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Abstract: Chronic limb threatening ischemia (CLTI) is the most severe manifestation of peripheral
atherosclerosis. Patients with CLTI have poor muscle quality and function and are at high risk for
limb amputation and death. The objective of this study was to interrogate the metabolome of limb
muscle from CLTI patients. To accomplish this, a prospective cohort of CLTI patients undergoing
either a surgical intervention (CLTI Pre-surgery) or limb amputation (CLTI Amputation), as well
as non-peripheral arterial disease (non-PAD) controls were enrolled. Gastrocnemius muscle biopsy
specimens were obtained and processed for nuclear magnetic resonance (NMR)-based metabolomics
analyses using solution state NMR on extracted aqueous and organic phases and 1H high-resolution
magic angle spinning (HR-MAS) on intact muscle specimens. CLTI Amputation specimens displayed
classical features of ischemic/hypoxic metabolism including accumulation of succinate, fumarate,
lactate, alanine, and a significant decrease in the pyruvate/lactate ratio. CLTI Amputation muscle
also featured aberrant amino acid metabolism marked by elevated branched chain amino acids.
Finally, both Pre-surgery and Amputation CLTI muscles exhibited pronounced accumulation of
lipids, suggesting the presence of myosteatosis, including cholesterol, triglycerides, and saturated
fatty acids. Taken together, these metabolite differences add to a growing body of literature that have
characterized profound metabolic disturbance’s in the failing ischemic limb of CLTI patients.

Keywords: peripheral artery disease; peripheral vascular disease; hypoxia; metabolomics; metabo-
lites; myosteatosis

1. Introduction

Chronic limb threatening ischemia (CLTI) is the most severe manifestation of pe-
ripheral arterial disease (PAD) and is clinically characterized by pain at rest, non-healing
wounds, gangrene, and a high risk of limb amputation or death. These symptoms re-
sult in devastating mobility impairment and loss of independence. Current treatment
approaches for CLTI include endovascular (atherectomy, angioplasty and/or stenting) and
open revascularization (bypass grafting) procedures that directly attempt to restore arterial
perfusion. A significant number of CLTI patients that undergo surgical intervention will
still require limb amputation despite graft patency and/or improvements in arterial flow by
angiography [1–4]. The reasons for high failure rates despite technically good restoration
of limb blood flow is not fully understood. A critical barrier to developing more effect
treatments is a lack of understanding of the resident tissue biology and its contribution to
the overall pathobiology of CLTI.
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Despite an important clinical focus on reestablishing limb blood flow, a strong predic-
tor of morbidity and mortality in PAD patients is muscle function/exercise capacity [5–11].
Previous reports have highlighted pathological evidence of skeletal muscle myopathies
and necrosis in PAD patients [12,13]. In fact, a recent study specifically reported that fragile
muscle mitochondrial function distinguished mild PAD from CLTI patients [14]. Patients
with PAD have been reported to suffer from decreased muscle metabolism and mitochon-
drial respiration, altered expression of mitochondrial enzymes, increased oxidative stress,
and mutations in the mitochondrial genome [15–28]. Some of these metabolic deficiencies
are present in both the skeletal muscle and muscle stem cells (satellite cells) of CLTI pa-
tients [14,29–32]. Moreover, it was recently reported that some aspects of the CLTI muscle
mitochondrial phenotype may improve following successful vascular intervention [33],
suggesting that muscle metabolism changes may be associated with clinical improvement.
These exciting reports advocate for the possibility that therapeutic targeting of limb muscle
metabolism in CLTI, which has shown early promise in preclinical studies demonstrating
improved limb blood flow recovery and reduced tissue necrosis [34–36].

Metabolomics is an emerging field that facilitates characterization of metabolites in
biological specimens including fluids, cells, tissues and/or whole organisms [37]. Nuclear
magnetic resonance (NMR) and mass spectrometry (MS) are the two most commonly used
analytical techniques in metabolomics. A single measurement from both of these techniques
can provide important information about the molecular/chemical structure of metabolites.
Both can be used to elucidate the chemical structure and determine the concentration of
metabolites; however, both technologies have some limitations. MS is far superior in terms
of sensitivity, with some metabolites being detected in the pico-molar range using small
(microliter) sample volumes [38]. However, reproducibility is a major issue associated
with MS, and batch-to-batch and instrument variability can reduce confidence. Another
limitation of MS is its destructive nature, which requires extraction of metabolites, so
MS cannot be used for in vivo and intact tissues-related studies. NMR, despite its lower
sensitivity as compared to MS, is highly reproducible [39]. Moreover, NMR samples can be
recovered for further analysis after acquiring NMR spectra. Real-time metabolic studies are
possible with advanced NMR techniques such as dynamic nuclear polarization (DNP) [40].
Several in vivo studies are also possible with different variants of NMR [41]. Despite
the differences in MS and NMR approaches, both allow for qualitative and quantitative
metabolite determination with high throughput [42]; however, both techniques require a
high level of technical expertise to properly run the equipment.

Two different variants of NMR had been used for metabolomics: (1) high-resolution
magic angle spinning (HR-MAS), and (2) solution state NMR. HR-MAS NMR spectroscopy
is an advanced technique that can be applied to the intact tissue samples ex vivo and
most of the NMR pulses can be easily applied for this technique [43]. Spinning of tissue
sample (~5 kHz) with an angle of 54.7◦ with respect to the Bo magnetic field helps to reduce
the line broadening effects (that remains as major drawback in in vivo MRS) [43]. The
sample preparation protocol is simple, and the samples can be re-used after HR-MAS NMR
experiments for other biochemical studies such as histology and/or gene expression [44,45].
With HR-MAS NMR spectroscopy, acquisition of high-quality spectral resolution is possible
(far better than in vivo MRS) [43]. This method is very useful for the samples that are
not soluble in deuterated solvents. Despite having some advantages, it is limited to low-
concentration metabolites and also gives slightly broad spectra. The solution state 1H NMR
helps to overcome these issues of HR-MAS NMR spectroscopy. With solution state 1H
NMR, quantitation of low-concentration metabolites is possible that is otherwise missed
by HR-MAS NMR.

In this prospective study, a cross-sectional discovery analysis of non-PAD controls and
CLTI patients undergoing either a vascular intervention or undergoing limb amputation
was performed and involved a detailed assessment of the limb muscle metabolome using
semi-solid and solution state nuclear magnetic resonance spectroscopy. It was hypothesized
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that patients undergoing limb amputation would present with altered muscle metabolite
features compared with non-PAD controls.

2. Experimental Section
2.1. Study Populations

Gastrocnemius muscle specimens were obtained from ten older adult non-PAD con-
trols (Control), ten patients with chronic limb threatening ischemia undergoing surgical
intervention (CLTI Pre-surgery), and ten CLTI patients undergoing limb amputation (CLTI
Amputation). Five Pre-surgery patients underwent bypass interventions and five under-
went endovascular procedures. Inclusion criteria for the control group included being
aged 60 years or older and having an ankle-brachial index (ABI) greater than 0.9 with the
absence of non-compressible vessels. CLTI patients were included based on their clinical
diagnosis of CLTI and medical necessity of either a surgical intervention or limb ampu-
tation (due to non-salvageable limb). Patients with non-atherosclerotic occlusive disease
(vasculitis, aneurysm, embolic disease, Buerger’s disease, and acute limb ischemia) were
excluded. Because CLTI patients routinely present with numerous co-morbid conditions,
we did not exclude patients based on risk factors or other conditions (i.e., hyperlipidemia,
kidney disease, hypertension, diabetes). CLTI patients were recruited from the vascular
clinic’s at UF Health and the Malcom Randall VA Medical Center in Gainesville, FL, USA.
Non-PAD control patients were recruited from the local community. Sample collection in
this study occurred between July 2018 and December 2019. This study was approved by
the institutional review board at the University of Florida and carried out according to
the Declaration of Helsinki. All participants were fully informed about the research and
informed consent was obtained. Clinical and physical characteristics of patients are shown
in Table 1.

Table 1. Patient characteristics.

Critical Limb-Threatening Ischemia (CLTI)

Characteristic Control
(n = 10)

Pre-Surgery
(n = 10)

Amputation
(n = 10)

p-Value
(X2 or ANOVA)

Mean age (SD)—yr 73.9 (7.8) 64.5 (9.4) 69.5 (6.2) 0.043 A

Female sex—n (%) 4 (40) 0 (0) 1 (10) 0.044

Overweight/Obese (BMI ≥ 25)—n (%) 9 (90) 7 (70) 8 (80) 0.535

Ankle-brachial index (ABI)—(SD) 1.1 (0.1) 0.7 (0.3) 0.5 (0.3) * 0.014 A

Rutherford Classification—n (%)

0 10 (100) 0 (0) 0 (0) <0.001

3 0 (0) 4 (40) 0 (0) 0.093

4 0 (0) 2 (20) 4 (40) 0.624

5 0 (0) 4 (40) 4 (40) 0.646

6 0 (0) 0 (0) 2(20) 0.454

Medical history—n (%)

Diabetes mellitus type I or II 4 (40) 6 (60) 9 (90) 0.065

Hypertension 7 (70) 10 (100) 10 (100) 0.536

Hyperlipidemia 4 (40) 10 (100) 10 (100) 0.006

Coronary artery disease 1 (10) 6 (60) 9 (90) 0.001

Renal disease 0 (0) 1 (10) 3 (30) 0.133

Chronic obstructive pulmonary disease 1 (10) 4 (40) 3 (30) 0.303

Tobacco use—n (%) 4 (40) 7 (70) 9 (90) 0.058

Former smoker 3 (30) 4 (40) 7 (70) 0.175

Current smoker 1 (10) 3 (30) 2 (20) 0.535

Medication used—n (%)
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Table 1. Cont.

Critical Limb-Threatening Ischemia (CLTI)

Characteristic Control
(n = 10)

Pre-Surgery
(n = 10)

Amputation
(n = 10)

p-Value
(X2 or ANOVA)

Aspirin 4 (40) 8 (80) 9 (90) 0.035

Statin 4 (40) 10 (100) 10 (100) <0.001

Angiotensin-converting enzyme (ACE) inhibitor 5 (50) 5 (50) 6 (60) 0.874

Cilostazol 0 (0) 3 (30) 4 (40) 0.089

Previous vascular intervention—n (%) 0 (0) 0 (0) 5 (50) 0.003
A ANOVA was performed. X2 analysis was performed to determine differences in population proportions (Rutherford classifications 3–6
were only statistically compared between CLTI populations). SD, standard deviation; BMI, body mass index; ABI, ankle-brachial index;
and ACE, angiotensin-converting enzyme. * Three amputation patients had non-compressible vessels precluding ABI measurement.

2.2. Muscle Specimen Collection

Muscle specimens were collected within the confines of the operating rooms (CLTI pa-
tients) or via percutaneous muscle biopsy using sterile procedures previously described [14,46].
A portion of the muscle was quickly trimmed of fat/connective tissue and snap frozen in
liquid nitrogen for metabolomics analysis.

2.3. Chemicals

Chemicals used in this study were purchased from different vendors and used without
further purification. Ethylene diamine tetra acetic acid (EDTA), sodium azide (NaN3),
sodium monobasic and dibasic phosphates were used to prepare phosphate buffer and were
obtained from Millipore-Sigma (St Louis, MO, USA). Pyrazine, an internal standard used
with organic solvents, was also obtained from Millipore-Sigma. Deuterated chloroform
(CDCl3) and deuterium oxide (D2O) were purchased from Cambridge Isotope Laboratories
(Andover, MA, USA). D6-4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS-D6, 98%) was
obtained from FUJIFILM Wako (Richmond, VA, USA).

2.4. Metabolite Extraction

Both polar and non-polar metabolites were extracted from the gastrocnemius muscle
specimens using modified FOLCH extraction method [47]. In brief, wet weigh of the frozen
tissues were determined and immediately homogenized in 1 mL of ice-cold methanol
using a PowerLyzer 24 Homogenizer (QIAGEN Group, Hilden, Germany). All enzymatic
activities are halted once the sample was homogenized in the methanol. Homogenization
was followed by centrifugation (13.2K r.p.m., 4 ◦C, 30 min) and supernatant was transferred
into a new glass vial consisting a mixture of 3 mL of ice-cold chloroform and methanol
(2:1 v/v) ratio. The cold mixture was vortexed for several minutes and left in an ice bath
15 min to allow for phase separation. Next, 1 mL of ice-cold 0.9% saline was added to the
mixture followed by vigorous mixing. The mixture was again left in the ice bath for 45 min
for phase separation. The upper methanol/water layer was transferred to a new falcon
tube. To the lower chloroform layer, 1 mL of ice-cold 0.9% saline was added and all steps
were followed as mentioned above. Following a 45-min incubation, upper methanol/water
layer was again transferred to the previous falcon tube and dried using a Labconco freeze
drier (Labconco Corporation, MO, USA). The chloroform layer was dried under a stream of
nitrogen gas. The dried samples (both aqueous and organic phases) were stored at −80 ◦C
until resuspension for NMR experiments.

2.5. Sample Preparation and NMR Acquisition

All raw metabolomics data have been deposited to the Metabolomics Workbench (https:
//www.metabolomicsworkbench.org) under the following Study ID’s: ST001615, ST001616,
ST001617.

https://www.metabolomicsworkbench.org
https://www.metabolomicsworkbench.org
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Lyophilized aqueous phase samples were re-suspended in 50 µL of 50 mM phosphate
buffer (pH = 7.2) consisting 2 mM of EDTA along with 0.2% NaN3 and 0.5 mM D6-DSS in
100% deuterated environment. Lyophilized organic phase sample were re-suspended in
80 µL of CDCl3 along with 10 mM of pyrazine. All samples were loaded in 1.7 mm NMR
tube to acquire spectra.

All solution state NMR experiments were acquired with a Bruker (Bruker BioSpin
Corporation, Billerica, MA) Avance Neo 600 MHz/54mm console with a 1.7 mm TCl
CryoProbe. First slice of 1D nuclear Overhauser effect spectroscopy (noesypr1D) [48] pulse
sequence with water pre-saturation during relaxation delay (d1) was used to collect 1D
spectra for both aqueous and organic phase samples. Acquisition parameters were applied
as described previously [49–51]: 128 scans (nt), 1 s recycle delay (d1), 4 s acquisition time
(aq), 100 ms mixing time, and 7142.9 Hz spectral width (sw) using 1H 90◦ pulse width (pw)
at room temperature (25 ◦C).

HR-MAS NMR on Intact Gastrocnemius Muscle Specimens

Semi-solid HR-MAS spectra were collected on intact human gastrocnemius muscle
specimens. For this, a Bruker 800 MHz system equipped with 4 mm HR-MAS probe
was used. Preparation of HR-MAS was performed using 3.2 mm inside diameter plastic
insert, following the protocols described by Downes et al. [52]. The following acquisition
parameters were used to collect 1D NOESY spectra (noesypr1D) with pre-saturation of
water signal: 256 nt, 2 s d1, 2.04 s aq, 100 ms mixing time, and 8012.8 Hz sw using 90◦ pw
at 4 ◦C. The sample was spun at 5 kHz speed maintaining 54.7◦ magic angle.

2.6. Data Processing and Analysis

Spectra were processed with MestReNova 14.1.2-25024 software (Mestrelab Research,
S.L., Santago de Compostela, Spain). A zero filling of 64K was performed with line broad-
ening of 0.22 Hz before Fourier Transformation followed by phase and base-line correction
(Splines). Spectra from the aqueous phase samples were calibrated and normalized with
DSS peak at 0.00 ppm. The spectra from the organic phase samples were calibrated with
the chloroform peak at 7.26 ppm and normalized with pyrazine peak at 8.61 ppm. HR-
MAS proton spectra were referenced with the alanine doublet at 1.46 ppm. Extraction of
integrated areas for the selected metabolites were done from these well-referenced and/or
normalized spectra. Wet weigh correction was performed on these data and further used
for plotting Box and Whisker plots as well as input of raw data into metaboanalyst4.0 for
analysis (https://www.metaboanalyst.ca/) [53]. For aqueous phase samples, concentra-
tion of metabolites was calculated with respect to DSS (internal reference) peak area. Box
and Whisker plots were generated using GraphPad Prism (version 9.0.0 (121), GraphPad
Software, San Diego, CA, USA, www.graphpad.com).

2.7. Metabolites Assignment

Assignment of the metabolites was done on the basis of 1D and 2D spectra collected
for a particular sample. Figure S1 shows the assignment of the metabolites in 1D NOESY
spectra from aqueous phase, organic phase and intact gastrocnemius samples. A different
set of 2D spectra (Supplementary Figures S2–S6) was collected for an aqueous phase
sample (control 6a) using the standard Bruker library for the verification of the metabolites.
Biological magnetic resonance bank (BMRB) [54] data and several studies [55–57] were also
used for the verification of metabolites.

2.8. Statistical Analysis

Shapiro-Wilk test confirmed the metabolite abundance data were normally distributed.
Analysis of variance (ANOVA) was performed with Metaboanalyst 4.0 using a false dis-
covery rate (FDR) corrected data. Principal component analysis (PCA) and partial least
square discriminant analysis (PLS-DA) were also conducted. The supervised PLS-DA
findings were further validated by Q2 and permutation tests. Metabolites showing vari-

https://www.metaboanalyst.ca/
www.graphpad.com
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able importance in projection (VIP) scores greater than 1 (from PLS-DA analysis) were
outlined as distinct metabolites. Furthermore, one-way analysis of variance was performed
using GraphPad Prism (version 9.0.0 (121), GraphPad Software, San Diego, CA, USA,
www.graphpad.com) with p ≤ 0.05 considered as being statistically significant. The results
are expressed as mean ± standard deviation (SD) in the tables, and box and whisker plots
were generated to show all points as well as median and ranges (whiskers = min. and
max.). Analysis of clinical and physical characteristics was performed with either ANOVA
or Chi-squared testing.

3. Results
3.1. Patient Physical and Clinical Demographics

This was a prospective cohort study that examined the metabolomic profile of skeletal
muscle from CLTI patients undergoing surgical intervention or amputation, as well as a
cohort of non-PAD controls. Clinical and physical characteristics of patients are shown
in Table 1. CLTI patients exhibited severe symptomology (Rutherford Classification 3–6),
with high incidence of common PAD risk factors including hypertension, hyperlipidemia,
coronary artery disease, and diabetes. Fifty percent (n = 5) of the CLTI Amputation patients
had a previous vascular intervention

3.2. Metabolomic Analysis of Gastrocnemius Muscle

Both high-resolution HR-MAS and 1H NMR (solution state) NMR spectroscopy meth-
ods coupled with multivariate analysis were used in this study to cultivate a metabolome
profile for CLTI limb muscle. Overall graphical image showing the comprehensive work
flow applied in this study can be seen in Figure 1. Gastrocnemius muscle specimens were
collected from ten older adult non-PAD controls (Con), ten CLTI Pre-surgery patients, and
ten CLTI Amputation patients.
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FOLCH extraction was performed on another set of 25 gastrocnemius muscle specimens
and solution state 1H NMR spectra were collected on both aqueous and organic phase
samples. Furthermore, multivariate analysis was performed on these 1H HR-MAS and
1H solution NMR spectra’ extracted datasets separately and metabolomics profiling was
created. Use of HR-MAS NMR on intact tissue made it possible for the measurement of
lipids (including lipo-proteins) and small molecular weight metabolites simultaneously.
Moreover, the inclusion of solution state 1H NMR on FOLCH extracted tissue samples
enabled the measurement of metabolites that were missed or difficult to quantify by HR-
MAS because of their lower concentrations and/or overlapping spectra. These analyses
defined a larger number of metabolites (having sharp peaks) with high resolution for 1H
NMR spectra of FOLCH extracted tissue samples as shown in Supplementary Figure S1A
(aqueous phase) and Figure S1C (organic phase) as compared to HR-MAS (Figure S1B).

Variation in peak intensities for the different metabolites across the three different
groups can be clearly seen in Figure 2 and Supplementary Figure S2. Metabolites such as
lactate, alanine, acetate, glutamine, creatine, taurine, adenosine triphosphate/adenosine
monophosphate (ATP/AMP), histidine, and formate were varying in representative 1H
NMR spectra (Figure 2A–C) from the three groups for aqueous phase samples. On the
other hand, different classes of lipids (with lipo-proteins) along with creatine, alanine,
lactate, taurine, ATP/AMP, and histidine were clearly difference in 1H HR-MAS NMR
spectra (Figure 3D–F). Slight variation in different lipid classes among the groups can be
observed for organic phase samples too (Supplementary Figure S1).
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solution state 1H NMR and HR-MAS spectroscopy. Top row (A–C) were obtained from PCA analysis and bottom row (D–F)
were from PLS-DA analysis. (A,D) are for aqueous phase samples (from FOLCH extraction) for PCA and PLS-DA analyses,
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for organic phase (from FOLCH extraction) for PCA and PLS-DA analyses, respectively. CLTI Amputation (red), CLTI
Pre-surgery (green), and control (blue).

Next, we performed unsupervised PCA as well as supervised PLS-DA analyses
of the wet weight normalized 1H NMR and HR-MAS datasets, as shown in Figure 3.
These analyses revealed greater within-group variability for CLTI Amputation and clear
clustering can be observed for CLTI Amputation specimens compared to CLTI Pre-surgery
and non-PAD control muscles. Clustering was clearer in aqueous phase samples (Figure 3A
(PCA) and 3D (PLS-DA)) and intact tissues HR-MAS samples (Figure 3B (PCA) and 3E
(PLS-DA)) compared to organic phase samples ((Figure 3C (PCA) and 3F (PLS-DA)). In
1H HR-MAS NMR-based PCA score plots (Figure 3B), CLTI Pre-surgery and control were
found to be overlapping in most cases. PCA components 1 and 2 comprise about 55% of
the variables for aqueous phase extracted data (Figure 3A) and 50% of the variables for 1H
HRMAS dataset. On the other hand, all three groups in PCA score plots of organic phase 1H
NMR dataset (Figure 3C) exhibited some clustering, but overlapped with each other. The
supervised PLS-DA approach slightly increased the clustering between CLTI Amputation
with other two groups in 1H NMR (aqueous phase, Figure 3D) and 1H HR-MAS (Figure 3E)
datasets, and again the CLTI Amputation group showed greater within-group variability.
Both permutation test and Q2-value validate the PLS-DA approach for aqueous phase
and HR-MAS samples, but not the organic phase samples. PLS-DA components 1 and 2
demonstrated about 45% of the total variance for 1H NMR (aqueous phase, Figure 3D) and
about 67% for 1H HRMAS datasets (Figure 3E). However, again the 1H NMR dataset for
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organic phase samples was unable to produce strong separation among the three groups
(Figure 3F).

Metabolites responsible for driving the separation of 1H-NMR metabolomics profiles
in PLS-DA analysis for aqueous phase (1H NMR: solution state) and 1H HR-MAS datasets
are shown in Table 2. In Table 2, metabolites/compounds with VIP scores greater than 1 are
shown. Lactate was found to be common in driving separation between the three groups
in PLS-DA analysis in both 1H NMR (aqueous phase) and 1H HR-MAS datasets with VIP
score ≥ 1.5. Small metabolites such as glutamate, pyruvate, glycine, succinate, inosine,
O-Phosphoethanolamine, creatinine, creatine phosphate, malonate, tyrosine, 3-methyl
histidine, phyenylalanine and 2-Aminoadipate were found to be responsible for driving
separation for the 1H NMR aqueous phase dataset. However, mostly, different classes
of lipids (along with lipoproteins) were responsible in 1H HR-MAS dataset for driving
separation among the groups. For organic phase samples (1H NMR: solution state), please
refer to Supplementary Table S1.

Table 2. A variable important in projection (VIP) scores obtained from partial least square discriminant analysis (PLS-DA)
for metabolites from aqueous phase and HR-MAS analyses.

Spectra Range (ppm) Metabolite Peak Pattern
VIP Scores

Solution NMR (Aqueous Phase) HR-MAS

1.31–1.33 Lactate d ~1.9 ~1.5

3.55 Glycine s ~1.8 N.A.

2.39–2.40 Succinate s ~1.7 N.A.

8.32–8.35 Inosine s ~1.6 N.A.

4.04–4.06 O-Phosphoethanolamine t ~1.6 N.A.

3.03–3.04 Creatinine + PCr s ~1.5 N.A.

1.46–1.48 Alanine d ~1.2 N.A.

2.32–2.36 Glutamate m ~1.2 N.A.

3.70–3.71 3-methyl histidine s ~1.2 N.A.

3.10 Malonate s ~1.1 N.A.

6.88–6.90 Tyrosine d ~1.1 N.A.

7.40–7.44 Phenylalanine t ~1.1 N.A.

2.37–2.38 Pyruvate s ~1.1 N.A.

2.22–2.25 2-Aminoadipate s ~1.1 N.A.

0.84–0.95 CH3-lipids m N.A. ~1.4

5.19–5.26 CH-glycerol m N.A. ~1.4

1.14–1.43 (CH2)n lipids m N.A. ~1.4

4.25–4.34 CH2OCOR (glyceryl) dd N.A. ~1.4

1.52–1.64 (CH2–CH2–CO–) lipids s N.A. ~1.3

1.93–2.11 (CH=CH–CH2–CH2) lipids m N.A. ~1.3

5.26–5.39 –CH= lipids m N.A. ~1.3

0.94–0.96 Leucine t N.A. ~1.1

2.70–2.90 HC=CH–CH2–HC=CH m N.A. ~1.1

VIP, variable important in projection; NMR, nuclear magnetic resonance; HR-MAS, high resolution magic angle spinning; s, singlet; d,
doublet; dd, doublet of doublet; t, triplet; m, multiplet; and N.A., not applied. Bold font proton/s indicate the proton/s that is/are giving
NMR peak/s at that particular spectral range (ppm).

3.3. CLTI Display Biomarkers of Ischemic Metabolism at Amputation but Not Prior to Surgery

NMR is well known for its quantitative properties and high reproducibility [50].
Intensity, as well as integral area of the peak of a particular metabolite in NMR spec-
trum, is the direct representative of its concentration [58]. The integral peak area of a
representative peak of a particular metabolite was taken for quantitative purposes. The
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integral area of internal reference (0.5 mM DSS for aqueous phase samples) was used
to determined concentration for few metabolites. Differences in the peak integral areas
or calculated concentrations were compared among the three groups. Several unique
metabolite changes were observed in non-salvageable CLTI limbs being amputated. First,
these muscle specimens displayed classic biomarkers of hypoxic/ischemic tissues. For
example, CLTI Amputation specimens had significantly higher concentrations of lactate,
succinate, fumarate, alanine, as well as a marked decrease in the pyruvate/lactate ratio
(Figure 4). These metabolite changes were consistent with observations reported in the
ischemic myocardium and is indicative of metabolic changes necessary to support substrate
level (non-oxidative) phosphorylation [59].
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3.4. Dysregulated Amino Acid Metabolisms Are Distinguising Charactertistics of CLTI

Another divergent characteristic of non-salvageable CLTI limb muscle was altered
amino acid metabolism. Specifically, CLTI Amputation muscles displayed accumulation
of branched-chain amino acids (BCAAs)—isoleucine, leucine, and valine—as well as
alanine, phenylalanine, tyrosine, and glycine. These findings imply an imbalance between
protein synthesis and degradation (Figure 5). Interestingly, all of these amino acid changes
were absent in CLTI Pre-surgery muscle specimens, suggesting that dysregulated amino
acid metabolism may be a “treatable” target to improve limb salvage in CLTI. Notably,
3-methylhistidine, a biomarker of muscle protein degradation, was elevated in CLTI Pre-
surgery specimens.
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3.5. Lipidomic Differences in CLTI Muscle Are Indicative of Myosteatosis

Using HR-MAS and extracted organic phase samples, we also detected altered lipid
profiles in CLTI muscle specimens. Unlike the majority of aqueous phase metabolites, the
lipid species were similar between CLTI Pre-surgery and Amputation specimens and were
generally more abundant when compared to non-PAD control muscles (Figure 6). This
observation suggests that CLTI patients suffer from the accumulation of ectopic fat within



J. Clin. Med. 2021, 10, 548 12 of 18

muscle, clinically termed myosteatosis. Key detected lipid differences include elevated
cholesterols (Figure 6A), triglycerides (Figure 6B), and saturated fatty acids (Figure 6C). A
mixture of unsaturated fatty acids also showed similar trend as saturated fatty acids and
showed significant increase in CLTI patients compared to the control group (Supplementary
Tables S1 and S2). Peaks from methylene protons associated with double bonds (chemical
shift range of 1.98–2.07 ppm) and divinyl methylene protons of unsaturated fatty acids
(chemical shift range of 2.74–2.87 ppm) were significantly elevated in CLTI patients. While
NMR is limited in its ability to distinguish individual fatty acids in mixture, these results are
clearly indicative of elevated levels of both saturated and unsaturated fatty acids withing
CLTI muscles.
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Figure 6. Aberrant Lipid Accumulation in CLTI muscle. Graphical depiction and quantitative analysis of lipid species in
muscle specimens. Box and whisker plots with 95% confidence intervals are presented for quantified lipids are presented as
peak areas. Panel A showed elevated cholesterols in CLTI-groups, panel B shows triglyceride concentrations, and panel C
displays saturated fatty acids abundance along with similarity in glycerophospholipids amount in three groups. Analysis
was performed using one-way ANOVA with Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

Chronic limb threatening ischemia is the most severe form of PAD and carries a
high risk for amputation and mortality. Generally speaking, CLTI patients present with
more complex patterns of atherosclerosis and in most cases surgical intervention is often
performed with the primary goal of limb salvage. Unfortunately, limb amputation rates
remain high, despite technically good endovascular and revascularization procedures.
Skeletal muscle function is a strong predictor for morbidity and mortality in PAD patients
regardless of symptomatic presentation [7–11,60–62]. Further to this, the ischemic condi-
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tions within the limb impart a tremendous metabolic burden to the resident skeletal muscle;
however little information is available about the metabolome of these tissues. Thus, the
major objective of this work was to investigate the muscle metabolomics profile of CLTI
patients both before surgical intervention and at amputation. These analyses uncovered a
unique metabolomics profile at the time of amputation that was clearly distinguishable
from Pre-surgery CLTI patients and non-PAD controls.

Accumulation of succinate in the ischemic tissues has been identified as a key regulator
of reperfusion injury [63,64]. Consistent with other tissues, we observed accumulation
of both succinate and fumarate in CLTI Amputation muscle (Figure 4). Interestingly,
these metabolites were not different between CLTI Pre-surgery specimens and non-PAD
despite clear hemodynamic evidence of limb ischemia in the former. It was recently
reported that the accumulation of succinate during ischemia was primarily derived from
canonical tricarboxylic acid cycle activity within minor contributions aminotransferase
anaplerosis [59]. Consistent with this model, CLTI Amputation muscle displayed elevated
pyruvate, alanine, glutamine, and glycine levels. This accumulation of succinate was
suggested to provide a mechanism to maintain the cellular energy charge (ATP/ADP)
via substrate level phosphorylation by succinyl-CoA synthetase (succinyl-CoA + ADP ->
succinate + ATP + CoA). This model aligns with the metabolic challenges occurring in the
ischemic skeletal muscle of failing CLTI limbs.

Striated skeletal muscles are the largest organ in human body and represent the largest
mass within the ischemic limb. Skeletal muscles are a major source of branched-chain
amino acid (BCAA; isoleucine, leucine, valine) catabolism where these amino acids can
support tricarboxylic acid cycle flux for ATP generation. There is a growing body of
evidence suggesting that elevated BCAA is a clear biomarker of cardiometabolic diseases
and may play direct roles on disease pathogenesis [65–67]. In this study, we observed
significant increases muscle BCAA concentrations in CLTI patient muscle at the time of
amputation (Figures 4 and 5). Considering that BCAA catabolism primarily occurs within
the mitochondria, this observation aligns with previous work that identified severe deficits
in mitochondrial metabolism in CLTI Amputation muscles [14]. Consistent with this notion,
upon interrogation of the previously published RNA-seq data [14], CLTI Amputation
muscle specimens displayed a 40–60% decrease in the expression of branched chain keto
acid dehydrogenase genes (BCKDHA and BCKDHB). From a therapeutic viewpoint, it is
noteworthy that defects in BCAA contribute to cardiac dysfunction [66] and stimulating
BCAA oxidation in heart failure has been shown to improve cardiac function [67]. Future
work is needed to determine whether stimulation of BCAA oxidation in PAD/CLTI skeletal
muscle will translate to improved skeletal muscle function.

An interesting discovery from these analyses was the observation that CLTI muscle,
especially those collected prior to surgical intervention, had pronounced accumulation of
numerous lipid species suggesting the presence of myosteatosis. Both Pre-surgery and
Amputation muscles from CLTI patients were found to have highly elevated cholesterol
levels, despite the fact that all of these patients were taking statins. Cholesterol is an
essential component of membranes and plays critical roles in regulating membrane fluidity
and thickness. Although less abundant than the sarcolemma, mitochondrial membranes
also contain cholesterol where elevated levels have been suggested to increase membrane
microviscosity [68–70], which could play a role in the etiology of impaired mitochondrial
function observed in PAD. Future work is needed to determine the subcellular location
of elevated cholesterol in CLTI muscle. CLTI muscle also displayed elevated triglyceride
levels, with the highest levels being detected in Pre-surgery specimens. Myosteatosis is
related to increased frailty and decreased muscle function [71–73], both clinical phenotypes
commonly observed in the CLTI population. These adverse muscle impact of myosteatosis
(increase fat and decrease muscle density) was recently shown to be associated with higher
mortality in PAD patients [9]. The prominent decrease in skeletal muscle mitochondrial
function in CLTI muscle [14] could be related to this ectopic fat deposition; however,
future work is needed to establish a causal link. Interestingly, Pre-surgery CLTI muscle



J. Clin. Med. 2021, 10, 548 14 of 18

specimens displayed higher levels of triglycerides compared with CLTI Amputation and
control muscles. The underlying mechanism is not clear at the moment, but the observed
differences suggest that the balance between triglyceride use and synthesis is far more
disturbed prior to surgery than at the time of amputation.

Study Limitations

There are several limitations to the present work that are worthy of discussion. First,
the current study was cross sectional in nature, and therefore no causal inferences can
be made regarding the role of metabolite differences in CLTI patients undergoing limb
amputation. Future studies involving repeated muscle biopsies (e.g., pre- vs. post-surgery)
and metabolite analyses are needed to determine any potential causative role in CLTI
pathology leading to limb amputation. Second, this exploratory metabolomics analysis was
performed on a relatively small sample size (n = 10 per group) and extrapolating the results
to the larger population of PAD patients is cautioned. Third, there were some differences
in the incidence of co-morbid conditions, principally diabetes and hyperlipidemia, as
well as corresponding medication use (i.e., statins), and physical characteristics (age and
sex) between CLTI patients and control participants. Matching co-morbid conditions
in CLTI patients is extremely difficult, as the prevalence of many chronic diseases is
substantially higher in this sub-population of PAD patients. Larger cohort studies would
facilitate regression analyses to test and control for the independent effects of these factors.
While NMR typically has higher reproducibility compared to MS-based metabolomics, a
limitation of NMR is its lower sensitivity. Lower concentrated metabolites (i.e., nano- and
pico-molar range) are not detectable using current NMR technologies. Thus, there are a
substantial number of metabolites within the limb muscle that we could not detect in the
current study. As these technologies improve, additional work should be performed to
refine our understanding of the limb muscle metabolome in PAD/CLTI.

5. Conclusions

In this study, we performed a cross sectional analysis of the skeletal muscle metabolite
differences in CLTI patients and non-PAD controls. We report extensive metabolite differ-
ences in CLTI muscle at the time of amputation including aberrant amino acid metabolism,
myosteatosis, and classical features of ischemic/hypoxia cell metabolism. In contrast, CLTI
muscles obtained from patients at the time of surgical intervention displayed relatively
normal levels of amino acids with the presence of myosteatosis. These data align with
the growing body of evidence that CLTI imparts a profound metabolic challenge to limb
musculature and further highlights an untapped arena for therapeutic interventions aimed
to improve limb metabolism and increase limb salvage. Future studies are needed to
evaluate if metabolic alterations play a causal role in the limb outcomes in CLTI, including
the role risk factors and co-morbid conditions.
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