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A B S T R A C T   

This paper presents an analytical solution for fluid flow and heat transfer inside arbitrarily-shaped 
triangular ducts for the first time. The former analytical solutions are limited to the special case of 
isosceles triangular ducts. The literature has no report about the analytical solution for the 
general case of arbitrarily-shaped triangular ducts. Due to the significant role of fluid flow 
through non-circular channels in industry and the large number of triangular shapes, a method for 
solving the heat transfer problem for all triangular shapes is needed. The heat transfer of a fluid 
flow through a channel with an arbitrary triangular cross-section for the case of constant heat flux 
at the walls is solved in this work for the first time, considering viscous dissipation. Here, the 
functionals of flow and heat transfer equations are derived, and the resulting Euler–Lagrange 
equations are solved using the Ritz method. The effect of the duct geometry on the velocity profile 
and friction coefficient is studied in detail. The effect of the Brinkman number on the temperature 
distribution and Nusselt number is investigated for both cooling and heating cases. The results 
reveal that the critical Brinkman Number distinguishes between the cooling and heating cases and 
represents the critical point at which the Nusselt number approaches infinity. The value of the 
Nusselt number decreases with the increase of the Brinkman number in both the wall cooling and 
heating modes. It is also found that the equilateral triangle exhibits the minimum friction coef-
ficient and the maximum value of the Poiseuille number.   

1. Introduction 

The history of heat transfer of fluid flows through a duct dates back to ancient times. However, this field has attracted researchers in 
modern times due to its potential for designing high-performance equipment that can be used in various industrial and bioengineering 
applications. Recently, there has been considerable interest in applying non-circular and polygonal ducts in microfluidics and various 
fields of science and technology. These conduits find application in compact heat exchangers (CHE) and biological lab equipment such 
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as DNA extraction, biosensors, blood sampling systems, and blood sugar monitoring. Many studies have been conducted to analyze the 
impact of various parameters on the design and manufacturing of heat exchangers. In these analyses, the impact of the configuration 
and geometry of cross-sections on the heat transfer is noteworthy. 

Among the studies conducted on flow and heat transfer through non-circular ducts, Shah [1] investigated the fluid flow and heat 
transfer through forced convection under H1, H2, and constant wall temperature boundary conditions inside ducts with different 
cross-section shapes. He utilized the least-squares fitting method and showed that the highest Nusselt and Poiseuille numbers among 
the isosceles triangles are associated with an equilateral triangle. He also disclosed that the Nusselt number reaches its maximum value 
under H1 and H2 cases, respectively. 

The literature also has approximate solutions for forced convection heat transfer and fluid flow within triangular ducts [2–4]. An 
analytical study was conducted by Aparecido and Cotta [5] on the developed laminar flow through right Triangular ducts subjected to 
constant wall temperature conditions for Newtonian fluids. Etemad et al. [6] conducted a 3D Galerkin finite-element thermal analysis 
for the case of non-Newtonian fluid flow in equilateral triangular channels. It is demonstrated that changing the shear-thinning in-
tensity of the fluid influences the variations of the local Nusselt numbers. 

Chen et al. [7] studied numerically the fluid flow and heat transfer within triangular ducts characterized by varying vertex angles. 
Their response demonstrated a good agreement with previous data. Chaves et al. [8] also investigated generalized Newtonian fluid 
flow and heat transfer through triangular closed channels. They applied a mixed analytical-numerical method using the generalized 
integral transformation. The study considered constant wall temperature for right and isosceles triangular ducts. 

Hooman and Haji-Sheikh [9] studied the forced convection of the fully developed flow through a saturated porous channel with a 
rectangular cross-section by considering the viscous dissipation under uniform heat flux and constant wall temperature boundary 
conditions. The findings indicated that an increase in the impact of viscous dissipation leads to a reduction in the Nusselt number. 

Nomenclature 

A Triangle’s area 
a The unknown coefficients of Ritz 
Br Brinkman number 
c The specific heat capacity 
Cf The skin friction coefficient 
Dh The hydraulic diameter 
f Darcy friction factor 
g Gravity acceleration 
h Heat transfer coefficient 
H The triangle height 
hloss The head loss 
k Conduction coefficient 
L Channel length 
ṁ Mass flow rate 
Nu Nusselt number 
p Pressure 
Po Poiseuille number 
q’’’ Heat source term 
Re Reynolds number 
t Time 
T Temperature 
Tw The wall temperature 
Tm The mean fluid flow temperature 
u, v and w Velocity in the x, y and z directions 
V Velocity vector 
w0 The reference velocity 
W The average axial velocity 
x, y and z Cartesian coordinates 
Ѱ Basis Ritz function 
ρ Density 
μ Viscosity 
βT DP

Dt The compressibility effect 
γ̇ The shear rate 
φ The section on viscosity losses in the energy equation 
τw The stress tensor 
Γ The triangle’s perimeter  
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Zhang [10] also studied forced convection heat transfer and fully-developed laminar flow through ducts with isosceles triangular 
cross-sections used in compact plate-fin heat exchangers involving a wide range of isosceles triangles with vertex angles of 30–120 and 
a fin conductance parameter ranging from 0 to infinity. Consequently, Nusselt numbers are derived for different vertex angles and fin 
conductance parameters. These values can be applied for thermal analysis of compact heat exchangers. 

Ray and Misra [11] investigated the head loss and thermal characteristics of fully-developed flow within channels having square 
and equilateral triangular cross-sections with rounded corners for H1 and H2 cases. The non-dimensional radius of the corners’ curve 
for square ducts was considered from 0 to the maximum possible value of 1, while for the equilateral triangular ducts, it was in the 
range of 0–1.732. Among the other studies, Wang [12,13] studied analytically the fully developed slip flow under H1 boundary 
conditions through triangular and rectangular ducts and the oscillatory and transient fluid flow in equilateral triangular channels. 
Furthermore, Wang [14–16] presented the Ritz solutions for the slip flow under constant heat flux through isosceles triangular ducts, 
the fully developed Dean flow, and the oscillatory flow in elliptic and isosceles triangular channels. Karabulut et al. [17] reported a 
thermal analysis for fully developed flow in the case of constant wall temperature. They also mentioned its application in parabolic and 
isosceles triangular ducts. Hung [18] studied the heat convection of fully developed nanofluid flows in microchannels analytically. He 
investigated the impacts of the Brinkman number on temperature distribution. 

Hung and Tso [19] investigated forced convection heat transfer in a fully developed flow within a homogeneous porous medium. 
The study examined the influence of viscous dissipation on heat transfer, and the Nusselt number was determined as a function of 
Darcy and Brinkman numbers. Aydin [20] investigated the effect of viscous dissipation on Newtonian flow and heat transfer inside a 
pipe with uniform heat flux and wall temperature. Aydin and Avci [21] analytically investigated laminar Couette-Poiseuille flow and 
heat transfer for Newtonian fluids with constant properties. Their study also took into account the influence of viscous dissipation. 
Norouzi et al. [22] recently provided an exact thermal analysis for flow in equilateral triangle closed channels. The study extensively 
examined the influence of the Brinkman number. The findings emphasize the significance of viscous dissipation in the flow of highly 
viscous fluids in microchannels. Using computational fluid dynamics, Kose et al. [23] numerically investigated laminar fluid flow and 
heat convection in microchannel heat sinks in three distinct shapes. They proposed that a triangle with an apex angle of 50◦ is the 
optimal geometric parameter for triangular microchannels. The 3D airflow on the performance of microchannel heat sinks with five 
different geometries was investigated by Moradikazerounia et al. [24]. The findings indicated that the triangular shape offers the 
highest Nusselt number for cooling case of a given microchannel heat sink among the other shape of cross-sections. 

According to the literature, most studies on fluid flow and heat convection inside triangular channels are limited to numerical 
analysis that deals with specific triangle geometry in which the effect of the Brinkman number has not been considered. On the 
contrary, the present study proposes an analytical solution for heat convection in arbitrary triangular cross-sections by considering 
viscous dissipation for the first time. The solution is carried out via the Ritz method, categorized as a variational method to solve linear 
and nonlinear partial differential equations. Formulating a general analytical solution for flow and heat convection in a complex 
geometry poses considerable challenges. This difficulty forms the crux of innovation in the current research. We also studied how 
geometry and viscous dissipation influence the axial velocity and temperature and evaluated the head loss and Nusselt number via this 
analytical solution. The schematic geometry of the problem is depicted in Fig. 1. 

2. Mathematical formulation 

2.1. Governing equation 

The governing equations of the current study are as follows [25]: 

Dρ/Dt+ ρ∇· Ṽ = 0 (1)  

ρDṼ
/

Dt = − ∇p̃ + ρg̃ + μ∇2Ṽ (2)  

ρcDT̃ /Dt =∇ · (k∇T̃)+ q‴+ βT̃Dp̃ /Dt + μφ (3a) 

Fig. 1. (a) The geometry of the channel and (b) the geometrical parameters of the cross-section.  
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Eq. (1) is the continuity equation, which states that the rate of the mass entering a system is equal to the sum of the rate of the mass 
leaving the system and the accumulation of the mass in the system. Eq. (2) is the momentum equation that represents the equilibrium 
of the transient force on the fluid in a part of the channel cross-section. The left side is mass times acceleration where ρ is density, t is 
time, and Ṽ is velocity. The right side shows the forces applied to the fluid, including pressure gradient, gravitational force, and 
frictional force where p̃ is pressure, g̃ is gravity acceleration, μ is viscosity. The energy equation (Eq. (3)) is an expression of energy 
conservation. On the left side, it represents the variation of energy inside a fluid element where c is specific heat capacity and T̃ is 
temperature. The right side represents the effects of conduction, heat source and sink, the work of compressibility, and the viscous 
dissipation (φ). Moreover, ũ, ṽ and w̃ are velocity in the x̃, ỹ and ̃z directions in Cartesian coordinates, respectively. For the problem 
being considered here, the flow is steady and fully developed with a constant thermal conductivity coefficient, and the heat source/ 
sink term is neglected. 

The non-dimensional parameters related to the governing equations are defined as follows [22]: 

x= x̃
/

Dh y = ỹ
/

Dh Br = μW̃2/q″Dh Γ = Γ̃
/

Dh W = W̃
/

w0  

γ̇ = ̃̇γDh

/

w0 z = z̃
/

Dh T = T̃ − T̃w/q″Dh/k A = Ã
/

D2
h τw = Dhτ̃w

/

μw0 (4)  

where Ã and ̃Γ are the triangle’s area and perimeter, respectively, w̃ is the axial velocity, γ̇ is the shear rate, Br is Brinkman number, 
τ̃w is the wall shear stress, Dh is the hydraulic diameter, W̃ is the mean velocity, T̃m is the mean fluid flow temperature, and w0 is the 
reference velocity. In addition, the hydraulic diameter, the mean temperature, the mean velocity, and the reference velocity, which 
correspond to the parameters of the triangular geometry, are described in Eqs. ((5) to (8)) [22]: 

Dh = 4Ã/Γ (5)  

T̃m =(1 / W̃Ã)
∫

w̃T̃dÃ (6)  

W̃ =(1 / Ã)
∫

w̃dÃ (7)  

w0 = − (D2
h

/
16μ

)
dp̃

/
dz̃ (8) 

The dimensionless form of the momentum equation is presented in Eq. (9): 
(
∂2w

/
∂x2)+

(
∂2w

/
∂y2)= − 16 (9) 

Fig. 2 depicts a differential control volume of the flow field. 
Considering the differential control volume (Fig. 2a(and applying the equilibrium of energy within a differential control volume 

Fig. 2. (a) A duct with a triangular cross-section, (b) the thermal energy equilibrium within a differential control volume, (c) the equilibrium of 
applied forces within a differential control volume. 
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(Fig. 2b), the mean temperature variation in the axial direction of the channel is expressed as follows: 

q″Γ̃dz̃+
∫

φdÃdz̃= ṁ(hz+dz − hz) (10a)  

q″Γ̃dz̃+
∫

μ
(
(∂w̃/∂x̃)2

+(∂w̃/∂ỹ)2
)

dÃdz̃= ρÃW̃cdT̃m (10b)  

4q″
/

ρW̃cDh + μ
∫ (

(∂w̃/∂x̃)2
+(∂w̃/∂ỹ)2

)
dÃ

/

ρÃW̃c= dT̃m

/

dz̃ (10c)  

The energy balance on the differential control volume is presented in Eqs. (10a) and (10b). Given that the flow is thermally fully 

developed 
(

∂(T̃ − T̃w/T̃m − T̃w)/∂z̃= 0
)

with constant heat flux at walls (q″ = h(T̃w − T̃m)) by considering Eq. (10c), we have: 

dT̃m

/

dz̃= dT̃w

/

dz̃= ∂T̃
/

∂̃z= q″Γ̃
/

ρÃW̃c + μ
∫ (

(∂w̃/∂x̃)2
+(∂w̃/∂ỹ)2

)
dÃ

/

ρÃW̃c (11)  

Substituting Eq. (11) into Eq. (3), the dimensionless heat transfer equation will be attained as follows: 

(
∂2T

/
∂x2 + ∂2T

/
∂y2)=(4w /W) +

(
Br

/
W2)

(

(w /WA)
∫ (

(∂w/∂x)2
+(∂w/∂y)2

)
dA −

(
(∂w/∂x)2

+(∂w/∂y)2
)

(12) 

In the above, the Brinkman number, Br, signifies the impact of viscose dissipation. If Br is set to zero, dissipation is ignored in the 
energy equation. 

2.2. Friction coefficient and Nusselt number 

The primary consequence of viscosity in any internal fluid flow is pressure drop. Remember that the viscosity causes a force of 
friction at walls. The pressure drop equation based on the shear stress at the wall can be obtained by applying the balance of forces over 
a differential element of the channel (as shown in Fig. 2c). As the acceleration is zero for the steady flow in the fully developed region, 
we have: 

− dp̃
/

dz̃=(1 / Ã)
∫

τ̃wdΓ̃ (13) 

Eq. (13) is the balance of forces acting on a differential element of the channel. Since the flow is fully developed, the pressure 
gradient is a negative constant ( − Δp̃ = ρg̃h̃loss) where h̃loss denotes the head loss and is defined by the Darcy– Weisbach equation as 
below: 

h̃loss = f L̃W̃2/Dh2g̃ (14) 

In Eq. (14), f is the Darcy friction factor. By substituting Eq. (14) into the pressure equation, also considering τ̃w = μ̃̇γ and ̃̇γ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(∂w̃/∂x̃)2
+ (∂w̃/∂ỹ)2

√

, the dimensionless friction relation will be obtained as: 

f .Re=Po = 2
∫

γ̇dΓ
/∫

wdA (15) 

In Eq. (15), Po represents the Poiseuille number, and it is equal to the multiplication of f and the Reynolds number [26]. The skin 
friction coefficient is written in Eq. (16) for laminar flow as follows [25]: 

Cf =
μ̃̇γ

ρW̃2/2
(16)  

Cf .Re= 2γ̇
/

W (17) 

Eq. (17) is the non-dimensional form of the skin friction coefficient equation. The convection coefficient is calculated as follows: 

h= q″ / (T̃w − T̃m) (18)  

By substituting the dimensionless form of Eq. (18) into the Nusselt equation (Nu = hDh /k), the Nusselt number can be represented 
as Eq. (19): 
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Nu= −

∫

wdA
/∫

wTdA (19)  

3. Analytical solution 

The current study applied the Ritz method [27] to solve flow and heat transfer in triangular ducts. The Ritz method is based on the 
calculus of variations. Here, it was adopted to solve the flow and heat transfer equations for triangular ducts. Consider the function F(x, 
y,T,Tx,Ty), where x and y are independent variables, and T is the unknown parameter of interest. Tx and Ty also denote the partial T 
derivative to x and y. In the Ritz method, the problem is formulated in terms of an integral of a functional and is defined in Eq. (20): 

I =
∫∫

R
F
(
x, y,T, Tx, Ty

)
dxdy (20) 

The necessary condition for T to have an extremum for a given functional I is that function F satisfies the following Euler–Lagrange 
equation [28]: 

∂F
/

∂T − ∂(∂F / ∂Tx)
/

∂x − ∂
(
∂F

/
∂Ty

) /
∂y= 0 (21) 

A necessary condition for functional I to have an extremum is that δI must be zero. To prove this point, the change in function F(x,y, 
T,Tx,Ty) according to the variation of T for fixed x and y (the value of T is considered constant at boundaries) is written as follows: 

δF =F
(
x, y,T + δT, Tx + δTx,Ty + δTy

)
− F

(
x, y, T,Tx, Ty

)
(22)  

After applying the two-dimensional Taylor series expansion for Eq. (22) and considering δI = 0, Eq. (23) results: 

δI =
∫∫

R

(
(∂F / ∂T)δT +(∂F / ∂Tx)δTx +

(
∂F

/
∂Ty

)
δTy

)
dxdy= 0 (23) 

Using the simplification of the second and third terms of Eq. (23) by integration by part, the above equation is reduced to: 

δI =
∫∫

R

{
(∂F / ∂T) − ∂

(
∂F/∂Tx

)/
∂x − ∂

(
∂F/∂Ty

)/
∂y
}

δTdxdy= 0 (24) 

It can also be written in the form of Euler equation (Eq. (21)), which is the necessary condition for I to be stationary. This result can 
be used for solving the problem by the Ritz method, which is based on the selection of a convergent sequence of functions as follows: 

w(x, y)=
∑N

i=1
aiψi(x, y) (25) 

where ψ i(x, y) satisfies the boundary conditions for all values of i. In Eq. (25), w is the unknown of the problem (velocity), ai are the 
unknown coefficients of Ritz, and ψ i(x, y) are the basis functions of the Ritz method. N equations and N unknowns appear by selecting 
an appropriate term number of series (N) and placing it in Eq. (24). After solving this system of equations, the unknown coefficients ai 
are obtained. Then, the problem can be solved by placing these coefficients in the series. 

To calculate ψ i(x, y) in the present study, the equation of the lines representing the sides of a triangle was multiplied. Therefore, the 
value of ψ i(x, y) on the boundaries is always zero. Eq. (26) indicates ψ̃ whereas Eq. (27) shows its dimensionless form. The series used to 
solve the problem is also given in Eq. (28). In this study, ψ is the "basis Ritz function" which the Ritz functions were written based on it: 

ψ̃ = ỹ(ỹ − (H̃ / L̃2)x̃)(ỹ − (H̃ / (L̃2 − L̃1))x̃ − (L̃1 / (L̃1 − L̃2))H̃) (26)  

ψ = y(y − (H /L2)x)
(

y − (H / (L2 − L1))x −
((

L1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

H2 + L2
2

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

H2 + (L1 − L2)
2

√ )/

2(L1 − L2)

))

(27)  

ψ1(x, y)= x0y0ψ(x, y)

ψ2(x, y)= xψ(x, y)

ψ3(x, y)= yψ(x, y)

ψ4(x, y)= xyψ(x, y)

ψ5(x, y)= x2ψ(x, y)

ψ6(x, y)= y2ψ(x, y)

⋮ψ28(x, y)= y6ψ(x, y) (28) 
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Fig. 3. Velocity distribution contours for equilateral triangle (a) Ref. [29] and (b) current study.  

Table 1 
Poiseuille number for isosceles and right triangles.   

α 
Poiseuille number for Isosceles triangle Error (%) Poiseuille number for right triangle Error (%) 

Ref. [1] Ref. [3] Ref. [30] Present study ϵ1 ϵ2 ϵ3 Ref. [3] Present study ϵ4 

10 49.9 50 – 49.8 0.2 0.4 – 50 49.8 0.4 
20 51.3 51.2 51.6 51.2 0.195 0 0.775 51.2 51.2 0 
30 52.3 52.2 – 52.2 0.191 0 – 52 52.1 0.192 
40 52.9 52.8 52.9 52.9 0 0.189 0 52.5 52.5 0 
50 53.2 53.2 – 53.2 0 0 – 52.5 52.5 0 
60 53.3 53.3 53.3 53.3 0 0 0 52 52.1 0.192 
70 53.2 53.2 – 53.2 0 0 – 51.2 51.2 0 
80 53 52.9 52.9 53 0 0.189 0.189 50 49.8 0.4 
90 52.6 52.7 – 52.6 0 0.19 – – – – 
100 – 52 52 52 – 0 0 – – – 
120 51 51 51.1 51 0 0 0.196 – – – 
140 – 49.5 49.5 49.7 – 0.404 0.404 – – – 
150 48.9 48.8 – 49.1 0.409 0.615 – – – – 
160 – 48.3 48.3 48.6 – 0.621 0.621 – – –  

Fig. 4. Poiseuille number for arbitrary triangles.  
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w(x, y)=
∑N

i=1
aiψi(x, y)=ψ(x, y)

(
a1 + a2x+ a3y+…a28y6) (29) 

Eq. (29) represents the fluid velocity in the axial direction, and its value at the boundaries equals zero. According to the mentioned 
dimensionless parameter for temperature, the dimensionless temperature on the walls is equal to zero. Therefore, the same velocity 
series can be used for temperature: 

T(x, y)=
∑N

i=1
aiψi(x, y)=ψ(x, y)

(
a1 + a2x+ a3y+…a28y6) (30) 

Taking the momentum equation as the Euler equation of the variational formulation (and the energy equation to find the tem-
perature), we have from Eq. (24) 

δI =
∫∫

R

{
∂2w

/
∂x2 + ∂2w

/
∂y2 + 16

}
δwdxdy= 0 (31)  

for velocity and 

Fig. 5. The skin friction coefficient for (a) equilateral triangle (isosceles triangle α1 = α2 = 60), (b) isosceles triangle α1 = α2 = 75, (c) isosceles 
triangle α1 = α2 = 45, (d) right triangle α1 = 30 and α2 = 60, and (e) right triangle α1 = 70 and α2 = 20. 
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δI=
∫∫

R

{

∂2T
/

∂x2+∂2T
/

∂y2 − 4w
/

W − (Br
/

W2
)(

(w/WA)
∫ (

(∂w/∂x)2
+(∂w/∂y)2

)
dA −

(
(∂w/∂x)2

+(∂w/∂y)2
))}

δwdxdy=0

(32)  

for temperature. By placing Eq. (29) in Eq. (31) we obtain: 

δI =
∫
{(

∂2( ( a1 +…+ a28y6)ψ
) /

∂x2 + ∂2( ( a1 +…+ a28y6)ψ
) /

∂y2)+ 16
}
.
{(

a1 + a2x+…+ a28y6)δψ
}

dA= 0 (33) 

Eq. (33) is the equation that must be solved to determine the unknown coefficients, which can be expanded as follows: 

δI = δa1

∫
{(

∂2( ( a1 + … + a28y6)ψ
)/

∂x2 + ∂2( ( a1 + … + a28y6)ψ
)/

∂y2)+ 16
}

ψ1dA

+δa2

∫
{(

∂2( ( a1 + … + a28y6)ψ
)/

∂x2 + ∂2( ( a1 + … + a28y6)ψ
)/

∂y2)+ 16
}

ψ2dA

+δa3

∫
{(

∂2( ( a1 + … + a28y6)ψ
)/

∂x2 + ∂2( ( a1 + … + a28y6)ψ
)/

∂y2)+ 16
}

ψ3dA + …

+δa28

∫
{(

∂2( ( a1 + … + a28y6)ψ
)/

∂x2 + ∂2( ( a1 + … + a28y6)ψ
)/

∂y2)+ 16
}

ψ28dA = 0

(34) 

For Eq. (34) to be zero, each integral must be zero itself, and this means that: 

Table 2 
Nusselt number for isosceles and right triangles.   

α 
Nusselt number for Isosceles triangle Error (%) Nusselt number for right triangle Error (%)  

Ref. [1] Ref. [3] Present study ϵ1 ϵ2 Ref. [3] Present study ϵ3 

10 2.45 2.46 2.46 0.408 0 2.44 2.45 0.41 
20 2.72 2.72 2.73 0.368 0.368 2.72 2.72 0 
30 2.91 2.91 2.91 0 0 2.88 2.89 0.347 
40 3.03 3.03 3.03 0 0 2.97 2.97 0 
50 3.09 3.1 3.09 0 0.323 2.97 2.97 0 
60 3.11 3.11 3.11 0 0 2.88 2.89 0.347 
70 3.1 3.1 3.1 0 0 2.72 2.72 0 
80 3.05 3.06 3.05 0 0.327 2.44 2.45 0.41 
90 2.98 2.99 2.98 0 0.334 – –  
100 – 2.9 2.9 – 0 – –  
120 2.68 2.68 2.68 0 0 – –  
140 – 2.46 2.44 – 0.813 – –  
150 2.33 2.32 2.33 0 0.431 – –  
160 – 2.24 2.23 – 0.446 – –   

Fig. 6. Nusselt number for arbitrary triangles at Br = 0.  
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∫
(
∂2( ( a1 + … + a28y6)ψ

)/
∂x2 + ∂2( ( a1 + … + a28y6)ψ

)/
∂y2)ψ1dA = −

∫

16ψ1dA
∫
(
∂2( ( a1 + … + a28y6)ψ

)/
∂x2 + ∂2( ( a1 + … + a28y6)ψ

)/
∂y2)ψ2dA = −

∫

16ψ2dA
∫
(
∂2( ( a1 + … + a28y6)ψ

)/
∂x2 + ∂2( ( a1 + … + a28y6)ψ

)/
∂y2)ψ3dA = −

∫

16ψ3dA
⋮∫
(
∂2( ( a1 + … + a28y6)ψ

)/
∂x2 + ∂2( ( a1 + … + a28y6)ψ

)/
∂y2)ψ28dA = −

∫

16ψ28dA

(35) 

The unknown coefficients a1 to a28 be obtained by solving simultaneous equations in Eq. (35), and by substituting them in Eq. (29), 
the value of w will be calculated. The same can be written for temperature by placing Eq. (30) in Eq. (32): 

(36) 

As in Eq. (35), the unknown coefficients a1 to a28 are obtained by solving the simultaneous equations in Eq. (36), and by placing 
them in Eq. (30), the temperature can be obtained. 

4. Results and discussion 

Herein, the results of the solution of momentum and energy equations for an incompressible fluid inside triangular channels were 
obtained using the Ritz method. The domain of equations’ solution that involves any triangular section is illustrated in Fig. 1. Angles α1 
and α2 are sufficient to determine the geometrical configuration of the triangle. The results are presented as Nusselt number, Poiseuille 
number, Cf.Re, and dimensionless temperature contour. The findings are compared with previous studies for isosceles and right tri-
angles. The velocity equation for the equilateral triangular cross-section is given in “Viscous Fluid Flow” by Papanastasiou et al. [29]. 
Fig. 3 compares the dimensionless velocity profile contour in the equilateral triangular section for the equation presented in Ref. [29] 
(Fig. 3a) and that of the current study (Fig. 3b). 

According to Fig. 3, the velocity value at the walls is zero, which satisfies the wall boundary conditions. It is also clear that the 
velocity value is the highest at the center of the triangle. Therefore, according to the figure, our solution agrees with the reported 
results. Table 1 compares the Poiseuille number obtained in the current study with those of previous studies. The amounts of error 
between the results are also presented in Table 1. The result shows a more significant error in slender triangles than other triangular 
sections. 

ϵ1, ϵ2, ϵ3 and ϵ4 are the percentage of error between the results of Ref. [1], Ref. [3], Ref. [30] (isosceles triangle), Ref. [3] (right 
triangle), and the analytical solution obtained in the current study, respectively. 

Fig. 4 shows the values of the Poiseuille number for any triangular cross-section, which obtained in term of α1 and α2. The 
remarkable agreement of the current study with those shown in several previous studies is outstanding, which provides us sufficient 
confidence about validating our solution using the Ritz method. According to the figure, the Poiseuille number varies from 48 to 53.3, 
and it can be concluded that the wider triangles have a greater value of the Poiseuille number. Among a set of triangles that have the 
same angle α2, the maximum Poiseuille number is related to an isosceles where α2 is the vertex angle. Also, the maximum Poiseuille 
number between all the triangles belongs to the equilateral triangle. The pressure drop and fluid head loss can be calculated using the 
data of Fig. 4 and having the information of fluid and flow. 
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Fig. 5 represents the variation of Cf.Re in equilateral (Fig. 5a), isosceles (Fig. 5b and c), and right triangular sections (Fig. 5d and e). 
According to the figure, the position of the maximum values of the skin friction coefficient is far from the acute angle and close to the 
obtuse angle. In an equilateral triangle, this maximum value is located exactly in the middle of each side. The presence of the acute 
angle has a notable impact on the flow within the triangular duct. The fluid flow and heat transfer at rounded corner triangles were 
studied by Kumar et al. [31], which shows that the flow is stagnant at sharp corners. Therefore, based on Eq. (21), the skin friction 
coefficient equals zero at the corners of the triangle. Fig. 5 shows that the skin friction coefficient is zero at the corners of triangles. 

Table 2 presents the Nusselt number comparison between the present study and previous data. The table shows that the results are 
consistent with the reported results. 

ϵ1, ϵ2, and ϵ3 are the percentage of error between the results of Ref. [1], Ref. [3] (isosceles triangle), Ref. [3] (right triangle), and the 
analytical solution obtained in the current study, respectively. 

Here, forced convection heat transfer was studied in two modes: I) Thermal analysis without viscous dissipation and II) Thermal 
analysis with considering the viscous dissipation. To study the case I, the Brinkman number in the energy equation was assumed to be 
zero (Br = 0). Considering a constant heat flux to the walls, heat transfer occurs from the walls to the fluid. Fig. 6 shows the Nusselt 
number for any triangular cross-section. The results reported by Shah [1] and Sparrow and Haji-Sheikh [3] for isosceles and right 
triangular cross-sections are also presented in this figure. According to the figure, it can be found that higher values of Nusselt number 
are related to the wider triangles. The maximum Nusselt number occurs at the equilateral triangle. Furthermore, the maximum Nusselt 
number between a set of triangles with a similar angle α2 is related to an isosceles where α2 is the vertex angle. The maximum Nusselt 
number among all triangles also belongs to the equilateral triangle 

It is evident that geometries related to a triangle with a 0◦ angle and a triangle with two 90◦ angles do not exist. These results are 
presented from Shah’s [1] study in Figs. 4 and 6 to be employed for interpolating and obtaining values for a certain geometry from a 

Fig. 7. Temperature distribution contours (Br = 0) for (a) equilateral triangle (isosceles triangle α1 = α2 = 60), (b) isosceles triangle α1 = α2 =

75, (c) isosceles triangle α1 = α2 = 45, (d) right triangle α1 = 30 and α2 = 60, and (e) right triangle α1 = 70 and α2 = 20. 
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triangle. The dimensionless temperature distribution for different triangular sections is depicted in Figs. 7 and 8. Fig. 7 incorporates 
equilateral (Fig. 7a), isosceles (Fig. 7b and c), and right triangular sections (Fig. 7d and e), and Fig. 8a–f involves several arbitrary 
triangular geometries. Evidently, the dimensionless temperature is zero on the boundaries and the highest at the walls. According to 
Eq. (4), the negative temperature values inside the duct indicate that the fluid temperature is lower than the walls. 

According to Eq. (12), the dimensionless dissipation component of the energy equation (φ) is given in Eq. (37): 

φ=
(
1
/

W2)
(
(∂w/∂x)2

+(∂w/∂y)2
)
. (37) 

The dissipation distribution contour for different triangular cross-sections is shown in Figs. 9 and 10. Fig. 9 contains equilateral 
(Fig. 9a), isosceles (Fig. 9b and c), and right-angled triangle sections (Fig. 9d and e), and Fig. 10a–f contain several arbitrary triangle 
geometries. Regarding the obtained results of the skin friction coefficient mentioned above, it is expected that the highest value of 
dissipation occurs on the walls and at the points where Cf is maximum. The main reason is that stress is at its highest level at these 
points. The dissipation values also equal zero in the corners and centers of triangles. Therefore, it can be seen that the narrower the 
triangle, the more its maximum dissipation. 

The Integration of the Dissipation Distribution (IDD), which is a constant, can be written as Eq. (38). This number is varied for 
different types of triangles. The IDD for arbitrary triangles has been shown in Fig. 11. 

∫

φdA=
(
1
/

W2)
∫ (

(∂w/∂x)2
+(∂w/∂y)2

)
dA. (38) 

According to Fig. 11, it can be obtained that the wider the triangle, the lower the value of its IDD. It also observed that the variation 

Fig. 8. Temperature distribution contours for arbitrary triangle (Br = 0) (a) α1 = 10, α2 = 20, (b) α1 = 30, α2 = 40, (c) α1 = 40, α2 = 60, (d) 
α1 = 60, α2 = 70, (e) α1 = 80, α2 = 45 and (f) α1 = 80, α2 = 70. 
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range of IDD for all triangles which have the same (α2) angle is very small, and this variation range is reduced by enhancing the angle. 
Among all triangles that have the identical angle (α2), the least value is related to the isosceles triangle with (α2) at the apex, and the 
minimum quantity of IDD belongs to the equilateral triangle. As mentioned, according to Fig. 4, the equilateral triangle has the highest 
value of the Poiseuille number (f.Re) among all triangle shapes. This indicates that the Reynolds number increases for a specific 
pressure gradient as the cross-section widens, resulting in a larger Poiseuille number, unlike the IDD number. 

For Br∕=0, viscous dissipation influences heat transfer and the duct’s temperature distribution. The Brinkman number can vary from 
-∞ to +∞. Norouzi et al. [22] presented an equation to calculate the Nusselt number in equilateral triangular sections. Figs. 12 and 13, 
respectively, compare the Nusselt number and temperature distribution of the current study with those obtained by Norouzi et al. [22] 
for different Brinkman numbers. Comparison of obtained results with available data indicates the accuracy and reliability of the 
solution. 

Positive and negative Nusselt numbers are observed for different Brinkman numbers in Fig. 12. The critical Brinkman numbers 
occur where the sign of Nusselt number changes from positive to negative or vice versa. This critical number for an equilateral triangle 
equals − 0.275 (Fig. 13e and f). In addition, Fig. 13a–d shows the wall cooling cases, and Fig. 13g–l shows the wall heating cases. 
Tables 3 and 4 present Nusselt numbers for isosceles and right triangles for different Brinkman numbers and the critical Brinkman 
number for each section. 

The Nusselt number for different Brinkman numbers for any triangular section is presented in Fig. 14. For Br ∕= 0, by increasing the 
triangle size, the Nusselt number increases in the heating cases (Fig. 14d–f) and decreases in the cooling cases (Fig. 14a–c). Moreover, 
the maximum Nusselt number for a set of triangles with a similar angle α2 in heating cases, and also the minimum Nusselt number 
among a set of triangles with a similar angle α2 in cooling cases are related to an isosceles triangle where α2 is the apex angle. In 
addition, among any triangular section, the maximum Nusselt number between the heating cases and the minimum Nusselt number 
between the cooling cases for different Brinkman numbers belongs to the equilateral triangle. Figs. 15 and 16 show the dimensionless 

Fig. 9. Dissipation distribution contours for (a) equilateral triangle (isosceles triangle α1 = α2 = 60), (b) isosceles triangle α1 = α2 = 75, (c) 
isosceles triangle α1 = α2 = 45, (d) right triangle α1 = 30 and α2 = 60, and (e) right triangle α1 = 70 and α2 = 20. 
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Fig. 10. Dissipation distribution contours for arbitrary triangle (a) α1 = 10, α2 = 20, (b) α1 = 30, α2 = 40, (c) α1 = 40, α2 = 60, (d) α1 = 60, 
α2 = 70, (e) α1 = 80, α2 = 45 and (f) α1 = 80, α2 = 70. 
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temperature distribution at the critical points of various triangular sections of the Brinkman number. Fig. 15 represents equilateral 
(Fig. 15a), isosceles (Fig. 15b and c) and right-angled triangle sections (Fig. 15d and e), and Fig. 16a–f represent several arbitrary 
triangle geometries. 

Figs. 12 and 14 illustrate that the Nusselt number tends zero when the Brinkman number approaches to ±∞. Moreover, the Nu 
tends to ∞ when the Br approaches the critical Brinkman number. According to Figs. 12–14, the heat flux is positive for 0<Br<+∞ 
(wall heating case). In other words, the heat flux applied to the wall overcomes one produced by viscous dissipation; the heat transfer 
occurs from the wall to the fluid. 

On the other hand, the heat flux sign is negative for -∞<Br < Brc (wall cooling case), which means the amount of heat flux produced 
by viscous dissipation overcomes the one applied to the wall, and the heat transfer occurs from the core of the flow to the wall. The 
change in the direction of heat transfer from the flow to the wall can explain the occurrence of negative Nusselt numbers in this area. In 
fact, as seen in the Brinkman number formulation, the Brinkman number represents the proportion between the heat produced by 
viscous dissipation and the heat produced by molecular conduction. Decreasing the viscosity reduces the contribution of thermal 
conductivity. As a result, for both cooling and heating cases, a higher value of the Brinkman number leads to a lower Nusselt number. 
The critical Brinkman number (Brc) is the point at which the direction of heat transfer changes. At this point, the difference between the 
mean temperature of the fluid, under the influence of viscous dissipation, and the wall temperature becomes negligible, causing Nu to 
tend towards infinite. 

Fig. 11. The integration of the dissipation distribution for arbitrary triangles.  

Fig. 12. Nusselt number for different Brinkman numbers in an equilateral triangle.  
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Fig. 13. Temperature distribution contours for an equilateral triangle (Br∕=0) (a) current study Br = − 1, (b) Ref. [22] Br = − 1, (c) current study 
Br = − 0.35, (d) Ref. [22] Br = − 0.35, (e) current study Br = − 0.275, (f) Ref. [22] Br = − 0.275, (g) current study Br = − 0.2 and (h) Ref. [22] 
Br = − 0.2, (i) current study Br = 0.5, (j) Ref. [22] Br = 0.5, (k) current study Br = 1, (l) Ref. [22] Br = 1. 
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Table 3 
Nusselt number for different Brinkman numbers in isosceles triangles.  

Brinkman numbers Nusselt number for Isosceles triangle 

α = 10 α = 20 α = 30 α = 40 α = 50 α = 60 α = 70 α = 80 α = 90 α = 110 α = 130 α = 150 α = 170 

− 5 − 0.158 − 0.169 − 0.175 − 0.179 − 0.181 − 0.182 − 0.181 − 0.18 − 0.177 − 0.17 − 0.162 − 0.152 − 0.144 
− 1 − 1.066 − 1.12 − 1.152 − 1.173 − 1.184 − 1.19 − 1.184 − 1.18 − 1.164 − 1.128 − 1.08 − 1.024 − 0.982 
− 0.75 − 1.66 − 1.723 − 1.77 − 1.8 − 1.81 − 1.813 − 1.81 − 1.8 − 1.784 − 1.738 − 1.674 − 1.6 − 1.542 
− 0.5 − 3.77 − 3.8 − 3.81 − 3.826 − 3.835 − 3.84 − 3.833 − 3.826 − 3.814 − 3.78 − 3.726 − 3.651 − 3.586 
− 0.2 7.229 8.766 9.92 10.724 11.18 11.32 11.2 10.88 10.409 9.212 7.92 6.778 6.065 
− 0.01 2.538 2.825 3.022 3.146 3.212 3.232 3.215 3.168 3.096 2.9 2.658 2.413 2.243 
0.01 2.376 2.637 2.816 2.928 2.99 3 2.991 2.948 2.883 2.7046 2.484 2.26 2.103 
0.2 1.478 1.615 1.709 1.77 1.797 1.8 1.798 1.776 1.743 1.65 1.533 1.41 1.322 
0.5 0.926 1 1.054 1.086 1.1029 1.108 1.103 1.091 1.073 1.021 0.955 0.884 0.833 
1 0.57 0.614 0.643 0.662 0.671 0.674 0.671 0.664 0.654 0.625 0.587 0.546 0.516 
3 0.225 0.24 0.251 0.258 0.261 0.262 0.261 0.259 0.255 0.245 0.23 0.215 0.204 
5 0.14 0.15 0.156 0.16 0.162 0.163 0.162 0.161 0.159 0.152 0.144 0.134 0.127 
Brc − 0.302 − 0.29 − 0.283 − 0.278 − 0.276 − 0.275 − 0.276 − 0.278 − 0.28 − 0.287 − 0.296 0.305 − 0.312  
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Table 4 
Nusselt number for different Brinkman numbers in right triangles.  

Brinkman numbers Nusselt number for right triangle 

α = 10 α = 20 α = 30 α = 40 

− 5 − 0.159 − 0.168 − 0.174 − 0.177 
− 1 − 1.074 − 1.117 − 1.148 − 1.162 
− 0.75 − 1.677 − 1.726 − 1.763 − 1.781 
− 0.5 − 3.816 − 3.79 − 3.804 − 3.813 
− 0.2 7.179 8.707 9.78 10.338 
− 0.01 2.541 2.82 2.998 3.086 
0.01 2.38 2.632 2.794 2.873 
0.2 1.483 1.614 1.698 1.738 
0.5 0.93 1 1.048 1.07 
1 0.573 0.614 0.64 0.652 
3 0.226 0.24 0.25 0.255 
5 0.141 0.15 0.155 0.158 
Brc − 0.304 − 0.29 − 0.283 − 0.28  

Fig. 14. Nusselt number for an arbitrary triangle (a) Br = − 10, (b) Br = − 5, (c) Br = − 1, (d) Br = 1, (e) Br = 5, (f) Br = 10.  
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5. Concluding remarks 

In this paper, the flow and heat transfer through the arbitrarily-shaped triangular ducts, with and without viscous dissipation, is 
solved for the first time using the Ritz method under a constant heat flux boundary condition. When viscous dissipation is considered, 
the heat transfer solution is divided into wall cooling cases (Br <Brc) and wall heating cases (Br >Brc), where Brc represents the critical 
Brinkman number. At this point, the difference between the fluid’s mean and wall temperatures was minimal, and the Nusselt number 
tended to be infinite. According to the results, Brc was the point of the change in the sign of Nusselt number, which meant a shift in the 
direction of heat transfer. Generally, both in the cooling and heating modes, Nusselt number decreased with increasing the Brinkman 
number. Among a set of triangles, with the similar angle α2, the following terms:  

• The maximum value of the Poiseuille number,  
• The highest Nusselt number value at Br = 0,  
• The minimum value of the integration of dissipation distribution,  
• The maximum value of the Nusselt number for the wall heating mode,  
• The minimum value of the Nusselt number for the wall cooling mode 

belongs to an isosceles triangle where α2 is the apex angle. Between types of triangles, the items mentioned above belong to the 
equilateral triangle. 

According to the verification of the present study, the high accuracy of the results in the current study is evident. However, the 
validity of an analytical solution is determined by comparing it with experimental and numerical studies. Researchers can solve this 
problem for various triangle shapes using numerical and experimental methods and compare their findings with the results of this 

Fig. 15. Temperature distribution contours for (a) an equilateral triangle Br = − 0.275 (isosceles triangle α1 = α2 = 60), (b) isosceles triangle Br =
− 0.283, α1 = α2 = 75, (c) isosceles triangle Br = − 0.28, α1 = α2 = 45, (d) right triangle Br = − 0.284, α1 = 30 and α2 = 60, and (e) right triangle 
Br = − 0.29, α1 = 70 and α2 = 20. 
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study. This would also enhance the credibility of the current study. Furthermore, future research can address the issue of heat transfer 
through ducts with arbitrary triangular cross-sections for other fluids, such as non-Newtonian fluids or nanofluids. Other thermal 
boundary conditions, such as a constant wall temperature, can be considered for future works. 
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