulose is very stable in many
conditions. Cellulose has good biocompatibility and active hydroxyl groups with an atomic
O/C of 0.6–0.83 and H/C of 0.8–1.67 [25]. Cellulose can be valorized into fermented
glucose [26], bioethanol [27], biomaterials [28,29], and catalyst carrier [30].

2.2. Hemicellulose

Hemicellulose has a heteropolymer with a relatively lower molecular weight compared
to cellulose; it is composed mainly of pentoses (e.g., xylose and arabinose) and hexoses
(e.g., mannose, glucose, and galactose) [31]. Hemicellulose is bound to various other cell
wall components such as fibronectin, cell wall proteins, lignin, and phenolic compounds
through covalent bonds, hydrogen bonds, and hydrophobic interactions [32]. Hemicel-
lulose has been mainly used to produce fructose and xylitol. Apart from these products,
hemicellulose can also be converted to biofuels [33], furfural [34], levulinic acid; and formic
acid [35,36].

2.3. Lignin

Lignin is a polymer of heterogeneous phenyl propane units in plants and consists of
three main monomers: guaiacol (G), eugenol (S), and p-hydroxyphenyl (H) [37]. These
three monomers are chemically linked with the C-C bond (5-5, β-β, β-1, β-5) and aryl ethers
(β-O-4, α-O-4) to yield three corresponding subunits: p-coumaryl alcohol (pCoumA), pineal
alcohol (ConA), and mustard alcohol (SinA) [38]. Due to the heterogeneity and complex
components, lignin shows strong stubborn and anti-barrier effects [39]. To date, lignin has
mainly been used in reinforcing agents [40], binders [41], hydrogels [42], adsorbents [43],
and catalysts [44]. Efficient valorization of lignin will be a hot topic of research in the
near future.

3. Quick Overview of PAA

As mentioned above, in order to valorize each component of lignocellulose, pretreat-
ment processes should be required to destroy its stubborn structure. To this end, a novel
promising alternative, PAA pretreatment, is introduced in this work. First of all, we present
a quick overview of PAA. As a strong oxidant, PAA is extensively used in wastewater disin-
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fection due to its good disinfection performance and the low toxicity of its by-products [45].
Figure S1 shows the chemical structure of PAA with a high oxidation potential (1.748 V) [46].
The O-O the bond dissociation energy of PAA (159 kJ·mol−1) is relatively weaker than that
of hydrogen peroxide (213 kJ·mol−1) [47]. Three kinds of PAA are reported in the literature,
including commercial PAA, chemical activation PAA, and enzymatic in-situ generation
of PAA.

3.1. Commercial PAA

Commercial PAA products are greatly dependent on the ratio of PAA to hydrogen
peroxide (H2O2). Table 1 provides detailed information on part commercial PAA in the
literature. Commercial PAA is usually prepared by mixing H2O2 and acetic acid (or ethyl
acetate), catalyzed with concentrated sulfuric acid. The desired concentration and yield
of PAA are achieved by adjusting the concentration of H2O2 and the ratio of acetic acid.
However, the chemical production of PAA is characterized by flammability, explosiveness,
toxicity, high temperature, high pressure, and corrosiveness. From the point-of-view of safety
and green chemistry, it is very dangerous to produce commercial PAA in the laboratory.

Table 1. Detailed information of part commercial PAA products in the literature [48,49].

Identity Product Name Supplier and Country PAA(%) H2O2(%) PAA:H2O2

Lspez Wofasteril L. Spez KESLA PHARMA WOLFEN GmbH
(Greppin, Germany) 3 40 0.034

E35 Wofasteril 035 KESLA PHARMA WOLFEN GmbH
(Greppin, Germany) 3.5 10 0.156

SC50 Wofasteril SC50 KESLA PHARMA WOLFEN GmbH
(Greppin, Germany) 5 8 0.28

AC150 Peressigsaure 15% reinst Applichem GmbHt (Darmstadt,
Germany) 15 24 0.28

E250 Wofasteril E250 KESLA PHARMA WOLFEN GmbH
(Greppin, Germany) 25 30 0.37

S1400 Sigma-Aldrich Peracetic
Acid Solution

Sigma-Aldrich Co.
(St. Louis, MO, USA) 39 6 2.91

E400 Wofasteril E400 KESLA PHARMA WOLFEN GmbH
(Greppin, Germany) 40 12 1.49

S1400 Sigma-Aldrich 32 wt% PAA Sigma-Aldrich Co.
(St. Louis, MO, USA) 32 5 6.4

/ / Thermo Fisher Scientific
(New York, NY, USA) 39 / /

VigorOx®

WWTII
PAA technical grade

solution (VigorOx® WWTII)
PeroxyChem

(Philadelphia, Pennsylvania, USA) 15 23 0.652

3.2. Chemically Activated PAA

To improve the oxidative ability of commercial PAA, some activators can be added
to the PAA system. These activators include radiation, metal catalysts, and carbon-based
materials [50,51]. For example, the O-O bond in PAA can be directly broken by UV
radiation to generate the radicals R-O· and HO·, thus improving disinfection efficiency and
the degradation of organic compounds [52]. UV irradiation has been used to activate PAA
to form active radicals that degrade naproxen (NAP). This process would be impracticable
without sufficient UV intensity, because the penetration of UV light in water is limited [50].
Hu et al. investigated an advanced oxidation technique based on UV/PAA to degrade
steroid estrogens Hu, Li, Zhang, et al. [53]. The metal activators of PAA include metal
ions (Cu2+, Co2+, Fe2+, and Mn2+) [54,55] and metal oxides (ZVCo, Co2O3, CoFe2O4, and
Co3O4) [56]. The mechanism of PAA activation by chemical activators can be triggered
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through the generation of organic radicals CH3C(O)O· and CH3C(O)OO· (Figure 2); these
radicals can degrade organic pollutants by advanced oxidation. Table 2 summarises the
degredation of organic pollutants by chemical activation of PAA as reported in the literature.
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Table 2. Degradation of organic pollutants by chemical activation PAA.

Compounds Chemical
Activator (Catalyst)

Compounds
Concentration

Conditions: Temperature,
pH, Catalyst Loading PAA Concentration Degradation Rate

(%) References

Orange G Co3O4 0.05 mM 25 ◦C, 7.0, 0.1 g/L 0.5 mM 100 [57]

Sulfamethoxazole CoFe2O4 10 µM 23 ◦C, 7.0, 0.1 g/L 100 µM 87.3 [56]

Bisphenol-A

Co (II)/Co (III) 15 µM 22 ◦C, 4.0, 10 µM, 100 µM

100

[58]
Carbamazepine 87.7

Naproxen 100

Sulfamethoxazole 98.5

Sulfamethoxazole Co 10 µM 25 ◦C, 7.0, 0.8 µM 100 µM 89.4 [51]

Naproxen UV 4 µM 20 ◦C, 7.0, /no catalyst 20 mg/L 100 [50]

Bisphenol-A

Fe (II) 15 µM 22 ◦C, 6.0, 5 µM, 20 µM

87.7

[55]Methylene blue 89.4

Naproxen 98.2

Sulfamethoxazole ZVCo * 5 µM 25 ◦C, 7, 0.1 g L−1 50 µM 99.4 [59]

Steroid estrogens UV 50 µg/L 25 ◦C, 6.01, /no catalyst 30 mg/L 90 [53]

* ZVCo: zero-valent cobalt.

3.3. Enzymatically Generated PAA

To meet the principle of green chemistry, enzyme-generated PAA has outstanding ad-
vantages over commercial and chemically activated PAA. It is a simple, safe, low-cost, and
in-situ PAA production method that avoids hazards during storage and transportation [60].
Perhydrolases are critical factors for enzyme-generated PAA, and the most commonly
used ones include Pseudomonas fluorescens esterase [20], acetyl xylan esterase [61], and li-
pase. Perhydrolases can catalyze H2O2 and acetic acid/ethyl acetate for in-situ generation
of PAA [49]. Bernhardt et al. reported that the catalytic domain of perhydrolases was
Ser-His-Asp Bernhardt, Hult and Kazlauskas [62]. Table 3 summarizes the perhydrolase-
producing strains used for enzyme-generated PAA in the literature. Strains-producing
perhydrolases are wild microorganisms (Pseudomonas fluorescens, Candida rugosa, Aspergillus
niger, Porcine pancreas, Bacillus subtilis CICC 20034, Pichia pastoris) and recombinant strains
(Escherichia coli BL21, Aspergillus ficcum). In comparison with commercial PAA, the advan-
tages of enzyme-generated PAA in biomass fractionation are: (1) PAA can be generated as
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needed, thus eliminating storage-related problems of explosion and stability. (2) Acetyl
groups in biomass can be used to generate PAA. (3) PAA will sterilize the biomass to protect
it from microbial contamination in biomass storage and fermentation.

Table 3. Perhydrolases producing strains and enzyme-generated PAA.

Perhydrolase Strains Reagent Dosage
(EA/GT, H2O2)

Conditions:
Temperature, pH,
Enzyme Loading

PAA Concentration
(mM) References

Pseudomonas fluorescens esterase
(PFE) Pseudomonas fluorescens 500 mM EA *,

1.0 M H202
23 ◦C, 7.2, 0.5 mg/mL 115 [20]

Pseudomonas fluorescens esterase
(PFE) Escherichia coli BL21 500 mM EA *,

1.0 M H202
23 ◦C, 7.2, 0.5 mg/mL 90 [63]

PFE-L29G Pseudomonas fluorescens 600 mM EA *,
500 mM H202

37 ◦C, 7.0, 0.5 mg/mL 60 [49]
Wild-type PFE Pseudomonas fluorescens 70

Lipase Type VII Candida rugosa

250 mM GT †,
1.0 M H202

25 ◦C, 7.4, 0.6 mg/mL

0.98

[64]
LPL Aspergillus niger 2.6

Lipase Type II Porcine pancreas 7.1

Acetylxylan esterase (AXE) Bacillus subtilis CICC 20034 113.37

Acetylxylan esterase (AXE) Pichia pastoris 0.5 M EA *, 1.0 M H202 37 ◦C, 7.0, 15 mg/mL 133.70 [65]

Recombinant acetylxylan
esterase (rAXE) Aspergillus ficcum 500 mM EA *,

1.0 M H202
37 ◦C, 7.0, 0.1 mg/mL 134 [61]

* EA: Ethyl acetate; † GT: Glycerol triacetate.

4. Advantages of PAA Pretreatment in Lignocellulose Biorefinery
4.1. Helpful for Fractionation and Cellulose Saccharification

PAA pretreatment of lignocellulose can fractionate and depolymerize most of the
lignin and hemicellulose, while leaving the cellulose fraction almost intact [66]. Once
lignocellulose has been pretreated with PAA, high accessibility of enzyme to cellulose is
achieved, and the resultant cellulose is easily hydrolyzed to release glucose. In addition,
PAA pretreatment can remove most of the lignin, leading to a decrease in the effectiveness
of the enzyme’s binding to lignin.

Some excellent studies on PAA pretreatment with or without catalysts in lignocellu-
lose biorefinery are available in the literature. For instance, oil palm empty fruit bunch
(OPEFB) was pretreated with 200 mM PAA in combination with 100 mM H2SO4. After
pretreatment, 81.3% of the lignin was removed and 88.5% of the cellulose was retained.
Experiments on enzymatic saccharification revealed that a cellulose digestion efficiency of
77.0% was achieved after PAA pretreatment, which was 1.8- and 11.9-times higher than
that obtained with H2SO4 pretreatment and raw OPEFB, respectively [67]. In another
paper, sugarcane bagasse was pretreated with 2% PAA and 0.1 mol/L FeCl3, and it was
found that 57.3% of the lignin and 72.2% of the xylan were effectively removed and about
97% of the cellulose was retained. The PAA pretreated bagasse resulted in a release of
313.0 mg/g-biomass of glucose, which was 4.5 times higher than that of the untreated
bagasse (69.75 mg/g-biomass) [47]. Table 4 summarizes the fractionation effectiveness of
lignocellulose biomass pretreated by PAA with or without the addition of additives, as
reported in the literature. Recently, a self-generated PAA oxidant in a PHP (phosphoric
acid and hydrogen peroxide) pretreatment system was investigated, in which the acetyl
groups in biomass played a critical role [68]. The mechanism of self-generation of PAA and
the fractionation of lignocellulose in the PHP system is shown in Figure 3. The removal
efficiency of lignin and hemicellulose was high—up to 83.5% and 85.7%, respectively, while
87% of cellulose was retained. Overall, PAA pretreatment with or without additives is a
potentially promising proposal for the fractionation of lignocellulose biomass.
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Table 4. PAA pretreatment for lignocelluloses fractionation and its effectiveness.

Lignocellulose
Biomass PAA Treatment Conditions Cellulase

Loading
Lignin Removal

Rate (%)

Hemicellulose
Removal
Rate (%)

Cellulose
Retaining
Rate (%)

Saccharification
of Cellulose (%) References

Oil palm empty
fruit bunch

Solid loading 1:20,
200 mM PAA, 100 mM
H2SO4, 140 ◦C, 5 min

30 U/g 81.3 88.5 81.1 77 [67]

Sugarcane
bagasse

Solid loading 1:10,
2 wt% PAA, 90 ◦C,
60 min, 250 rpm

20 FPU/g 40.6 58.2 93.4 48.78 [47]

Wheat straw
Solid loading 1:10,

65 g H3PO4, 7.1 g H2O2,
50 ◦C, 5 h, 180 rpm

/ 90 100 87 / [68]

Yellow poplar

Solid loading 1:50
300 mM PAA, 100 mM
H2SO4, 120 ◦C, 5 min,

180 rpm

30 FPU/g 90.4 85.7 75.6 84.0 [69]

Poplar

Solid loading 1:10, 1:1 (v/v)
H2O2 (30%): GAA *, 80 ◦C,

2 h,
5 FPU/g

94.1 26.6 98.7 52.7

[70]
Solid loading 1:10, 1:1 (v/v)

H2O2 (30%): EA † (99%),
80 ◦C, 2 h,

97.2 17.0 95 90.6

Corn stover
Solid loading = 1:40, 1.5 wt%

PAA, 3 wt% MA ‡, 130 ◦C,
1 h

10 FPU/g 87.77 88.21 86.83 89.65 [50]

* GAA: Glacial acetate acid; † EA: Ethyl acetate; ‡ MA: Maleic acid.
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and the fractionation of lignocellulose in the PHP system is shown in Figure 3. The re-
moval efficiency of lignin and hemicellulose was high—up to 83.5% and 85.7%, respec-
tively, while 87% of cellulose was retained. Overall, PAA pretreatment with or without 
additives is a potentially promising proposal for the fractionation of lignocellulose bio-
mass. 

Table 4. PAA pretreatment for lignocelluloses fractionation and its effectiveness. 

Lignocellulose 
Biomass 

PAA Treatment Conditions 
Cellulase 
Loading 

Lignin Re-
moval Rate 

(%) 

Hemicellulose Re-
moval Rate (%) 

Cellulose Retain-
ing Rate (%) 

Saccharification of 
Cellulose (%) 

References 

Oil palm empty 
fruit bunch 

Solid loading 1:20, 
200 mM PAA, 100 mM 

H2SO4, 140 °C, 5 min 
30 U/g 81.3 88.5 81.1 77 [67] 

Sugarcane ba-
gasse 

Solid loading 1:10, 
2 wt% PAA, 90 °C, 

60 min, 250 rpm 
20 FPU/g 40.6 58.2 93.4 48.78 [47] 

Wheat straw 
Solid loading 1:10, 

65 g H3PO4, 7.1 g H2O2, 50 °C, 
5 h, 180 rpm 

/ 90 100 87 / [68] 

Yellow poplar 
Solid loading 1:50 

300 mM PAA, 100 mM 
H2SO4, 120 °C, 5 min, 180 rpm 

30 FPU/g 90.4 85.7 75.6 84.0 [69] 

Poplar 

Solid loading 1:10, 1:1 (v/v) 
H2O2 (30%): GAA *, 80°C, 2 h, 

5 FPU/g 

94.1 26.6 98.7 52.7 

[70] Solid loading 1:10, 1:1 (v/v) 
H2O2 (30%): EA † (99%), 

80 °C, 2 h, 
97.2 17.0 95 90.6 

Corn stover 
Solid loading = 1:40, 1.5 wt% 
PAA, 3 wt% MA ‡, 130 °C, 1 

h 
10 FPU/g 87.77 88.21 86.83 89.65 [50] 

* GAA: Glacial acetate acid; † EA: Ethyl acetate; ‡ MA: Maleic acid. 
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data from reference [69].

4.2. Beneficial to Lignin Valorization

Lignin valorization is of great importance for lignocellulose biorefinery. During PAA
pretreatment, PAA acts as an advanced oxidizing agent forming free radicals, which
can effectively depolymerize lignin to high value-added low molecular-mass phenolic
compounds. For instance, dilute acid pretreated corn stover lignin (DACSL) and steam-
exploded spruce lignin (SESPL) were treated with PAA and yielded selectively hydrox-
ylated monomeric phenolic compounds (MPC-H) with a yield of 18% and monomeric
phenolic acid compounds (MPC-A) with a yield of 22%, respectively [46]. These high
value-added MPC compounds were 4-hydroxy-2-methoxycresol, p-hydroxybenzoic acid,
vanillic acid, butyric acid, and 3,4-dihydroxybenzoic acid. The reaction pathway for lignin
oxidative depolymerization by PAA was the Baeyer–Villiger oxidation of ketones, formed
through the oxidation of benzyl hydroxyl groups adjacent to the β-O-4 linkage. Using
DACSL as an example, PAA oxidation modified the side chains of hydroxyl groups, not
only reducing the possibility of inter- and intramolecular hydrogen bond formation but
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also converting the hydroxyl groups into larger functional groups (e.g., carboxylic acids).
This modification impedes π-π interaction and disrupts the integrated stacking structure of
lignin (Figure 4). Therefore, the depolymerization pathway of DACSL in the presence of
PAA includes side-chain replacement and side-chain oxidation (Figure 4). PAA-induced
depolymerization of lignin has become a promising strategy for lignin valorization.
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4.3. Improvement in Biomass Durability

Pathogen contamination of biomass has generally been a neglected topic in biomass
biorefinery [71]. Once biomass has been contaminated by microbes during storage and
fermentation, the reducing sugars are lost. Therefore, improvement in biomass durability
has become an interesting topic within lignocellulose biorefinery. Chen et al. reported
densifying lignocellulose biomass with alkaline chemicals (DLC) pretreatment for biomass
biorefinery; they found that the densified biomass was highly resistant to microbial con-
tamination Chen, Yuan, Chen, et al. [72]. Similarly, PAA is an organic peroxide with a
wide range of antibacterial activities [73]. It can destroy the DNA and membrane lipids of
microbes through the production of reactive oxygen species. PAA is effective in reducing
pathogens, solid odors, and sludge [74]. It is conceivable that PAA-treated biomass will be
protected from microbial contamination during storage, which will improve its durability
and saccharification [75].

The relatively high cost and low safety of chemically synthesizing PAA in the labora-
tory limits the application of PAA pretreatment in biomass fractionation. In contrast, the
development of in-situ production of PAA by bioenzymes could effectively reduce the cost.
Furthermore, the disinfection and sterilization properties of PAA may be of benefit in the
storage of lignocellulosic biomass.

5. Mass Balance and Techno-Economic Evaluation of PAA Pretreatment Technology
5.1. Mass Balance Analysis

Mass balance analysis is crucial for scaling up the production of PAA pretreatment
technology. The procedure for converting lignocellulosic biomass to biofuels is divided into
three main steps: (1) pretreatment of biomass; (2) enzymatic hydrolysis to fermentable sug-
ars; and (3) fermentation of sugars to biofuels and subsequent distillation [76]. Mass balance
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covers the whole lifecycle of the biomass biorefinery process, especially the composition
variances in each step throughout the pretreatment, saccharification, and fermentation [77].
Duncan et al. extensively investigated the mass balance of PAA pretreatment and sacchari-
fication of milled aspen biomass Duncan, Jing, Katona, et al. [49]. As shown in Figure S2,
under PAA pretreatment with the addition of 125 mM NaOH, 1 kg of milled aspen can
lead to 877 g of residual solid after 22% of the lignin and 21% of the hemicellulose are
removed in the process. During saccharification, 877 g of residual solid can yield 69.6 L
sugar liquid and 324 g solid. Wen et al. compared the variances of mass balance for the
hydrogen peroxide-acetic acid (HPAA) and hydrogen peroxide-ethyl acetate (HPEA) pre-
treatment of poplar wood Wen, Chu, Zhu, et al. [70]. During the HPEA pretreatment, 677 g
of holocellulose-enriched residue was obtained from 1000 g of poplar wood. In this step,
97.4% of the lignin was removed, while 90.6% of the cellulose and 81.4% of hemicellulose
were recovered, respectively. After saccharification, 551.8 g of reducing sugars (including
419 g of glucose and 132.8 g of xylose) were obtained from 1000 g of raw poplar. However,
HPAA pretreatment yielded only 345.2 g of reducing sugars (including 250.7 g of glucose
and 94.5 g of xylose) from poplar biomass. This indicates that the HPEA pretreatment
was superior to the HPAA process, as the former exhibited higher selective delignification
ability and higher carbohydrate retention, as well as better digestibility. In addition, ethyl
acetate is insoluble in H2O2 solution and has a lower boiling point (77 ◦C) than acetic acid
(117.9 ◦C), therefore, the separation and reuse of ethyl acetate in HPEA solution is much
easier than acetic acid in HPAA solvent. Yin et al. investigated a detailed mass balance
for PAA pretreatment of poplar wood biomass from PAA formation, pretreatment, and
saccharification Yin, Jing, Aldajani, et al. [20]. Figure 5 shows the calculated values for
the mass balance of inputs, outputs, and waste. During PAA pretreatment, approximately
151 g of biomass was lost from 1 kg of poplar wood, including 57% of the lignin, 10% of
the cellulose, and 13% of the hemicellulose. During enzymatic saccharification, 473 g of
glucose and 148 g of xylose were released, yielding an 88.5% conversion rate from cellulose
to glucose and a 73.2% conversion rate from xylan to xylose.
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5.2. Techno-Economic Assessment

To evaluate the feasibility of PAA pretreatment’s commercialization, the technological
innovation, capital, and market demand issues related to the target technology should be
considered [78]. Techno-economic assessment (TEA) is an important tool for achieving
the desired goal [79]. TEA consists of two main aspects: industrial design and process
analysis [79], including assessing the technical feasibility, capital cost, operating cost, return
on investment, payback period, and profitability [80]. Techno-economic assessment and
process design are key factors for the successful and sustainable use of lignocellulose
biorefinery [81]. Techno-economic assessments of PAA pretreatment in biomass biorefinery
are available in the literature. For instance, the US Department of Energy’s Biomass
Program conducted an economic analysis of the conversion of PAA pretreated hardwoods
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to bioethanol. The ethanol cost was estimated to be US$18/L for 35 wt% PAA treatment
and a theoretical maximum conversion of 346 L of ethanol per dry metric ton of hardwood
biomass was achieved [49]. Song et al. estimated the cost of producing bioethanol from
conventional and sequential fermentation after enzymatic saccharification of hydrogen
peroxide–acetic acid (HPAC) pretreated hardwoods Song, Cho, Park, et al. [82]. The cost
of monosaccharides produced by HPEA pretreatment and enzyme hydrolysis was about
$2.597/kg (Table 5); this was calculated from the cost of biomass (poplar), chemicals
(hydrogen peroxide, acetic acid, sulfuric acid, and cellulase), and electricity (enzymatic
digestion and pretreatment). Ethyl acetate is easier to separate and reuse than acetic acid
in the HPAC solution. If a large number of chemicals are used in HPEA pretreatment, it
increases the cost and limits the practical application of this method. Therefore, future
exploration of processes with low HPEA loadings and its recycling is needed.

Table 5. HPEA pretreatment poplar monosaccharide production cost estimation.

Material and Process Cost, $/kg Monosaccharides

Biomass Poplar 0.057
Chemical Hydrogen peroxide 0.512

Ethyl acetate 1.211
Acetic acid 0.906

Sulfuric acid 0.001
Cellulase 0.284

Electricity Enzymatic hydrolysis 0.532
HPEA pretreatment 0
HPAA pretreatment 0

6. Challenges and Roadmap of PAA Pretreatment to Lignocellulose Fractionation
6.1. Immobilization of Perhydrolases for Generation of PAA

Enzyme-generated PAA has attracted much attention due to its safety and environ-
mentally friendly green credentials. To reduce the operational cost, immobilization can
be used to improve the catalytic stability and durability of the enzyme [83]. Moreover,
immobilized enzymes are more conducive to the separation of enzymes from reaction
substrates and products, and can be reused [84]. Recombinant acetylxylan esterase (rAXE)
can be immobilized on graphite oxide (GO) to generate PAA. The immobilized rAXE shows
high activity, at 62.53 U/g, and can produced approximately 134 mM of PAA. Immobilized
rAXE has good stability after 10 cycles, and it maintains more than 50% of the initial
yield [65]. In another study, rAXE from Aspergillus ficcum was immobilized on magnetic
Fe3O4 chitosan nanoparticles (Fe3O4-CSN) covalent with glutaraldehyde for producing
PAA [85]. In comparison with free rAXE, the immobilized rAXE exhibited better stability in
the thermal and pH ranges. The immobilized rAXE showed satisfactory stability with ~90%
of its activity in the aqueous phase after 10 repetitions. rAXE in Escherichia coli BL21 was
immobilized on acrylate amino resin for PAA production; the activity of the immobilized
rAXE was 383.7 U/g. It has been shown that 1 g/mL of immobilized recombinant acetyl
xylan esteraser (AXE) can generate approximately 142.5 mM of PAA, and it still yields
approximately 95.5 mM PAA after 10 cycles of utilization [64]. The selection of suitable
carriers, improvement in activity, and the development of novel methods for immobilizomg
perhydrolases represent the major challenges for enzyme-generated PAA production in
the future.

6.2. PAA Generated In Situ Using Acetyl Groups in Lignocellulose

The formation of PAA requires acetic acid or ethyl acetate as substrate. Lignocellulosic
biomass is rich in acetyl groups. Acetylation is one of the main obstacles to the effective
enzymatic conversion of hemicellulose to fermentable sugars. Using these acyl groups
to produce PAA in situ is not only beneficial to the hydrolysis of hemicellulose but also
helpful in reducing the cost of PAA. Tian et al. investigated self-generation PAA in a
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phosphoric acid plus hydrogen peroxide system Tian, Chen, Shen, et al. [68], describing the
overall deconstruction of lignocellulose and degradation of hemicellulose/lignin. Further
experiments on the basic and practical application of self-generation PAA for lignocellulose
biorefinery should be conducted in the future.

6.3. Synergistic Effect of Additives and PAA

PAA pretreatment offers effective delignification during lignocellulose fractiona-
tion [70]. To increase the digestibility of biomass, PAA pretreatment of lignocellulose
has been performed and the combined hydrothermal, sonication, catalysts, acids, bases,
ionic liquids, and other chemical reagents evaluated. Pretreatment of biomass using heat-
assisted PAA at 90 ◦C for 5 h achieved 90% delignification and increased the digestibility
of treated hardwood and softwood biomass by 32% and 23%, respectively [86]. When the
biomass was treated with hot compressed water and enzyme-generated PAA, 90% of hemi-
cellulose and 70% of lignin were removed. The cellulose residue released 90% glucose [63].
Orange bagasse was treated with ultrasound at 30% amplitude for 10 min followed by
PAA treatment for 24 h; 81.49% of the cellulose was retained and almost the hemicellulose
(99.12%) and lignin (97.32%) were removed [87]. Lewis acid can destroy lignocellulose struc-
ture and increase the accessibility of PAA to lignin. When sugarcane bagasse was treated
by PAA and FeCl3, hemicellulose depolymerized into monosaccharides without cellulose
destruction [47]. When corn stover was treated with 1.5 wt% PAA and 3 wt% maleic acid
at 130 ◦C for 1 h, 86.83% of the cellulose was retained and 88.21% of the hemicellulose and
87.77% of the lignin were dissolved in the aqueous liquid (Figure 6). Enzymatic digestion of
the cellulose-rich fraction has been shown to release 89.65% of glucose, which is more than
two times higher than with the untreated substrate [66]. Delignification efficiency can be
greatly increased by the combination of PAA and alkali treatment [88]. Alkali-assisted PAA
pretreatment has been employed to treat sugarcane bagasse for enzymatic digestion, for
the production of ethanol by simultaneous saccharification fermentation (SSF), and for the
further conversion of xylose to 2,3-butanediol. Results showed that approximately 45 g/L
ethanol (0.30 g ethanol/g pulp, 68.6% theoretical yield) and 0.35–0.50 g 2,3-butanediol were
obtained [89]. PAA combined with ionic liquid pretreatment has been applied to pine wood
to enhance enzymatic saccharification of cellulose by 45–70% [90]. In future, it is expected
that a greener, more efficient, and lower-cost PAA pretreatment system will be developed
for lignocellulose fractionation.
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7. Conclusions and Prospects

In summary, PAA pretreatment has proven an ideal and promising strategy for ligno-
cellulose biorefinery. In this article, three methods of PAA pretreatment were reviewed, each
of them with its own merits and shortcomings. From the perspective of green chemistry,
enzyme-generated PAA for lignocellulose fractionation should attract the most attention.
To evaluate the feasibility of the PAA pretreatment process, the mass balance and techno-
economic analysis of PAA pretreatment were investigated. Although many breakthroughs
have been achieved in PAA pretreatment for lignocellulose biorefinery, some prospective
developments can be proposed for the future:

(1) The use of acetyl groups in lignocellulose to replace chemical ethyl acetates should be
developed for the self generation of PAA.

(2) The use of perhydrolase-producing microbes should be broadened, and the activ-
ity and selectivity of perhydrolases enhanced. Furthermore, novel techniques for
the immobilization of perhydrolases should be investigated to increase enzyme sol-
vent durability.

(3) A multi-functional system in combination with PAA and other chemical or physical
intensification should be established. Through the integrated PAA pretreatment system,
the stubborn structure of biomass can be easily disrupted to achieve high delignification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196359/s1, Figure S1: PAA 3D molecular structure
(a) and chemical bonds and intramolecular hydrogen bond structures (b); Figure S2. The mass balance
of PAA pretreatment and saccharification process according to the reference [49].
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