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Abstract

Objective.—High frequency oscillations (HFOs) are a promising biomarker of tissue that 

instigates seizures. However, ambiguous data and random background fluctuations can cause 

any HFO detector (human or automated) to falsely label non-HFO data as an HFO (a false 

positive detection). The objective of this paper was to identify quantitative features of HFOs that 

distinguish between true and false positive detections.

Approach.—Feature selection was performed using background data in multi-day, interictal 

intracranial recordings from ten patients. We selected the feature most similar between randomly 

selected segments of background data and HFOs detected in surrogate background data (false 

positive detections by construction). We then compared these results with fuzzy clustering of 

detected HFOs in clinical data to verify the feature’s applicability. We validated the feature is 

sensitive to false versus true positive HFO detections by using an independent data set (six 

subjects) scored for HFOs by three human reviewers. Lastly, we compared the effect of redacting 

putative false positive HFO detections on the distribution of HFOs across channels and their 

association with seizure onset zone (SOZ) and resected volume (RV).

Main results.—Of the 15 analyzed features, the analysis selected only skewness of the curvature 

(skewCurve). The feature was validated in human scored data to be associated with distinguishing 

true and false positive HFO detections. Automated HFO detections with higher skewCurve were 

more focal based on entropy measures and had increased localization to both the SOZ and RV.
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Significance.—We identified a quantitative feature of HFOs which helps distinguish between 

true and false positive detections. Redacting putative false positive HFO detections improves the 

specificity of HFOs as a biomarker of epileptic tissue.
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1. Introduction

Over 50 million people worldwide have epilepsy, with about one third of them being unable 

to obtain seizure control from medications (Kwan and Brodie 2000). For these patients with 

refractory epilepsy, resective surgery is a primary treatment option. This surgery seeks to 

remove the region of the brain instigating seizures, the hypothesized epileptogenic zone. As 

the true epileptogenic zone is unknown, clinicians use multiple modalities to estimate the 

location of where the seizures start, denoted the seizure onset zone (SOZ). One of the main 

modalities for identifying SOZ is intracranial EEG, which involves placement of electrodes 

on the cortical surface or deep within the brain followed by days of hospitalization to 

observe spontaneous seizures. Unfortunately, less than 60% of patients have a seizure-free 

outcome after resective surgery informed by intracranial EEG (Edelvik et al 2013, Noe et al 
2013, Yu et al 2014).

High frequency oscillations (HFOs), defined as discrete, spontaneous EEG transients with 

frequency between 80 and 500 Hz, have become a promising new biomarker for identifying 

the epileptogenic zone, e.g. (Bragin et al 2002, Blanco et al 2011, Zijlmans et al 2011). 

Removal of interictal HFO-generating areas has been shown to be correlated with the 

surgical outcome in patients with refractory epilepsy (Akiyama et al 2011, Gliske et al 
2016a, Jacobs et al 2010, Haegelen et al 2013, Wu et al 2010). HFOs can be detected 

by human scoring or by automated methods, though manual review is extremely time 

consuming (taking about 1 h to review 10 min on one channel (Zelmann et al 2009)) and 

is inevitably subjective (Gardner et al 2007). Additionally, the HFO rate has variability over 

time (Gliske et al 2018), requiring analysis of HFOs over prolonged EEG recordings in 

order to obtain the most complete information.

While HFOs are a promising biomarker of tissue instigating seizures, all HFO detectors 

(human and automated) suffer from several common weaknesses: (1) both noise (i.e. signals 

not due to brain activity) as well as random fluctuations of the physiological brain activity 

can be falsely marked as HFOs, i.e. false positive detections (Bénar et al 2010), (2) not 

every HFO will be detected (false negative detections), and (3) healthy brain tissue can 

also produce HFOs that represent normal neural oscillations (Engel et al 2009, Khadjevand 

et al 2017). The presence of false positive HFO detections (weakness 1) already implies 

that not every putative HFO necessarily carries the same weight of information about the 

epileptogenic zone, which is further confounded by weakness 3, that some HFOs are due to 

normal brain processes rather than being specific to epilepsy. Mitigating these weaknesses 

has the potential to improve the clinical utility of HFOs to identify seizure networks. Note 

that weakness 3 is not referring to false positive HFO detections, but true HFOs that are not 
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due to epileptic processes. The ability to distinguish ‘normal’ from ‘epileptic’ (pathological) 

HFOs is an ongoing area of research, e.g. Alkawadri et al (2014), Cimbalnik et al (2018), 

Khadjevand et al (2017) and Liu et al (2018).

Weaknesses 1 and 2, the presence of false positive and false negative detections, are 

inherent to any detection process. HFO detection relies upon finding oscillations that 

stand out from the background. Non-neural artifacts can often produce fast transients that 

generate such large oscillations, but with care these artifacts can be ignored by the detector 

(Gliske et al 2016a, Ren et al 2019). However, another potential source of false positive 

detections is a patient’s neural background EEG. The neural background may have high 

frequency oscillatory activity due to the rich repertoire of underlying physiological activity. 

In such cases, by sheer statistics there will be certain short periods that emerge from this 

background, i.e. the upper tail of the distribution of normal brain activity. Both automated 

methods and human scoring must decide whether such ambiguous data represent a true HFO 

or just a random fluctuation of the background brain activity. Such choices invariably lead 

to some false positive detections (background activity falsely marked as an HFO) and false 

negative detections (an HFO falsely marked as background activity). The focus of this paper 

relates to false positive HFO detections, not false negative HFO detections.

Identifying these false positive HFO detections due to neural sources is challenging, as 

there is no gold standard to label a given HFO as a false or true positive. One option is to 

concentrate on how similar the detected events are to the background itself: false positive 

detections due to neural sources should have some similar characteristics as the background 

neural activity. We thus sought to identify quantitative features of the background that were 

similar to HFOs to disambiguate false and true positive HFO detections.

We identified three approaches for identifying such HFO features, which we combined to 

overcome the weaknesses inherent in each approach. The first approach was to compute 

quantitative features of randomly-selected segments of the high-frequency background EEG. 

This method accurately interrogates the distribution of background features; however, these 

distributions may not exactly match those of false positive HFO detections because the 

false positive detections are extreme cases and above a detection threshold. A second 

approach was to create surrogate background data (i.e. ‘artificial EEG’ based on the actual 

background) and detect HFOs in these data. By construction, any detected HFO would be a 

false positive, but we recognized that the surrogate background data generation process may 

influence the feature distribution. A third approach was to apply a fuzzy clustering method 

to the putative HFO detections in the clinical data, although the method alone could not 

identify which, if any, cluster corresponded to false positive detections. We combined these 

approaches by seeking to identify quantitative features that have similar distributions in the 

randomly-selected background segments, the HFO detections in surrogate background data, 

and in one fuzzy cluster of putative HFO detections in clinical data. The existence of such 

features was not guaranteed. Yet, any features found with similar distributions for all three 

cases could represent a signature of false positive HFO detections. Specifically, such features 

would, by construction, identify a subset of HFOs that are similar to (1) randomly-selected 

segments of background EEG, (2) constructed false positive HFO detections, and (3) a 

natural, unsupervised cluster of detected putative HFOs.
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After finding a quantitative feature with the above properties, we validated whether it 

truly distinguishes false versus true positive HFO detections and whether redaction of 

these putative false positive HFO detections improves the utility of HFOs. First, we used 

the information that while human reviewers do mark some false positive HFO detections, 

events with greater consensus among reviewers are more likely to be true positive HFOs. 

Thus, we compared the distribution of the identified quantitative feature for events marked 

by only one of three human reviewers with events marked by at least two of the three 

human reviewers. Second, the association of HFOs with SOZ and resected volume (RV) in 

good surgery outcome patients is expected to increase after removal of false positive HFO 

detections. We thus removed the events predicted by the quantitative feature to be false 

positive HFO detections and assessed how this changed the association of HFO rate with 

SOZ and RV.

2. Methods

2.1. Patient selection

Subjects were selected from patients with medically refractory epilepsy at the University of 

Michigan who underwent intracranial EEG monitoring in preparation for epilepsy surgery. 

Two cohorts of subjects were identified. Cohort 1 was used for automated detectors using 

all recorded, valid, interictal data. Cohort 2 was used for manual scoring and was selected 

to be an independent set of subjects. In both cohorts, we selected subjects with clinical 

data acquisition at > 4 kHz sampling rate. Selected subjects all had data acquired on 

a Natus Quantum (Natus Medical Inc) with a sampling rate of 4096 Hz and 1200 Hz 

anti-aliasing filter. For Cohort 1 (automated processing), we selected subjects meeting the 

following criteria as of April, 2019: International League Against Epilepsy (ILAE) Class I 

surgery outcome after at least one year post-resection. Subjects which were Class I when 

compliant with medications were considered Class I for all analyses in this paper. This 

yielded 11 subjects, one of whom later changed to ILAE Class II and whose data were 

subsequently removed from Cohort 1. Thus, ten subjects (six of whom were adults) were 

included in Cohort 1. In the Cohort 2 (manual scoring), we selected the first six consecutive 

patients (five of whom were adults) which did not have an ILAE Class I surgery outcome. 

Demographic and subject characteristics are shown in Table 1.

All data were acquired with approval of the local Institutional Review Board (IRB) and 

consent/assent was obtained from all subjects and guardians for the deidentified data to be 

analyzed for research use. For each patient, the clinically determined SOZ was determined 

from the final clinical report, written by the treating clinicians. The RV and surgery outcome 

were determined by discussion with the neurosurgeon performing the resection and the 

clinical metadata. Only data further than 30 min from the start of a clinical seizure were 

included in the analysis and results, with seizure times obtained from the clinical reports. 

Data with ambiguities in seizure times were ignored. Subsets of the raw data were reviewed 

by a board certified epileptologist, and channels with obvious poor quality or known to 

be extraparenchymal were excluded from the analysis. Additionally, data were excluded 

during and near times coinciding with testing wire connections and conducting mapping 

procedures.
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2.2. Preprocessing

2.2.1. General preprocessing—All data were preprocessed by re-referencing and 

filtering. See figure 1(A). The common average reference was selected in previous work 

to reduce noise (Gliske et al 2016a), and separate references were used for depth and 

ECoG channels. To select high frequency data, we used a 10th order, bidirectional elliptical 

passband filter, 80–500 Hz passband, 0.5 dB passband ripple, and 65 dB stopband ripple. 

These steps are the same as in our previous HFO work (Gliske et al 2018, 2016a, Ren et al 
2019).

2.2.2. Flattening of sharp transients—An additional preprocessing step was needed 

for the surrogate data generation, as there exist small sharp transients in the data that appear 

as instantaneous shifts in the DC offset. These shifts are small enough not to cause false 

positive HFO detections, and thus they are below threshold to be identified by the artifact 

detection algorithms (Gliske et al 2016a). However, these transients negatively impact the 

surrogate data generation, which is based on directly modeling the background data (see 

section 2.2.3). We thus ‘flattened’ the data and minimized the effect of these transients for 

surrogate data generation by computing the mean and standard deviation of the difference of 

adjacent samples in the signal on each channel in each 10-minute epoch. Any pair-wise 

difference with magnitude greater than 10 standard deviations from the mean had its 

magnitude scaled to be exactly 10-standard deviations from the mean, resulting in a DC 

shift of the following data to counter the transient. This step was applied after the common 

average reference and before the bandpass filter for surrogate background generation (see 

section 2.2.3) and for zero bias events (see section 2.3.3), to allow a direct comparison to 

the HFOs detected in the surrogate data. We verified the step had minimal impact on the 

feature distribution of HFOs detected in the actual EEG data (results not shown). Thus, to be 

consistent with previous work (e.g. Gliske et al 2016a, Ren et al 2019, Gliske et al 2018), the 

flattening step was not applied before processing HFOs in the actual EEG data. See figure 

1(A).

2.2.3. Generation of surrogate background data—Surrogate background data were 

created in order to construct HFO detections that are known to be false positives. The 

surrogate data was created by using linear autoregressive models, as has been done with 

intracranial EEG data in other publications, e.g. (Roehri et al 2017). This procedure utilized 

a mathematical similarity between the linear autoregression models and an all-pole digital 

filter. Specifically, fitting a linear autoregressive model to a specific set of data results 

in a set of coefficients and a noise amplitude. These coefficients are used to filter white 

noise with the same noise amplitude, resulting in surrogate data with the same properties 

(autoregressive coefficients) as the original data. See example data in figure 2.

We generated surrogate data as follows. We focused on 10-minute epochs of data at a time, 

consistent with the HFO detection algorithm (section 2.3.1). Autoregressive coefficients 

(order 200) were estimated for each 10 s section of data (40 960 samples) using the 

Burg Algorithm (Burg 1968). The Burg method is based using forward and backward 

least squares estimates for the autoregression coefficients. These coefficients were then 

used to make 20 copies of surrogate data. To avoid discontinuities in the data, 10.1 s of 
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surrogate data were produced per each 10 s of clinical data for each copy, allowing a 0.1 s 

overlap between consecutive sections of surrogate data. During the overlap, the signals were 

multiplied by linear functions, one scaling from 1 to 0 and the other from 0 to 1, resulting in 

a smooth transition. Once a full 10 min of surrogate data were generated on all channels, the 

full qHFO detection algorithm was applied (see section 2.3.1).

Note, computational requirements for this process were quite high, even with highly efficient 

C++ code utilizing parallelization. A typical subject with 50 channels took about 15 min of 

wall time to compute 20 surrogate copies of 10 min of actual EEG data when using 10 cores 

on the Great Lakes high performance computing cluster at the University of Michigan. Thus, 

while one surrogate could be generated and processed in less than 1 cpu-minute per 10 min 

of recorded data, the 20 surrogates for one week of 50 channels of data (a typical amount 

for one patient) corresponds to over 2 cpu-years of processing. The processing of the ten 

subjects analyzed in this paper required multiple cpu-decades of processing.

2.3. Detection algorithms

The analysis utilized multiple types of detection algorithms. Detectors include automated 

and manual HFO detectors and a ‘detector’ which randomly selected samples of the 

background data, denoted the zero bias detector. The automated detectors were applied 

to Cohort 1 data (see figure 1 (B)) and both automated and manual scoring of HFOs were 

applied to Cohort 2 data.

2.3.1. Automated HFO detector—HFO detections were found using the previously 

published and validated qHFO detector (Gliske et al 2016a). After preprocessing (common 

average reference and bandpass filter), it then applies the Staba HFO detector (Staba et al 
2002) to create a putative set of HFO detections. As the Staba HFO detector is based on 10 

minute windows of data, all automated detectors were set to process 10-minutes of data at a 

time. The qHFO method additionally identifies sharp-transient artifacts and HFO detections 

on the common average itself and redacts any putative HFO detections concurrent with those 

artifacts to yield the final set of ‘quality’ HFO detections. Thus, the qHFO detector already 

removes false positives due to sharp transient artifacts and filtering effects.

2.3.2. Manual scoring of HFOs—Three experts in manual scoring of HFOs (C.A-R., 

P.S., R.Z.) identified HFOs completely blind to all of the other analysis described in this 

paper. Experts were given two channels of interictal data per subject, 20-minute duration, 

for each subject in Cohort 2, along with data for other subjects who did not meet inclusion 

criteria for Cohort 2 (used in other studies). The same common average reference used for 

automated detections was applied before extracting the two channels, but no other filters 

were applied when the data was prepared. Experts were instructed to detect HFOs according 

to their own best practice.

2.3.3. Zero bias detector—Zero bias detectors randomly identify segments of the 

background data and are utilized in other fields such as high energy physics, e.g. (Adamczyk 

et al 2012). Zero bias detectors are agnostic to the actual data (i.e. whether they select 

an event at a given time is not biased by the data at that time), and thus events are not 
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technically ‘detected’ but are selected at random. We implemented a zero bias detector by 

randomly selecting the time for 10 detections per each 10-minute epoch of each channel. 

We set each zero bias detection to have 30 msec duration, corresponding to a typical HFO 

duration. In the analyzed set of qHFO detections in the clinical data, the median HFO 

duration was 30.0 msec, with the 25th percentile being at 23.4 msec and the 75th percentile 

being at 41.0 msec. Zero bias events concurrent with artifacts were redacted, but not those 

concurrent with HFO detections. It is possible that some zero bias detections may have 

overlapped with HFO detections, but this was expected to occur less than once per 1000 zero 

bias events (Monte Carlo simulation based on assuming 30 msec mean HFO duration and an 

abnormally high rate of 1 HFO min−1).

2.4. Feature analysis

The goal of feature analysis was to use all the data prepared in the earlier analysis stages 

to identify a quantitative feature that is sensitive to whether an HFO detection is a true or 

false positive. For the relationship between analysis stages, see figure 1. Feature analysis 

involved two parts. First, we selected features based on the zero bias and surrogate-data 

HFOs. Second, we verified that the feature distributions of those events correspond to a 

natural cluster of the HFO detections in the clinical data. Note, features are selected in an 

unsupervised fashion based on the feature having similar distributions for difference event 

types (as explained in section 2.4.2). No explicit supervised training was used at any time in 

this analysis.

2.4.1. Quantitative feature computation—Features were computed for all detections 

using the 80–500 Hz bandpass filtered data sets. For the feature selection step, a total of 15 

features were computed and assessed. Other feature analysis steps included just the subset 

of the 15 features that were selected. The 15 features include the power (standard deviation 

of the signal), absolute value of the skewness, and the kurtosis of the time-domain signal 

(three features). We also computed the mean, standard deviation, skewness and kurtosis of 

three transforms of the data: absolute value of the difference of consecutive samples (related 

to the slope, first derivative), absolute value of the difference of the difference of consecutive 

samples (related to the curvature, second derivative), and the Teager-Kaiser Energy Operator 

(the sample value squared minus the product of the adjacent samples). Note, for all features 

except power, the signal was normalized to have unit power before computing the features.

2.4.2. Feature selection—We sought to identify features with similar distributions in 

two of the three data streams, specifically, in both random samples of the background EEG 

and the constructed false positive HFO detections. While there are many definitions of 

‘similarity’ between probability distributions, the definition we selected was the extent to 

which one could accurately classify events drawn from a mixture of the two distributions. 

There are a number of options available to quantify this similarity without actually using 

a specific learning algorithm. If we were working in higher dimensions, we could have 

used the Henze-Penrose statistic, related to the Henze-Penrose divergence (Moon et al 
2015, Berisha et al 2016, Gliske et al 2016b). As we are in one dimension for each 

comparison, area under the receiver operator curve (AUROC) provides a simpler and still 

directly interpretable means of quantifying the difference between two distributions (Hanley 
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and Mcneil 1982, Brown and Davis 2006, Kallner 2018). AUROC values of 0.5 correspond 

to complete similarity between the distributions, whereas values of 0.0 or 1.0 represent 

completely disjoint distributions. For each of the 15 quantitative features (section 2.4.1), 

the AUROC between the distribution of zero bias events and the distribution for HFOs 

detected in the surrogate data was computed using the MATLAB perfcurve function, directly 

quantifying the similarity of the two distributions. Since we were not concerned which group 

(zero bias events or HFOs in surrogate background data) had higher mean, after computing 

the median AUROC per feature over all patients in Cohort 1, we then corrected any values 

that were less than 0.5 by taking one minus those values (effectively swapping the order of 

the two groups).

After quantifying the similarity of the feature distribution for each feature, we then used 

these AUROC values to select features which were extremely similar between the two event 

types. We choose to define ‘extremely similar’ as AUROC < 0.55, recognizing that, a priori, 
there is no assurance that any feature would meet this criterion. We also computed the 

interpatient variability in features of zero bias events, as well as for HFO detections in 

surrogate background data. In both cases, the median AUROC was 0.54. Thus our threshold 

for ‘extremely similar’ between the two types of events is just above the level of interpatient 

variability within each type of event. We also verified that adjusting the parameter within the 

range 0.53 to 0.60 would have had no effect on the results. Noting that only two features 

were identified and that they were highly correlated (Pearson correlation coefficient > 0.9), 

we then selected the feature with AUROC closest to 0.5.

2.4.3. Fuzzy clustering—The next step was to apply fuzzy clustering, in preparation 

for verifying whether the distribution of the selected feature corresponds with any natural 

clusters of the HFO detections in the actual intracranial, interictal EEG data. To accomplish 

this, we used Gaussian Mixture Models, which decomposed the distribution of the selected 

feature for each patient into multiple clusters; see figure 3. Note this use of a Gaussian 

Mixture Model is different than the most familiar use of this tool. Instead of using it tool 

to cluster data, we are using it to decompose a multimodal distribution into individual 

components. Mathematically these uses are equivalent, despite the conceptual differences. 

We set the model to have three components (i.e. clusters): one to represent the distribution of 

putative false positive HFO detections (expected to be approximately Gaussian based on the 

zero bias analysis) and two others to account for the non-Gaussian distribution of putative 

true positive HFO detections. We also set the mixture model algorithm to use ten replicates, 

to avoid effects due to initial conditions, and set the maximum iteration level to 1000 to 

avoid premature stopping.

2.4.4. Feature verification—The last step of the feature analysis was to verify that 

HFOs detected in clinical data include a subset corresponding to our model of false positive 

HFO detections. In general terms, our approach was to (1) select the cluster with distribution 

most similar to the distribution of background and (2) quantify exactly how close it was (as 

none may be very close). Explicitly, we first identified one of the fuzzy clusters as the ‘false 

positive cluster’ by selecting the cluster with mean closest to the mean of the distribution 

for zero bias events. Even though we selected the cluster with the mean closest to the mean 

Gliske et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2021 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the background data, there is no guarantee that the distribution of that cluster is similar 

to the distribution of the background data. Thus, we then compared this cluster with the 

distributions of zero bias events and the HFO detections in the surrogate background data. 

The comparison was quantified using AUROC (Matlab perfcurve function, with weights for 

actual HFOs set to the posterior probability of being in the ‘false positive cluster’).

2.5. Validation

Having identified a feature and verified its correspondence with a natural subset of HFO 

detections in the clinical data, the next step was to validate that the subset was actually 

associated with false positive HFO detections. We do this by analyzing HFO detections 

scored by three human reviewers. We also validated that removing putative false positive 

HFO detections improve specificity of HFOs to the SOZ and RV.

2.5.1. Human-scored HFOs—Although human reviewers are also susceptible to false 

positive detections (marking data as an HFO when it is not), events with greater consensus 

among reviewers are more likely to be true positive HFO detections. Thus, while human 

markings are not an ideal gold standard for training how to recognize false positive 

detections, they still serve as an excellent metric to validate that the feature selected through 

other means is associated with false positive HFO detections. We specifically assessed 

whether the selected feature distinguishes between events with consensus (marked by at 

least two of the three reviewers) with events without consensus (marked by only one 

reviewer). Additionally, we used the human scored HFOs in Cohort 2 as an independent 

training data to select a threshold for identifying false positive HFO detections. We then 

assessed the effect of this threshold in the independent and larger Cohort 1.

Data processing was as follows. The selected feature was computed for each human marked 

HFO in Cohort 2, as well as for the automated HFO detections within the exact data given 

to the human reviewers. We additionally formed a set of consensus and non-consensus 

events and computed the selected feature for each of these events. One cannot simply 

split the events into those marked by one reviewer and those marked by more than one 

reviewer, as the reviewers are viewing continuous data, not discrete events. For example, 

one reviewer could mark a section of data as an HFO, while another reviewer could mark 

two subsets of that period as HFOs. Thus, to identify the consensus versus non-consensus 

events, we first created the union of all times marked as HFOs by any of the three reviewers. 

Events in this union which overlap with HFO markings of only one reviewer were labeled 

non-consensus events, with the remainder labeled as consensus events. We then noted the 

median feature value for consensus and non-consensus events and tested whether the feature 

was statistically higher for non-consensus events using a one-sided Wilcoxon Rank-Sum 

test. Lastly, the threshold for separating false and true positive HFO detections was set to the 

average of (1) the upper quartile of the non-consensus events and (2) the lower quartile of 

the consensus events, which are quite close together. This threshold was selected as it labels 

about 75% of the consensus events as true positives and about 75% of the non-consensus 

events as false positives. We then called HFO detections with features above this value 

‘putative true positive HFO detections’, and those below the value ‘putative false positive 

HFO detections’.
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2.5.2. Automated detection of putative true positive HFOs—The last validation 

steps were to assess whether putative true positive HFOs are less diffuse in general and have 

increased association with the SOZ and RV. Since the feature selection was accomplished 

agnostic to any HFO markings and the threshold was determined from human scored 

events using data from Cohort 2, the automated detections on Cohort 1 data were true 

out-of-sample test data for this validation step.

To quantify association of HFO rates with SOZ and RV, we employed the asymmetry 

measurement (Gliske et al 2018, Gliske et al 2016a, Ren et al 2019). This measure was 

applied per subject and was computed separately for the SOZ and RV. To determine the 

asymmetry, we first average HFO rate over all channels within the SOZ (or RV), denoted 

rin, and over all channels not in the SOZ (or RV), denoted rout. The asymmetry with respect 

to the SOZ (or RV) was then computed as A = (rin−rout)/(rin + rout). This asymmetry 

measurement is bounded between −1 and 1 since the rates are non-negative, and higher 

values of the asymmetry indicate that the HFO rate is more localized within the SOZ 

(or RV). Statistical significance of the increase in asymmetry values was assessed using a 

one-sided Wilcoxon Sign Rank test.

We additionally recognize that SOZ and RV are not perfect gold standards of the 

epileptogenic zone. In other words, the epileptogenic zone is a theoretical concept (Jehi 

2018) and standard clinical practice has no perfect way to directly identify its location. 

While SOZ and RV are the best standards available, they cannot be assumed to be 100% 

representative of the location of tissue causing seizures. For focal epilepsy, removing false 

positive HFO detections should make the remaining HFO detections more focal to a small 

set of channels. However, it is possible that this subset of channels may not overlap with 

the SOZ and/or RV as they are not perfect gold standards. Thus, we additionally assessed 

whether the HFO detections became more focal in general without specifying a specific 

subset of channels. We accomplished this by computing the Shannon Entropy, which 

decreases as distributions become more focal. We computed the entropy by normalizing 

the rate per channel such that the sum of rates was unity, and then computing the total 

entropy as −1 times the sum of pi log2 pi, where pi is the normalized rate for channel i (sum 

pi = 1). Recall that pi ln pi = 0 for any pi = 0. To account for variability in the number of 

channels across patients, we report the average entropy per channel (total entropy divided by 

the number of channels), which we denoted the normalized entropy. Statistical significance 

of the decrease in median of normalized entropy was assessed using a one-sided Wilcoxon 

Sign Rank test, a paired statistical test. We also assessed the likelihood that the change in 

entropy was due to the reduction in statistics. Per subject, we selected at random a subset 

of HFO detections per subject, keeping the fraction of randomly selected events the same as 

the fraction of putative true positive HFOs, and computed the change in entropy. We then 

repeated the process 10 000 times to compute a true p-value of the change in entropy per 

subject.

2.6. Code implementation

Preprocessing (including surrogate data generation), automated detectors, and quantitative 

feature computation for Cohort 1 data were all implemented in the General Data Flow 
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Package (GDFP), written in C++ (Gliske et al 2016a). The code for the Burg method of 

computing autoregression coefficients was based on Oliver et al (2014) but modified by 

the authors in order to incorporate it into the GDFP. The remainder of the analysis was 

scripted in Matlab 2019b (Natick, MA). Code for creating replicates and for computing 

and analyzing quantitative features is posted at [location to be inserted later in the review 

process], along with the computed quantitative features for all detections.

3. Results

3.1. Feature selection

Features were selected based on the similarity between the distribution for zero bias (random 

sample) events and the HFO detections in the surrogate background data. Two features met 

the AUROC criterion: the skewness and kurtosis of the curvature of the signal, with median 

values of 0.517 and 0.522, respectively. The other features had AUROC values ranging 

from 0.604 to 1.000. We thus selected skewness of the curvature, which we abbreviate as 

skewCurve, as it has the AUROC value closest to 0.5.

3.2. Feature verification

The distribution of the skewCurve feature for HFO detections in actual interictal, intracranial 

EEG was decomposed into multiple fuzzy clusters using a Gaussian Mixture Model; see 

example in figure 3. We then quantified the relationship between the skewCurve distribution 

for zero bias and HFOs in surrogate background data with the component closest to them 

using AUROC, repeating the process for each subject. The median AUROC value was 0.53 

(0.51–0.58, 95% confidence level (CI), 0.60 maximum) for comparison with zero bias events 

and 0.52 (0.50–0.56 95% CI, 0.57 maximum) for comparison with HFO detections in the 

surrogate background data. Thus, in each subject, one component of the actual HFOs nearly 

identically matches the distributions based on background data.

3.3. Validation using human-scored HFO detections

The skewCurve distribution for the Cohort 2 data is shown in figure 4. We next sought to 

validate the skewCurve feature by testing the hypothesis that low skewCurve values were 

associated with false positive HFO detections and high skewCurve values were associated 

with true positive HFO detections. While human reviewers marked less data with low 

skewCurve than did the automated algorithm, they still marked some: the median value 

of skewCurve was near 1.0 for all three reviewers (cf. figure 3). We also observed that 

the skewCurve distribution was relatively uniform for each reviewer (AUROC < 0.61 for 

each binary comparison), despite the wide range of number of HFO events marked (from 

N = 113 to N = 2587). However, events which were marked by more than one reviewer 

had much higher skewCurve values than events marked by only one reviewer: the AUROC 

value between consensus and non-consensus events was 0.79, and the difference in medians 

was highly significant (p < 10−160, one-sided Wilcoxon Rank Sum). The data thus strongly 

support the hypothesis, validating that the skewCurve feature differentiates between false 

positive and true positive detections.
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We observed that the upper quartile mark for non-consensus events (figure 4) is near the 

lower quartile mark for consensus events. We averaged these to quantities to obtain a 

threshold of skewCurve = 1.08 to separate false and true positive HFO detections. This 

threshold was set based on Cohort 2 data using manually scored HFOs, with the automated 

detections in Cohort 1 data being independent validation data for assessing the impact of 

redacting data below this threshold. We also observe that about half of the events marked by 

any one reviewer would be classified as false positives by this threshold, as well as over half 

of the automated HFO detections in this subset of Cohort 2 data.

3.4. Automated HFO detections

The effect of selecting the putative true positive subset of qHFOs (i.e. skewCurve > 1.08) is 

shown for an example patient in figure 5. The qHFO detections were somewhat diffuse, with 

many channels having an observable HFO rate and six channels being quite high (>2 HFO 

detections per minute). The subset of putative true positive HFOs, however, had a negligible 

rate on most channels and only a few channels with substantial HFO rates.

We next assessed the percentage of HFO detections remaining after redacting putative false 

positive HFO detections. The percentage per patient is shown in figures 6(A) and (B), and 

the median percentage was 38% (95% CI 33% to 47%).

We next quantified whether the putative true positive HFOs were less diffusely distributed 

over channels; see figures 6(C) and (D). A decrease in entropy indicates a more focal, less 

diffuse distribution, which was the case for all ten subjects. The median of the normalized 

entropy decreased 0.010 with 95% CI of 0.002 to 0.013. This median change is statistically 

different than zero (p = 0.001, one-sided Wilcoxon Sign Rank) and not due to the reduction 

in statistics (all subjects p < 0.0001, random subsets). See figure 6(A) for the specific 

reduction in statistics per subject. Thus, the data support that the putative true positive subset 

of HFOs were more focused on a subset of channels.

3.5. Comparison with SOZ and RV

The most important validation was the clinical validation: assessing whether the putative 

true positive HFOs have increased association with the epileptogenic zone. We quantified 

this association by computing the asymmetry of the HFO rate with respect to the SOZ and 

RV; see figure 7. When comparing with SOZ, eight of ten subjects had a higher asymmetry 

for the subset of putative true positive HFOs, indicating an increased specificity towards 

SOZ. The two patients that did not increase in asymmetry with respect to the SOZ still 

had the HFOs become more focal to known diseased tissue, as detailed in the following 

paragraph. The median of the asymmetry with respect to SOZ increased by 0.14 (95% 

CI 0.01–0.21), and we rejected the null hypothesis of no increase with strong statistical 

significance (p = 0.007, Wilcoxon Rank Sum).

The results for comparing with RV were similar: nine of ten subjects had an increase in 

asymmetry. The one subject that did not increase in asymmetry is the one subject with 

negative asymmetry rate, UM-40, described below. The median asymmetry with respect to 

RV increased 0.17 (95% CI 0.11–0.29), rejecting the null hypothesis of no increase (p = 
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0.003, one-sided Wilcoxon Sign Rank). The data thus support that the subset of putative true 

positive HFOs have an increased association with the epileptogenic zone.

The two patients whose asymmetry did not increase both had complicated surgeries due 

to radiographic lesions, and the HFOs still had clinical value. The patient that had a slight 

decrease in both asymmetries (UM-40) had an ECoG grid over a large parietal dysplasia/

infarct and a hippocampal depth electrode. The full set of qHFOs were somewhat focal 

to the hippocampus, and the effect of redacting the putative false positive HFOs in this 

subject was to cause the HFOs to be more focal to the hippocampus. The hippocampus 

was not marked as part of the primary SOZ, but rather was noted in the clinical report as 

being quickly recruited into seizures and also had many interictal spikes. It was not resected 

because the patient was already getting a large parietal lesionectomy, but it was clearly 

active in the seizure network. Thus, the decrease in asymmetry was due to the hippocampus 

remaining; this does not represent a failure of HFOs or the method of identifying putative 

false positive detections, but rather that the patient was fortunate that the parietal resection 

disrupted the seizures, even though there was clinical suspicion that the hippocampus was 

also involved. The other patient with a slight decrease (UM-41) had a schizencephaly over 

several electrodes, but only one electrode was resected. The full set of HFOs was localized 

to the same stereo-EEG electrode as the SOZ, all of which was within the radiographic 

lesion but in more superficial contacts than the described SOZ. However, all of the contacts 

on that electrode were included in the resection. Redacting putative false positive detections 

caused the HFO rates to be even more focal to these superficial channels. Again, the HFOs 

became more focal to a region known to be pathological, even though the regions were not 

within the clinically-marked SOZ.

4. Discussion

The goal of this paper was to identify and validate quantitative HFO features to identify 

and redact false positive detections in order to improve the association of HFOs with 

epileptic tissue. The goal was accomplished, and the identified feature was skewCurve. This 

quantitative feature is equally applicable whether the HFO was identified by a human or 

the analyzed automated algorithm. This feature was selected by analyzing background data, 

specifically randomly selected samples of the background and running the HFO detector on 

surrogate background data generated based on the actual background data. HFO detections 

in the actual EEG data were found to have a natural cluster that directly matches the 

distributions from the background data. Additionally, this feature’s association with true and 

false positive detections was validated by analysis of human marked HFOs. The human data 

analysis in Cohort 2 subjects (not ILAE Class 1) also allowed an independent sample to train 

the threshold for separating putative true and false positive HFOs. Applying this threshold 

to Cohort 1 subjects (all ILAE Class I), the putative true positive HFOs were less diffusely 

distributed over channels and had increased association with pathological tissue (SOZ, RV, 

MRI lesion or region with many interictal spikes and fast seizure spread).

Our analysis has a few minor limitations. One of these is that we only tested one automated 

HFO detector. However, we note that the procedure included seeking a close match with 

the distribution of randomly selected samples of the EEG background (the zero bias events), 
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which is completely agnostic to the specific HFO detector. Thus, we anticipate that the 

results will generalize across HFO detectors. Furthermore, the threshold for separating true 

and false positive HFOs was based on human scored HFOs, again agnostic to the automated 

HFO detector. Therefore, the results are again expected to apply to any automated HFO 

detector. We also observed that among the human reviewers, one reviewer marked 113 

events, whereas the other reviewers marked over 2000. We thus see that among expert 

human reviewers of HFOs, there is great variety in sensitivity. However, the distribution 

of skewCurve for each person was very similar. These data further support that the 

results will generalize to other methods of detecting HFOs, as it generalizes well across 

several very different human reviewers. Another minor limitation is that we only tested 

15 quantitative HFO features. Future work may yet discover other new, untested features 

which may prove even more useful in identifying false positive detections. Additionally, 

a more nuanced approach for selecting the length of the zero bias events could possibly 

lead to additional useful features among the given set. However, such possibilities do not 

weaken the conclusions of the present analysis. Lastly, another limitation is that data were 

only analyzed from one acquisition machine at one center. While we expect that acquisition 

equipment may lead to a slightly different threshold, we expect the general results to 

still hold. Furthermore, one can easily verify whether the threshold is appropriate for data 

acquired on other machines at another center by computing the skewCurve on a random 

selection of 20 msec segments of bandpass filtered, background EEG data and observing if 

the distribution is different than that observed in our data.

Given the many constraints in our feature selection procedure, we expected few, if any 

features, would be selected. HFOs are distinct from background data, and thus it is expected 

that most features would be very different between HFOs and background. However, the 

distribution of skewCurve was similar between the HFOs and background events. This may 

be due to several properties of the feature. First, it is agnostic to both the magnitude and 

DC offset of the data. Second, it is also nearly agnostic to the time-scale, with correction 

terms proportional to the square of max frequency (500 Hz) over sampling rate (4 kHz). This 

means that two signals which are the same shape, with one being just a zoomed-in version 

of the other, would have the same skewCurve. It also means that skewCurve is practically 

invariant to differences in sampling rate. These properties allow skewCurve to assess the 

general shape of an HFO without being dependent upon amplitude or frequency scale.

One of the important, novel aspects of this manuscript is how background data is used to 

determine characteristics of false positive detections. In our analysis, we created alternate 

background data (the surrogate data) on which to apply our actual HFO detector and we 

also used an alternate detector (the zero bias detector) on the actual background data. This 

use of background and of replacing portions of the regular analysis stream with alternate 

methods allowed us to assess additional information about the detection process, specifically 

characteristics of false positive detections.

We note that there are a variety of different types of false positive detections. Our experience 

has been that each type of false positive event requires a unique approach. Previous 

publications addressed visually-observable false positive events, such as those due to sharp 

transients and filtering effects (Gliske et al 2016a), and muscle artifacts (Ren et al 2019). 
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The analysis of this paper focused on a type of false positive detection that is not readily 

observable by eye: random fluctuations of the background. These methods of this paper 

generalize to other detectors and data where random fluctuations of the background data 

could cause false positive results.

Our use of background data is also unique from that done in other HFO research. HFOs 

are defined as discrete events, and thus HFOs are different from the background in multiple 

ways. Various HFO detectors utilize background data to identify anomalies as putative 

HFOs. In fact, the heart of our qHFO algorithm is a method based on Staba et al (2002), 

which involves setting thresholds based on the background. Background data is also used in 

the qHFO detector to identify and redact HFO detections due to fast transients and non-focal 

HFOs. Other detectors also analyze the background to improve HFO detection, such as to 

identify periods with minimal oscillatory activity to estimate baseline activity (Zelmann et al 
2010) or to clarify the context of the HFO and identify false positive detections from specific 

types of noise (Liu et al 2016). Analysis of the background is also involved in studies 

testing the utility of restricting to only HFO occurring on a spike (Wang et al 2013) or 

repetitive pattern (Liu et al 2018). An alternate approach is to use analysis of background as 

an alternative to using an HFO detector for assessing HFO information (thus circumventing 

the challenge of false positive detections), and instead compute features of the combined 

background plus HFO signal (Akiyama et al 2012, Geertsema et al 2015, Mooij et al 2020, 

Xiang et al 2020). Unique to the analysis of this manuscript is that we directly assessed the 

background properties to learn characteristics of false positive HFOs due to neural sources, 

rather than using it solely for establishing a baseline, for removing false positives due to 

artifacts (non-neural sources) or as an alternative to HFO detection.

Additionally, few analyses have investigated quantitative features of HFOs to improve 

specificity to the epileptogenic zone. Some include difficult to reproduce training data 

(e.g. Matsumoto et al (2013)) and/or complex machine learning algorithms (e.g. Blanco 

et al (2011) and Liu et al (2018)). Additionally, Liu et al (2018) analyzed quantitative 

features at the time of HFOs, but used a wide frequency range. Those results are thus likely 

dominated by lower frequencies (below those of HFOs) which have higher power, and thus 

are not actually quantitative features of the HFO. Another study limited analysis to a set 

of features designed to recapitulate a visual categorization of HFOs (Burnos et al 2016). 

Instead, the results of this paper include a simple threshold on a single, easily-computed 

quantitative feature. Identification of putative true positive HFOs using our method can thus 

be easily incorporated into any research or clinical protocols that already include digital 

processing of EEG and identification of HFOs. These results do not remove the possibility 

that physiological HFOs may still be present, but removal of false positive detections may 

help facilitate future research to distinguish between physiological and pathological HFOs. 

Our results thus move the field closer towards the development of generalizable rules for 

identifying the most relevant HFO detections.
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Abbreviations

CI confidence interval

HFO high frequency oscillation

qHFO a HFO event detected using the quality-HFO detector

RV resected volume

SOZ seizure onset zone

SkewCurve the skewness of the curvature feature
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Figure 1. 
Analysis flow chart for Cohort 1. The analysis is divided into preprocessing (A), detection 

(B), and feature analysis (C) stages. The preprocessing and detection stages of the farthest 

right data stream represents the HFO processing used our previous publications. The left 

two data streams are based on analysis of the EEG background data agnostic to the HFO 

detections in the clinical data, the farthest left being HFOs detected in surrogate background 

data and the middle column being zero bias detections (random samples of the background 

data). Abbreviations: CAR, common average reference.
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Figure 2. 
Example surrogate data. Ten seconds of intracranial EEG data from three depths electrodes 

were filtered in the 80–500 Hz range using the same filter settings as for qHFO detection 

(A)-(C). From each of these 10 s epochs of data, we generated three surrogates of the 

background (D)-(L). Note the sharp, transient high amplitude events in panel B and C 

(putative HFOs) are not present in panels (G)-(L). The vertical scale is arbitrary, but 

consistent for all panels.
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Figure 3. 
Distribution of skewness of the curvature (skewCurve). The distributions are shown for the 

HFOs from the surrogate data (black), zero bias events (blue) and for actual HFO detections 

(red) (A). Panel B repeats showing two of the distributions from panel A for reference, 

but the distribution for actual HFO events has been replaced by the three normalized 

components from the Gaussian Mixture Model trained on those events. Component 1 closely 

matches the distribution for HFOs from surrogate data and for zero bias events, supporting 

that the qHFO detections in the clinical data include a subset of events corresponding to the 

modeled false positive events (the zero bias and HFO detections in surrogate data).
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Figure 4. 
Box plot of skewCurve in Cohort 2 data. HFOs were manually scored in 20-minutes of 

2 channels of intracranial, interictal EEG by three reviewers. The skewCurve feature was 

computed for these events and for automatically marked HFO detections in these patients. 

The number of events are indicated for each row of the box plot. Red line indicates the 

median, the blue box spans from the lower to the upper quartile, and the whiskers extend 

past the quartiles by 1.5 times the interquartile distance. Data beyond the whiskers are 

marked as red dots.
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Figure 5. 
Example HFO rates. The HFO rate per minute is shown for both the full set of qHFO 

detections (blue) and the putative true positive subset (rust color). Channels within the SOZ 

and/or RV are indicated by colored boxes underneath the x-axis. The putative true positive 

qHFOs are focused on a few channels, whereas the full set of qHFOs are more diffuse (e.g. 

channels 20–30).
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Figure 6. 
Percentage of events remaining and entropy of HFO rates per channel. The fraction of 

automated HFO detections in the putative true positive subset are reported for each subject 

(A), along with the median and its 95% CI (B, open squares with an uncertainty bar). 

The value per patient (data in A) are also shown in (B) as filled circles for reference. 

Additionally, the normalized entropy (total entropy/number of channels) is shown for both 

the full set of qHFO detections and the subset of putative true positive events (C). The 

change in normalized entropy is also provided (D) per patient (filled circles) along with 

the median and 95% CI, drawn with an open square with uncertainty bar. Three asterisks 

indicate that the median change is different than zero with very high significance (p = 0.001, 

one-sided Wilcoxon Rank Sum).
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Figure 7. 
HFO Rate Asymmetries. The asymmetries are computed with respect to the SOZ (A) 

and (B) and RV (C) and (D). The asymmetries are shown for both the full set of 

qHFO detections and the subset of putative true positive events per patient (A) and (C). 

Additionally, the change in asymmetry is shown for each patient (B) and (D) as a filled 

circle. The median change with 95% confidence-level (CI) is shown as an open square with 

uncertainty bars. Two astePatient demographic data.risks indicate that the median is different 

than zero with high significance (p = 0.007 (C), p = 0.003 (D), one-sided Wilcoxon Sign 

Rank).
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