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Abstract: In view of the difficulty in obtaining the membrane bioreactor (MBR) membrane flux in real
time, considering the disadvantage of the back propagation (BP) network in predicting MBR mem-
brane flux, such as the local minimum value and poor generalization ability of the model, this article
introduces tent chaotic mapping in the standard sparrow search algorithm (SSA), which improves
the uniformity of population distribution and the searching ability of the algorithm (used to optimize
the key parameters of the BP network). The tent sparrow search algorithm back propagation network
(Tent-SSA-BP) membrane fouling prediction model is established to achieve accurate prediction of
membrane flux; compared to the BP, genetic algorithm back propagation network (GA-BP), particle
swarm optimization back propagation network (PSO-BP), sparrow search algorithm extreme learning
machine(SSA-ELM), sparrow search algorithm back propagation network (SSA-BP), and Tent particle
swarm optimization back propagation network (Tent–PSO-BP) models, it has unique advantages.
Compared with the BP model before improvement, the improved soft sensing model reduces MAPE
by 96.76%, RMSE by 99.78% and MAE by 95.61%. The prediction accuracy of the algorithm proposed
in this article reaches 97.4%, which is much higher than the 48.52% of BP. It is also higher than
other prediction models, and the prediction accuracy has been greatly improved, which has some
engineering reference value.

Keywords: MBR; membrane flux prediction; tent chaotic mapping; SSA; Tent-SSA-BP model

1. Introduction

In recent years, with the rapid economic development and industrial progress that has
been seen, water resource fouling has deteriorated dramatically, sewage treatment appears
to be particularly important, environmental science for sewage treatment requirements
and its provisions has also been greatly valued, and the research on sewage treatment is
increasing [1,2]. In the process of sewage treatment, improving the efficiency of sewage
treatment, realizing green environmental protection, saving energy, reducing consumption
and production costs, and improving economic benefits are crucial to the field of sewage
treatment [3,4]. As an important means in sewage treatment engineering, membrane
bioreactor technology has attracted much attention. The membrane bioreactor (MBR)
came into being under the situation of increasingly severe water pollution and increasing
demand for treatment efficiency and effluent quality. MBR is a new type of wastewater
treatment system combining membrane technology and biological treatment technology,
mainly composed of membrane modules and bioreactors. Compared with the traditional
sewage treatment process, MBR has the advantages of good and stable outflow water
quality, low sludge output, compact equipment and no large amount of space [5,6]. At
present, the study of MBR and the prediction of membrane fouling are one of the important
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topics in the field of sewage treatment. However, the membrane fouling problem seriously
affects the permeability and lifetime of the membrane, Membrane fouling will increase
the operating cost of membrane bioreactors and become a bottleneck problem limiting the
wide application of MBR. Numerous experimental studies have shown that membrane
contamination seriously decrease membrane flux, which affects the performance of the
MBR process, and results in a larger MBR energy consumption, so the membrane flux value
is an important characterization of the degree of membrane contamination [7,8]. Therefore,
whether the membrane flux can be predicted in a timely manner and accurately is the key
to the control of membrane fouling.

The degree of membrane fouling is related to the value of the membrane flux. In
practical applications, the fouling status of the membrane can be analyzed by predicting
the value of the membrane flux. However, the membrane flux cannot be directly mea-
sured and is affected by the variables of the sewage treatment process. In order to achieve
membrane permeation for the detection of the rate, researchers have conducted a lot of
research. Chellam [9] and Al-Zoubi et al. [10] obtained multiple process variables related to
membrane permeability by analyzing the mechanisms, and 29 of them were selected as
auxiliary variables to establish a soft sensing model of membrane permeability based on
back propagation neural network (BPNN). The prediction accuracy reached 70%. How-
ever, due to the selection of too many auxiliary variables and the large initial scale of the
network, the learning time of the network was very long. Too many auxiliary variables
also led to the poor anti-interference ability of the network. Therefore, it can only be used
in the pilot platform, and cannot be applied in the practical application of wastewater
treatment plants. Martínl et al. [11] proposed a general mathematical model to estimate
membrane permeability and corrected the model parameters with the actual measurements
of the process variables. This model is advantageous due to fewer parameters involved
and a simple correction process. It has been widely used in the calculation of membrane
permeability. However, the parameters included in this model are rather inaccessible for
online corrections, and the prediction accuracy is low. Hwang et al. [12] have successfully
predicted the variation trend of membrane flux by studying the correlation between mem-
brane flux and several variables in membrane filtration. However, membrane fouling is a
complex and dynamic process, and the numerous factors affecting membrane permeability
and their mutual interactions make it difficult to describe membrane permeability with a
simple variable relationship.

In recent years, describing membrane contamination process based on intelligent
simulation model has become a research hotspot of MBR simulation system. More and
more scholars pay attention to the method of predicting membrane flux using intelligent
algorithms. For the prediction of membrane fouling, many scholars have proposed different
intelligent prediction methods. Through mechanism analysis, Han et al. [13] obtained
26 process variables related to membrane flux. After the selection of six auxiliary variables
by the partial least squares (PLS) algorithm, we establish a soft sensor model based on the
recursive radial basis function neural network (RRBFNN), and randomly selected 150 sets
of data to train the network model, and 80 sets of data were selected, used to verify the
accuracy of the prediction model. The prediction accuracy reaches 86.90%. However, there
are too few training model arrays, and only 150 sets of data are used for network training,
which made it easy to underfit. The model does not fit the training data well, and it does not
fit the data well on the test data set, which makes the fitted function not meet the training
set, thus affecting the prediction accuracy of the model. Liu et al. [14] study a particle swarm
optimization back propagation network (PSO-BP) model: the particle swarm optimization
algorithm is used instead of the traditional gradient descent algorithm. The results show
that the optimized model has a higher prediction accuracy, and the average error decreased
from 2.35% to 0.83%. However, the combination of optimization algorithm model building
and the parameter optimization process takes a lot of time, which limits its application
scope. Mirbagheri et al. [15] used multi-layer perceptron and radial basis function artificial
neural networks (MLPANN and RBFANN) to predict trans-membrane pressure (TMP) and
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membrane flux, and used the genetic algorithm (GA) algorithm to optimize the weights.
The results show that the optimized model has a higher prediction accuracy. However,
because the dynamic process of sewage treatment is complex, the change of membrane flux
cannot be expressed by a simple static mapping relationship.

At present, swarm intelligence optimization algorithms such as the sparrow search
algorithm (SSA) have been widely used in engineering problems. The sparrow search
algorithm (SSA) is a new metaheuristic algorithm proposed by Xue and Shen in 2020 [16].
Liu et al. [17] established a prediction model based on sparrow-search-algorithm-optimized
support vector machine regression (SSA-SVR) to predict the settlement of coal gangue
roadbed of a Shao Expressway in Hunan Province and compared the prediction results with
particle swarm optimization-support vector regression (PSO-SVR) and genetic algorithm-
support vector regression (GA-SVR) models. The results show that the SSA-SVR prediction
model has high accuracy and good generalization ability. Liu et al. [18] proposed a com-
bined prediction model based on the Sparrow Algorithm (SSA) to optimize the extreme
learning machine, aiming at the instability of the extreme learning machine (ELM) model
and the inaccuracy of the forecast results. The weights and thresholds of ELM are optimized
by using SSA with a fast convergence speed, high precision and good stability, and the
accurate prediction of wind power is realized.

However, SSA, like other population intelligence optimization algorithms, still suffers
from the problems of decreasing population diversity and easily falling into local optimality
when its search is close to the global optimum. Considering the ergodic uniformity and fast
convergence of tent map, this study proposes an improved sparrow search algorithm (Tent-
SSA). In order to effectively select auxiliary variables, establish a suitable membrane flux
prediction model, and realize the online accurate prediction of membrane flux, firstly, the
mechanism of membrane fouling factors is analyzed in this paper, and secondly, principal
component analysis (PCA) is applied. Select auxiliary variables, and then introduce tent
mapping to initialize the population to increase population diversity. Finally, the Tent-SSA-
BP neural network was combined to establish a Tent-SSA-BP membrane flux soft-sensing
model, and the simulation data of Seong-Hoon Yoon’s spreadsheet model was used to verify
the reliability and stability of the model and to prediction of membrane flux value [19].

2. Theory Related to BP Neural Networks

The BP neural network has the ability of self-organization, self-learning and self-
adaptation, and its principle is simple and easy to implement [20]. It has been widely used
in many fields. The network structure diagram of BP network 6-12-1 is shown in Figure 1.

ωij(i + 1) = ωij(i)− µ
∂E

∂ωij
(µ > 0) (1)
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The learning process of the BP algorithm is based on the gradient descent method to
correct network weights and thresholds, which minimizes the sum of squared network
errors, where E is the total network error. The error reduction is carried out in the direction
of the negative gradient, and it is easy to get into the dilemma of local minimum value. In
order to make the deviation between the actual output and the target value of each unit
smaller than the specified value, the connection weights need to be constantly adjusted.
When there are too many training samples or the relationship between input and output is
complex, the convergence speed of the network will become slow [21]. In addition, the BP
algorithm has other limitations, so this article uses the improved SSA algorithm to optimize
the BP network.

3. Sparrow Search Algorithm
3.1. Standard SSA

The idea of SSA is derived from the foraging and anti-predatory behaviors of sparrow
populations and can be abstracted as an explorer–follower–warner model [22]. The Explorer
has a high energy reserve and a high fitness value, which mainly provides foraging areas
and directions for followers. Followers follow the explorer with the best fitness value to
find food to gain their own energy reserves and increase their fitness value [23,24]. Some
followers may also constantly monitor the explorer, compete for food, and alert when
they are aware of the danger and move quickly to safe areas to get a better location, while
sparrows in the middle of the population walk randomly close to other sparrows, known
as anti-predatory behavior [25,26]. At the same time, if the alert value is greater than the
security threshold, the explorer needs to take all followers out of the danger zone.

In SSA, if there are N sparrows in a D-dimensional search space, the location of each
sparrow is shown in Formula (2):

X =



x1,1 x1,2 . . . x1,d . . . x1,D

x2,1 x2,2
... x2,d

... x2,D
...

...
...

...
...

...
xi,1 xi,2 . . . xi,d . . . xi,D

...
...

...
...

...
...

xN,1 xN,2 . . . xN,d . . . xN,D

 (2)

In the formula, i = 1, 2, . . . , N, d = 1, 2, . . . , D, and xid indicates the position of the i-th
sparrow in the d-th dimension.

Since the explorer guides the movement of the whole sparrow population, and can
find food anywhere, its location is updated as follows:

xt+1
i,d =

xt
i,d · exp

(
−i

a·itermax

)
, R2 < ST

xt
i,d + Q× L, R2 ≥ ST

(3)

In the formula, t represents the current number of iterations, itermax is the maximum
number of iterations, a is a random number with an interval (0, 1], Q is a random number
with a normal distribution, and L represents a matrix of 1× d, where each element is 1 and
R2 ∈ [0, 1] represents the alert value; ST ∈ [0.5, 1] represents a security threshold. When
R2 < ST, it means there are no predators around, and the explorer will enter a wider search
mode; if R2 ≥ ST, it means that some sparrows have found predators and all need to fly
quickly to other security zones.
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Followers follow the explorer in search of food and may compete with the explorer for
food to increase their own predation rate. We can update formula to:

xt+1
i,d =


Q · exp

(
xworstt

d−xt
i,d

a·itermax

)
, i > N/2

xbestt+1
d + 1

D

D
∑

d=1

(∣∣∣xt
i,d − xbestt+1

d

∣∣∣rand{−1, 1}
)

, i ≤ N/2
(4)

In the formula, xworstt
d represents the lowest overall position of sparrows in the d-th

dimension during the t-th iteration, and xbestt
d represents the lowest overall position of

sparrows in the d-th dimension during the t + 1-th iteration. When i > N/2, the i-th
follower with poor fitness was most likely to starve; otherwise, the i-th follower will
randomly find a place near the best location for the explorer to feed.

Assuming that the early warning sparrow accounts for about 10~20% of the sparrow
population, its initial position is randomly determined, and the mathematical model can be
expressed as:

xt+1
i,d =


xbestt

d + β ·
∣∣∣xt

i,d − xbestt
d

∣∣∣, fi 6= fg

xt
i,d + k ·

(
|xt

i,d−xworstt
d|

| fi− fw |+ε

)
, fi = fg

(5)

In the formula, β is a random normal distribution with a mean of 0 and a variance of 1,
which is used as a step control parameter, k is a random number between [−1, 1], fi, fg, fw
represents the fitness value of the current sparrow, the current global best fitness value, and
the worst fitness value, respectively, and ε is the minimum constant to avoid zero-point
error. fi 6= fg means sparrows are at the edge of the population, when fi = fg, sparrows in
the middle of the population are aware of the danger and need to move elsewhere.

3.2. Improved SSA
3.2.1. Tent Chaotic Mapping

Chaotic phenomena refer to the existence of random and irregular variables in a certain
system that are not repeatable, predictable and indeterminate [27]. At present, the common
chaotic operators are logistic mapping function operator and tent chaotic mapping function
operator. Logistic mapping function is a chaotic system, but the speed of searching for the
best solution is limited by the asymmetry of its function distribution [28–30].

At present, many scholars have introduced chaos into SSA [31]. The heterogeneity
of logistic chaotic mapping has a greater impact on the search speed and accuracy, while
tent chaotic mapping has better traversal uniformity and faster search speed than logistic
chaotic mapping. From the histograms and distributions of the tent chaotic sequence in
Figure 2, and logistic chaotic sequence in Figure 3, we can see that the frequency of the
mapping of the logistic chaotic sequence in the range [0, 0.05] and [0.95, 1] is higher than
that of the other segments, while the distribution of the tent chaotic sequence mapping in
the [0, 1] interval is more uniform and the iteration speed is faster. When logistic chaotic
mapping is applied to the initialization of a population, the heterogeneity of its chaotic
sequence results in an uneven distribution of the initialization population, which affects
the speed and accuracy of the algorithm in the optimization process. This article uses tent’s
traversal to generate a uniformly distributed chaotic sequence, which reduces the influence
of initial values on algorithm optimization.

The tent chaotic mapping function is also known as the tent mapping function, which
is calculated as Formula (6).

xi+1 =

{
2x 0 ≤ xi < 1/2
2(1− xi) 1/2 ≤ xi ≤ 1

(6)

The tent mapping function requires a bernoulli shift transformation. In the [0, 1]
interval, the computer performs a tent mapping to left-shift the binary number of the
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fractional part. This transformation is suitable for computing large-scale data. The bernoulli
shift transformation is shown in Formula (7).

xi+1 = (2xi)mod1 (7)

The chaotic sequence generated by tent chaotic mapping in the [0, 1] interval is
periodic, but there are also unstable periodic points. Because tent chaotic sequence iteration
may fall into small and unstable periodic points, a random variable rand(0, 1)× 1/N needs
to be added to the initial tent chaotic mapping function, which is shown in Formula (8).

xi+1 =

{
2xi+rand(0, 1)× 1

N , 0 ≤ xi < 1/2
2(1− xi)+rand(0, 1)× 1

N , 1/2 ≤ xi ≤ 1
(8)

The expression after bernoulli shift transformation is shown in Formula (9): N is the
number of particles in the tent chaotic sequence.

xi+1 = (2xi)mod1 + rand(0, 1)× 1
N

(9)

In conjunction with the above description of the tent mapping properties, the ba-
sic steps for generating a tent mapping chaotic sequence within a feasible domain are
as follows:

Step 1: Randomly generates the initial value x0 (be careful not to let x0 fall into small
cycles), which is marked as group Z, z1 = x0, i = j = 1.

Step 2: Iterate by Formula (9), increasing by 1 each time, resulting in sequence X.
Step 3: If it reaches the maximum number of iterations, it goes to Step 5. Conversely, if

it falls into an unstable periodic point, it goes to Step 2.
Step 4: Change the initial iteration value by formula xi = zj+1 = zj + ε; in the formula,

ε is a random number, j = j + 1, then turns to Step 2.
Step 5: In the end, saving sequence X generated by the iteration.

3.2.2. Tent Chaotic Mapping SSA

The initial location information of the sparrow population is randomly generated by
the standard SSA at the beginning of execution, which results in poor diversity within the
sparrow population. As a result, the algorithm finds a solution that is not globally optimal
and affects the convergence speed and accuracy of the SSA [32]. We use the tent chaotic
mapping function to optimize SSA, and the tent sparrow search algorithm (Tent-SSA) is
improved by introducing tent chaotic mapping to initialize SSA. It can improve the search
performance of the algorithm and avoid the algorithm falling into local optimum. The
steps are as follows:

Step 1: Initialize SSA parameters;
Step 2: Use the tent chaotic mapping function to generate a uniform chaotic sequence,

the initial position of members of the sparrow population;
Step 3: Calculate the fitness value of each sparrow to determine the position of the

individual with the best and worst fitness value;
Step 4: Determine the number of explorers in the sparrow population and calculate

their updated locations based on Formula (3);
Step 5: Determine the number of followers in the sparrow population and calculate

their updated positions based on Formula (4);
Step 6: Determine the number of warners in the sparrow population and calculate

their updated location based on Formula (5);
Step 7: Calculate each sparrow’s fitness value and update it if the new fitness value is

better than the previous one;
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Step 8: If the maximum number of iterations of the algorithm is reached, the location
information of the sparrow with the best global fitness value is output. Otherwise, go to
Step 4 to continue execution.
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4. Membrane Fouling Prediction Model
4.1. Selection of Variables

The properties of membrane components, operation conditions and characteristics
of sludge mixtures are the main influencing factors of membrane fouling [33]. The prop-
erties of the membrane mainly include membrane materials, surface roughness, and the
pore value of the membrane. Operating conditions include temperature, aeration, sludge
retention time (SRT), and hydraulic retention time (HRT) [34]. The characteristics of sludge
mixtures include total suspended solid (TSS), sludge load, mixed liquor suspended solids
(MLSS), microbial products such as soluble microbial products (SMP), and extracellular
polymeric substances (EPS). In addition, variables such as flow rate, air–water ratio, water
production pressure, viscosity, biochemical oxygen demand (BOD), chemical oxygen de-
mand (COD), hydrogen ion concentration (pH), and oxidation-reduction potential (ORP),
which occur during the wastewater treatment process, and dissolved oxygen, nitrate, total
phosphorus (TP), effluent turbidity, and dry solid (DS) in the aerobic zone all affect the
membrane flux value [35,36]. There are many factors that affect the membrane flux and the
relationship is complex, so it is necessary to select appropriate auxiliary variables.

4.2. Principal Component Analysis

The principal component analysis (PCA) algorithm is a widely used data dimensional-
ity reduction algorithm. The PCA algorithm can more scientifically and effectively screen
out the auxiliary variables with the greatest correlation with membrane flux [37].

Set the research of a certain thing to involve P indicators, which is represented by
x1, x2, . . . , xp, respectively; these P indicators constitute a random vector of P -dimension
as X = (x1, x2, . . . , xp). Transform X linearly to form a new synthetic variable, which is
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represented by Y, that is, the new synthetic variable can be represented linearly by the
original variable [38]: 

Y1 = u11X1 + u12X2 + . . . + u1pXp
Y2 = u21X1 + u22X2 + . . . + u2pXp
. . . . . .
Yp = up1X1 + up2X2 + . . . + uppXp

(10)

In the formula, if ui
′ui = 1, Yi and Yj are independent of each other. The variance of

Y1, Y2, . . . , Yp decreases in turn, then Y1, Y2, . . . , Yp are the first, second, . . . , P -th principal
components of the original variable. The specific calculation steps of principal component
analysis are as follows:

Step 1: Select the initial analysis variable;
Step 2: Find the principal component from the correlation matrix;
Step 3: Find the eigenvalue of the correlation matrix and the corresponding stan-

dard eigenvector;
Step 4: Calculate the variance contribution rate and the cumulative variance contribu-

tion rate of each principal component and select the principal component.
In this article, we use the membrane flux as a predictor; combining with the specific

conditions of the experiment, we pretreat the principal component analysis of the original
data when using MATLAB. When reducing the dimension, it is stipulated that 85% of the
data information is guaranteed, so that the data loses less data information when reducing
the dimension. The values of each index were counted, and normalized and standardized.
The index data were analyzed by SPSS, and the eigenvalues and cumulative contribution
rates of each principal component were obtained as shown in Table 1.

Table 1. The SPSS analysis results.

Principal
Component Eigenvalues Contribution Rate Cumulative

Contribution Rate

Y1 2.331 53.752 53.752
Y2 1.252 21.121 74.873
Y3 1.007 14.435 89.308
Y4 0.774 3.704 93.012

The eigenvalues of the first three principal components are all greater than 1, and the
cumulative variance contribution rate is 89.308%, which has a large contribution to the
explanatory variables. Most of the information affecting membrane fouling is included,
so the first three are extracted as principal components. Taking the ratio of the variance
contribution rate corresponding to each principal component to the cumulative contribution
rate as the weight, the calculation of the sustainability index is shown in Formula (11).

S = 0.54Y1 + 0.21Y2 + 0.14Y3 (11)

In the formula, Y1, Y2 and Y3 are the main component factors. Through the analysis
of the coefficient matrix of the components, it has been concluded that the main relevant
components of Y1 are TSS, MLSS and SRT, the main relevant components of Y2 are total
resistance and TMP, and the main relevant component of Y3 is water production pressure.

Finally, we summarize six of the most obvious factors affecting the membrane fouling:
TSS, MLSS, total resistance, TMP, SRT and water production pressure.

4.3. Establishment of Tent-SSA-BP Prediction Model

Membrane flux is an important index parameter reflecting the degree of membrane
fouling; therefore, we use it as the output of the model, and we use six factors after the
principal component dimension reduction as input. Finally, we establish a prediction model
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for membrane fouling based on improved SSA (Tent-SSA) and the optimized BP network
as shown in Figure 4.
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This article optimizes the learning parameters of the BP network based on SSA. First,
we optimize the weights and thresholds of the BP network by using improved SSA; second,
we assign these optimization values to the network to get the optimized BP network,
tent-SSA-BP network; then, the BP algorithm is used to complete the final network training;
finally, we evaluate the performance of the optimized network by simulation data. The
algorithm flow is shown in Figure 5, and the algorithm steps are as follows:
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Step 1: Auxiliary variable selection and preprocessing, and use PCA for dimen-
sion reduction;

Step 2: Initialize relevant parameters, initialize population, introduce tent mapping,
and improve initial population distribution uniformity;

Step 3: Compute and sort the fitness values according to the objective function;
Step 4: Use Formulas (4) and (5) to update follower and guardian positions;
Step 5: Determine whether to stop, execute exit or continue cycle;
Step 6: Train the BP network and use it for prediction.
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4.4. Evaluating Indicator

In order to make the output accuracy more intuitive, we introduce the following
evaluation indicators.

(1) Mean absolute percentage (MAPE)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − y∗i
y∗i

∣∣∣∣× 100% (12)

(2) Root mean square error (RMSE)

RMSE =

√√√√√ n
∑

i=1

(
yi − y∗i

)2

n
(13)

(3) Mean absolute error (MAE)

MAE =

n
∑

i=1

∣∣yi − y∗i
∣∣

n
(14)

In the formula, yi is the true value, y∗i is the model output value, n is the number of
test samples.

5. Experiment and Simulation
5.1. Improved Algorithm Performance Test
5.1.1. Benchmark Function

In order to test the optimization performance of the improved Tent-SSA, we select
8 benchmark test functions. As Table 2 shows, the algorithm sets the population value to 50,
the proportion of explorers and early warner is 20%, the warning value is 0.6, the maximum
iteration number is 100, the dimension is 30, and each runs 20 times independently. Mean
and standard deviation are introduced as performance measures in the experiment. Mean
reflects the accuracy of the optimization algorithm, while standard deviation reflects the
stability and robustness of the algorithm.

Table 2. Test function.

Test Function Range of Values Dimension Optimum Solution

F1(x) =
n
∑

i=1
x2

i
[−100, 100] 30 0

F2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | [−10, 10] 30 0

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
[−100, 100] 30 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ n} [−100, 100] 30 0

F5(x) =
n
∑

i=1
ix4

i + random[0, 1) [−1.28, 1.28] 30 0

F6(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] [−5.12, 5.12] 30 0

F7(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e [−32, 32] 30 0

F8(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] 30 0

5.1.2. Comparison of Different Intelligent Optimization Algorithms

The parameters of computer device used in the experiment are i5-7500HCPU, 2.30 GHz,
16 G running memory, and Windows 10 system. The simulation experiment is carried out
on Matlab2018b. The Tent-SSA algorithm proposed in this article is compared with SSA,
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PSO and whale optimization algorithm (WOA) on eight benchmark functions to obtain the
mean and standard deviation of the function. The experimental data (the bolded data are
the optimal value for this set) are shown in Table 3.

It can be seen from Table 3 that for high-dimensional unimodal Function F1 to F5,
the optimization effect of the proposed tent SSA algorithm is significantly better than
that of SSA, PSO and WOA, in which the optimization effect for F4 reaches 100%, and
the optimization effect for F1 to F3 is dozens of orders of magnitude higher than that of
other algorithms and standard deviation. Deviation is generally smaller than that of other
algorithms, indicating that the optimization accuracy of tent SSA has been significantly
improved and the quality of finding global suboptimal solutions has been improved,
and the random error of the algorithm is reduced. It shows that tent SSA improves the
population diversity through tent optimization strategy, which makes the algorithm jump
out of the local optimal value. In order to more intuitively compare the convergence
accuracy and convergence speed of the algorithm, this paper draws the convergence curve
of the test function according to the iteration times and fitness values, and obtains the
iterative convergence curve of each function, as shown in Figure 6.
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Table 3. Test function results.

Benchmark
Function

SSA Tent-SSA PSO WOA

Mean Std.
Deviation Mean Std.

Deviation Mean Std.
Deviation Mean Std.

Deviation

F1 1.73 × 10−06 2.66 × 10−05 2.28 × 10−164 0 5.26 × 10−04 7.32 × 10−04 2.01 × 10−27 1.11 × 10−26

F2 6.32 × 10−25 1.35 × 10−24 2.04 × 10−184 0 2.35 × 10−03 1.61 × 10−03 2.44 × 10−19 4.56 × 10−19

F3 −1.39 × 10−06 2.73 × 10−05 8.02 × 10−179 0 6.52 × 10+02 4.83 × 10+02 6.55 × 10+03 1.76 × 10+03

F4 −3.74 × 10−06 1.02 × 10−05 0 0 6.13 × 10+00 2.25 × 10+00 6.36 × 10+01 2.53 × 10+01

F5 2.43 × 10−02 1.01 × 10−01 2.04 × 10−02 2.36 × 10−03 4.84 × 10−02 1.74 × 10−02 6.13 × 10−03 8.20 × 10−03

F6 9.95 × 10−02 1.13 × 10+00 −1.04 × 10−27 1.39 × 10−28 6.22 × 10+01 1.75 × 10−01 6.04 × 10+00 2.00 × 10+01

F7 −1.11 × 10−07 3.31 × 10−06 2.04 × 10−20 2.64 × 10−20 8.04 × 10−01 8.01 × 10−01 8.25 × 10−06 2.52 × 10−06

F8 9.37 × 10−03 8.33 × 10−03 4.85 × 10−11 1.58 × 10−10 8.26 × 10−01 8.83 × 10−01 9.28 × 10−02 6.24 × 10−02

Ascan be seen from Figure 6, for the eight benchmark functions, the convergence
speed of Tent-SSA in the early stage is greatly improved compared with other intelligent
algorithms. It can quickly search the search space and improve its global search ability,
thus greatly shortening the exploration cycle of the early algorithm and improving its
optimization search performance. At the same time, the algorithm takes into account the
optimization accuracy and can be closer to the ideal optimal solution. For function F3
and F7, the improvement of convergence accuracy of Tent-SSA is not significant compared
with SSA. However, compared with SSA, Tent-SSA improves the convergence speed while
taking into account the optimization accuracy of the algorithm.

5.2. Experimental Results and Analysis

The experimental data in this article come from a spreadsheet model of Seong-Hoon
Yoon. The data related to membrane fouling can be simulated and processed according
to the experimental requirements to ensure that the data are closer to the actual data.
The subjects of study are all polyvinylidene fluoride (PVDF) hollow microfiltration (MF)
components. The water inlet mode is external pressure, and the effective usage area of
the membrane is 20 m2. In MBR reaction pool, the microorganisms and pollutants in the
pool are complex, so the selection of membrane contamination influencing factor largely
determines the accuracy of membrane contamination prediction. In order to improve the
prediction accuracy, finally, we determine 592 sets of data for model simulation by PCA
dimension reduction and normalization: 500 sets of data are used for model training, and
the remaining 92 sets are used for model testing.

(1) Comparison of results before and after improving optimization algorithm.

The simulation results of the actual operation data are shown in Figure 7.
From the simulation curve in Figure 7a, it can be seen that the deviation between the

unmodified BP network and the true value fluctuates greatly, and the improved prediction
model has a smaller fluctuation than the true value. From the comparison of prediction
errors in Figure 7b, it can be seen that the Tent-SSA-BP model proposed in this article
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has a greater improvement in prediction errors than the standard algorithm, and the
fluctuation range of errors is significantly reduced, which can better reflect the change of
membrane flux.
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(2) Prediction accuracy of different soft measurement models

In order to compare the prediction accuracy of the soft sensing model proposed in this
article, the measurement models are built under the same experimental conditions by using
GA-BP, PSO-BP, SSA-ELM, SSA-BP and Tent-PSO-BP models. The prediction results of
different soft sensing models are shown in Figure 8. Through the comparison of prediction
results, we can find that the prediction results of other methods fluctuate greatly at the peak
and trough of the original data, which cannot well reflect the changes of the original data.
In this case, the Tent-SSA-BP model proposed in this article is superior to other models to a
certain extent. The comparison of prediction errors of each model is shown in Table 4.

According to the data in Table 4, under the same experimental conditions, compared
with the BP model before improvement, the improved soft sensing model reduces MAPE
by 96.76%, RMSE by 99.78% and MAE by 95.61%. For SSA-ELM model, MAPE decreased
by 84.78%, RMSE decreased by 97.16% and Mae decreased by 80.47%. For SSA-BP model,
MAPE is reduced by 70.83%, RMSE is reduced by 95.59% and MAE is reduced by 60.63%.
The prediction accuracy of the algorithm proposed in this article reaches 97.4%, which
is much higher than 48.52% of BP. It is also higher than of other prediction models, and
the prediction accuracy has been greatly improved. According to various indicators, the
prediction effect of Tent-SSA-BP soft sensing model is better than that of the unmodified
soft sensing model. Compared with other models, the prediction accuracy of the algorithm
proposed in this article is the highest, and the prediction error curve is shown in Figure 9.

Table 4. Prediction error comparison.

Model
EVA

MAPE/% RMSE MAE

BP 0.0216 0.3917 0.5148
GA-BP 0.0051 0.0344 0.1249
PSO-BP 0.0053 0.0484 0.1333

SSA-ELM 0.0046 0.0317 0.1157
SSA-BP 0.0024 0.0204 0.0574

Tent-PSO-BP 0.0025 0.0211 0.0606
Tent-SSA-BP 0.0007 0.0009 0.0226
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(3) Variable noise membrane flux prediction results and analysis with different predic-
tion methods

In the actual operation process of MBR, environmental noise exists when the mem-
brane module is treating sewage. At the same time, due to the characteristics of the
membrane module, there is also noise, which produces unnecessary randomness in the
collection of membrane fouling data. It is very important to add variable noise experiment
to the membrane flux prediction, for the simulated data needs to be more in line with the
uncertainty of the operation of membrane module under actual working conditions. In
this article, aiming at the membrane fouling data as the training sample, we add Gaussian
white noise with a signal-to-noise ratio of 4, 8 and 12 dB to the test sample, and compare
the obtained membrane fouling prediction results with other prediction methods. The
experimental results are shown in Table 5.
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Table 5. Prediction accuracy of different methods under different noise conditions.

Diagnostic Method
SNR/dB

4 8 12

BP 46.52% 63.82% 45.23%
GA-BP 82.51% 90.76% 79.96%
PSO-BP 84.67% 89.26% 80.42%

SSA-ELM 82.43% 88.17% 78.17%
SSA-BP 90.26% 92.28% 86.73%

Tent-PSO-BP 88.36% 90.23% 85.18%
Tent-SSA-BP 93.74% 94.16% 91.22%

It can be seen from the comparative data in Table 5 that the accuracy of several models
has decreased in the experimental results of different signal-to-noise ratios, but through
longitudinal comparison, the prediction accuracy of membrane flux based on Tent-SSA-BP
is higher than that of other methods. In the signal-to-noise ratio interference experiment,
it performs better in 4, 8 and 12 dB, and the prediction accuracy remains stable at more
than 91%.

6. Conclusions

The accurate prediction of membrane fouling has an important impact on the sewage
treatment process. To achieve accurate measurement on-line, we propose a Tent-SSA-BP
prediction model. First, we optimize the improved SSA, then use the PCA algorithm
to reduce the dimension of the auxiliary variables after pretreatment, and we use the
improved SSA to optimize the key parameters of the BP network. Finally, we use the
optimal parameters to predict the membrane flux. The results are shown as follows:

(1) We use PCA to reduce the initial auxiliary variables. At the same time, we improve the
efficiency of the algorithm and reduce the probability of over-fitting. In order to solve
the problem that the diversity of population is reduced and the local optimal solution
is easily trapped in the later stage of the optimization algorithm, we introduce the
tent chaotic map to improve the uniformity of initial population distribution and the
ability of the algorithm to find the global optimal solution. Tent-SSA-BP can find the
global optimal solution more easily and quickly.

(2) Based on the Tent-SSA-BP method proposed in this article, the prediction model of
membrane flux in membrane fouling, whether it is the training speed or prediction
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accuracy of the model, shows better performance than other methods (GA-BP, PSO-BP,
SSA-ELM, SSA-BP, Tent-PSO-BP), which is more suitable for the prediction model of
membrane flux. This also provides a possibility for the complete data prediction of
subsequent membrane components and membrane fouling requirements.

(3) In the future research work, data are an important basis and resource for large data
prediction research. Therefore, it is of strategic significance to establish a large database
of membrane fouling standards for membrane components, to explore deep migration
learning methods for predicting technological innovation, and to reveal the evolution
mechanism of membrane fouling.
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