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Objective: The study aims to develop a mechanical learning model as a predictive
model for predicting the appearance of sepsis-associated encephalopathy (SAE).

Materials and Methods: The prediction model was developed in a primary cohort
of 2,028 sepsis patients from June 2001 to October 2012, retrieved from the Medical
Information Mart for Intensive Care (MIMIC III) database. Least absolute shrinkage and
selection operator (LASSO) regression model was used for data dimension reduction
and feature selection. The model was developed using multivariable logistic regression
analysis. The performance of the nomogram has been evaluated in terms of calibration,
discrimination, and clinical utility.

Results: There were nine particular features in septic patients that were significantly
associated with SAE. Predictors of individualized prediction nomograms included age,
rapid sequential evaluation of organ failure (qSOFA), and drugs including carbapenem
antibiotics, quinolone antibiotics, steroids, midazolam, H2-antagonist, diphenhydramine
hydrochloride, and heparin sodium injection. The area under the curve (AUC) was 0.743,
indicating good discrimination. The prediction model showed calibration curves with
minor deviations from the ideal predictions. Decision curve analysis (DCA) suggested
that the nomogram was clinically useful.

Conclusion: We propose a nomogram for the individualized prediction of SAE with
satisfactory performance and clinical utility, which could aid the clinician in the early
detection and management of SAE.

Keywords: sepsis, sepsis-associated encephalopathy, encephalopathy, delirium, nomogram, mechanical
learning

INTRODUCTION

Sepsis-associated encephalopathy (SAE) is defined as diffuse brain dysfunction caused by a
dysregulated host response without central nervous system (CNS) infection (Gofton and Young,
2012). Symptoms and signs range from mild inattentiveness or disorientation, agitation, and
hypersomnolence to more severe disturbance of consciousness and coma (Chung et al., 2020).
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Approximately 70% of the patients with bacteremia display
neurological symptoms or signs ranging from lethargy to
coma (Peidaee et al., 2018). SAE is associated with increased
mortality, prolonged hospitalizations, and inpatient costs. It
is also associated with higher severity on the Glasgow Coma
Scale (GCS), sequential organ failure assessment score (SOFA),
quick sequential organ failure assessment (qSOFA), the simplified
acute physiology score (APACHE II) of patients followed by
persistent cognitive and functional impairments (Iwashyna et al.,
2010; Sonneville et al., 2017). Iwashyna et al. (2010) found that
up to 70% of sepsis survivors exhibited lasting neurological
impairment, including alterations in mood, cognition, and motor
function, and up to 45% had neurocognitive impairments 1 year
later. With a mortality rate of up to 63% (Eidelman et al., 1996),
and morbidities mentioned above, SAE can have a major effect on
the healthcare system, the economy, and the society.

Sepsis-associated encephalopathy is a diagnosis of exclusion.
It is diagnosed in the absence of direct infection of the central
nervous system, multi-organ failure, traumatic brain injury, fat
embolism, and ingestion of illicit drugs (Iacobone et al., 2009).
Due to sepsis complications and the lack of an early diagnosis
system, diagnosis and management of SAE are often delayed,
leading to significant morbidity and mortality. Early diagnosis
and treatment for brain injury are crucial for the survival and
prognosis of sepsis patients. Sonneville et al. (2017) reported that
acute renal failure, hypoglycemia (< 3 mmol/L), hyperglycemia
(> 10 mmol/L), hypercapnia (> 45 mmHg), hypernatremia
(> 145 mmol/L), and Staphylococcus aureus infection were
associated with the development of SAE. Recently, Yang et al.
(2020) developed a nomogram to forecast mortality in patients
with known SAE. However, to the best of our knowledge, there
is currently no prediction model for the diagnosis of SAE. This
study is the first attempt to establish a predictive nomogram for
SAE, based on the sociodemographic and clinical data of 2,535
sepsis patients, to allow for individualized screening for SAE
among septic patients.

The study aims to identify early and potential risk factors
for SAE by a retrospective analysis of a large clinical database,
and establish a comprehensive prediction model for SAE
patients. The proposed nomogram can assist in clinical decision-
making and identify sepsis patients at high risk for SAE, who
should undergo further investigative tests, thus promoting early
diagnosis and management of SAE.

MATERIALS AND METHODS

Data Source
Medical Information Mart for Intensive Care (MIMIC III)
between June 2001 and October 2012 was employed for
this study. MIMIC III was approved by the Institutional

Abbreviations: SAE, sepsis-associated encephalopathy; SAPS II, simplified acute
physiology score; SOFA, sequential organ failure assessment; qSOFA, quick
sequential organ failure assessment; GCS, Glasgow coma scale; ICU, intensive
care unit; MIMIC III, Medical Information Mart for Intensive Care III; ICD-9,
International Classification of Diseases, Ninth Revision; ROC, Receiver operating
characteristic curve.

Review Boards of Beth Israel Deaconess Medical Center
and Massachusetts Institute of Technology. There was no
requirement for individual patient consent because anonymized
health information was used. This is a publicly accessible single-
center critical care database containing longitudinal data on
46,520 patients admitted to the ICU. The raw data were extracted
using a structure query language (SQL) with Navicat, and further
processed with R software.

Patient Population
Sepsis patients were defined as an infected on discharge according
to ICD-9 codes, who were diagnosed as “sepsis”, “severe sepsis”,
and “septic shock” and patient’s blood culture were positive.
Based on the definition of sepsis 3.0, we included patients with
SOFA score ≥ 2. Inclusion criteria were as follows: (1) more
than18 years old; (2) admission time > 24 h in the ICU. Exclusion
criteria: (1) with primary brain injury (traumatic brain injury,
intracerebral hemorrhage, cerebral embolism, ischemic stroke,
epilepsy, or intracranial infection and another cerebrovascular
disease) (Supplementary Materials 1–5); (2) mental disorders
and neurological disease (Supplementary Material 6); (3)
chronic alcohol or drug abuse (Supplementary Material 7);
(4) metabolic encephalopathy, hepatic encephalopathy,
hypertensive encephalopathy, hypoglycemic coma, and
other liver disease or kidney disease affecting consciousness
(Supplementary Material 8); (5) severe electrolyte imbalances or
glycemic disturbances, including hyponatremia (< 120 mmol/l),
hyperglycemia (> 180 mg/dl), or hypoglycemia (< 54 mg/dl);
(8) partial pressure of CO2 (PaCO2) ≥ 80 mmHg; (9) patients
whose tracheas have been intubated at the time of admission,
given analgesic, and sedated; (10) without an evaluation of GCS.

Sepsis-Associated Encephalopathy
We defined SAE in the study as sepsis with a GCS < 15 on the first
day of ICU admission, delirium, cognitive impairment, altered
mental status according to the ICD-9 code, and medicating
with haloperidol. Altered consciousness caused by other reasons
was excluded. GCS has been established as a clinically effective
tool for characterizing SAE and distinguishing it from sepsis
(Iwashyna et al., 2010). For sedated, postoperative patients or
tracheal intubation, ventilator-assisted breathing, their GCS score
were extracted before they were sedated.

Data Extraction and Management
R statistical software (R foundation for statistical computing,
Vienna, Austria) was used to retrieve patient information
from the MIMIC III database. The following basic patient
data were collected from each patient, including age, sex,
admission type, marital status, and mean value of vital signs
during the first 24 h of ICU stay, including heart rate, systolic
blood pressure, diastolic blood pressure, respiratory rate, and
temperature. Since ICU admission, the first laboratory data
include alanine aminotransferase, aspartate aminotransferase,
partial thromboplastin time, white blood cell count, lymphocyte,
neutrophil, monocytes, eosinophils, hemoglobin, platelet, blood
urea nitrogen, creatinine, and glucose. SAPS II, qSOFA
score, SOFA score assessment of the severity of illness
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and organ failure on the first day of ICU admission,
and GCS were also recorded. Comorbidity as coded and
defined in the ICD-9 code (Supplementary Material 9);
site of infection (Supplementary Material 10); organ failure
(Supplementary Material 11) and ICU stay time, hospital
mortality were collected in the study.

Statistical Analysis
Data distribution was analyzed using the Shapiro–Wilk test.
Continuous variables were expressed as the mean ± standard
deviation (SD) or the median (interquartile range, IQR);
categorical variables were expressed as frequency and percentage.
A non-parametric test (Mann–Whitney U test or Kruskal–
Wallis test) was used for data with non-normal distribution or
heterogeneity of variances. Categorical data were compared using
the Pearson Chi-squared test.

Least absolute shrinkage and selection operator (LASSO)
regression model was used for data dimension reduction and
feature selection (Training set). A nomogram was constructed
according to the multivariate logistic regression analysis
results (Training set), and it was internally validated using
a 1,000 bootstrap resampling procedure (Validation set). The
performance of the nomogram was assessed using discrimination
and calibration (Validation set). The proposed nomogram’s
discrimination ability was quantified with a receiver operating
characteristic (ROC) curve analysis and the AUC. The calibration
was carried out by plotting the calibration curve to analyze the
association between the observed incidence and the predicted

probability. Decision curve analysis was performed to assess the
clinical utility of the nomogram (Training set and Validation
set). Statistical analysis was conducted with R software (version
3.4.3). Statistical significance was defined as p < 0.05.

RESULTS

Comparison of Baseline Patient
Characteristics Between SAE and
Non-SAE Groups and Between Primary
and Validation Cohorts
A total of 2,535 patients met the inclusion criteria for the
study. About 80% of the patients were randomly assigned to
the primary cohort, and 20% of the patients were randomly
assigned to the validation cohort. About 41.6% of patients
with sepsis-associated encephalopathy were detected. A matrix
diagram of missing data is shown in the Data Profiling Report
(Supplementary Material 12). We replaced any missing values
of the included variables with their mean values. The recruitment
process is shown in Figure 1.

Patient characteristics in the primary and validation cohorts
are given in Table 1. There were no significant differences
between the two cohorts in SAE (P = 0.763), where the SAE
patients were 41.5 and 42.2% in the primary and validation
cohorts, respectively, and there were no significant differences
in the clinical characteristics between the cohorts, which justified
their use as training and validation cohorts.

FIGURE 1 | Study design and flow chart of the enrollment process. MIMIC III, Medical Information Mart for Intensive Care III.
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TABLE 1 | Baseline characteristics and outcome of patient with SAE.

Primary cohort Validation cohort

SAE patients, n = 841 Non-SAE patients,
n = 1,187

P SAE patients, n = 214 Non-SAE patients,
n = 293

P

Age, (years) 73 (60.9–83.1) 67.8 (54.8–79.1) <0.001 73.8 (60.8–83.9) 67.1 (55.6–77.7) 0.001

Sex, n (%)

Female 393 (46.7) 509 (42.9) 0.093 112 (52.3) 137 (46.8) 0.242

Male 448 (53.3) 678 (57.1) 91 (42.5) 156 (53.2)

Admission_type, n (%)

Emergency 51 (6.1) 85 (7.2) 0.622 8 (3.7) 16 (5.5) 0.396

Elective 774 (92.0) 1,080 (91.0) 204 (95.3) 271 (92.5)

Urgent 16 (1.9) 22 (1.9) 2 (0.9) 6 (2.0)

Marital_status, n (%)

Married 401 (47.7) 575 (48.4) 0.001 101 (47.2) 135 (46.1) 0.282

Widowed 177 (21.0) 169 (14.2) 44 (20.6) 52 (17.7)

Single 178 (21.2) 304 (25.6) 40 (18.7) 76 (25.9)

Divorced 46 (5.5) 66 (5.6) 16 (7.5) 14 (4.8)

Separated 39 (4.6) 73 (6.1) 10 (4.7) 16 (5.5)

Comorbidity, n (%)

Hypertension 503 (59.8) 681 (57.4) 0.293 139 (65.0) 167 (57.0) 0.081

Diabetes 254 (30.2) 326 (27.5) 0.195 73 (34.1) 75 (25.6) 0.038

Cardiovascular diseases 562 (66.8) 777 (65.5) 0.536 142 (66.4) 204 (69.6) 0.441

Chronic pulmonary disease 167 (19.9) 260 (21.9) 0.270 51 (23.8) 64 (21.8) 0.592

Liver disease 87 (10.3) 125 (10.5) 0.941 19 (8.9) 39 (13.3) 0.157

Anemias 408 (48.5) 562 (47.3) 0.620 100 (46.7) 131 (44.7) 0.653

Acidosis 222 (26.4) 334 (28.1) 0.391 45 (21.0) 69 (23.5) 0.520

Alkalosis 30 (3.6) 60 (5.1) 0.125 3 (1.4) 15 (5.1) 0.028

Hypovolemia 64 (7.6) 83 (7.0) 0.603 16 (7.5) 18 (6.1) 0.592

Chronic treatments, n (%)

Statins 99 (11.8) 87 (7.3) 0.001 31 (14.5) 21 (7.2) 0.011

Beta blockers 210 (25.0) 136 (11.5) <0.001 66 (30.8) 32 (10.9) <0.001

H2-antagonist 117 (13.9) 68 (5.7) <0.001 35 (16.4) 14 (4.8) <0.001

Proton pump inhibitor 261 (31.0) 252 (21.2) <0.001 72 (33.6) 58 (19.8) <0.001

Steroids 207 (24.6) 150 (12.6) <0.001 56 (26.2) 36 (12.3) <0.001

NSAIDs 263 (31.3) 209 (17.6) <0.001 69 (32.2) 48 (16.4) <0.001

Aspirin 159 (18.9) 121 (10.2) <0.001 47 (22.0) 30 (10.2) <0.001

Clopidogrel 56 (6.7) 34 (2.9) <0.001 11 (5.1) 6 (2.0) 0.078

Sodium bicarbonate 105 (12.5) 111 (9.4) 0.028 30 (14.0) 27 (9.2) 0.117

Vitamin D 29 (3.4) 33 (2.8) 0.433 9 (4.2) 5 (1.7) 0.105

NSAIDs, non-steroidal anti-inflammatory drugs; SAE, sepsis-associated encephalopathy.

Patients in the SAE group were older than those in
the non-SAE group in the primary cohort and validation
cohort. More SAE patients used statins, beta-blockers, H2-
antagonist, proton pump inhibitor, steroids, non-steroidal anti-
inflammatory drugs (NSAIDs), aspirin, clopidogrel, and sodium
bicarbonate compared to the non-SAE group. There were no
significant differences in gender, admission type, marital status,
and comorbidity between the SAE and non-SAE patients.

Characteristics of Patients on ICU
Admission
As shown in Table 2, patients with SAE were more likely
to suffer from urinary tract infections. Compared to the

non-SAE patients, more SAE patients used antimicrobial drugs,
including antiviral drugs, cephalosporins, penicillin, antifungal
drugs, macrolides, quinolones, and carbapenem; analgesic
and sedative drugs including propofol, midazolam, opioids,
and oxycodone; vasopressor; diphenhydramine Hydrochloride;
calcium gluconate; magnesium sulfate; and heparin sodium
injection. Patients in the SAE group were more critically
ill than the non-SAE group [SOFA 6 (4–9) vs. 5 (3–8),
p < 0.001; qSOFA 2 (2–3) vs. 2 (2–2), p < 0.001; SAPS
II 45 (35–57) vs. 40 (31–51), p < 0.001]. The hospital
mortality rate of SAE patients was 64.7%. Patients in the non-
SAE group had a higher incidence of mechanical ventilation
(53.8 vs. 42.4%) and had longer ICU stay time than those
in the SAE group.
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TABLE 2 | Multivariate logistic analysis of risk factors to incidence in patients with SAE.

Primary cohort Validation cohort

SAE patients
n = 841

Non-SAE patients,
n = 1,187

P SAE patients,
n = 214

Non-SAE patients,
n = 293

P

Infection site, n (%)

Lung 344 (40.9) 476 (40.1) 0.748 82 (38.3) 116 (39.6) 0.783

Intestinal 153 (18.2) 221 (18.6) 0.816 37 (17.3) 47 (16.0) 0.718

Urinary system 283 (33.7) 338 (28.5) 0.014 90 (42.1) 89 (30.4) 0.008

Catheter related 120 (14.3) 149 (12.6) 0.288 39 (18.2) 43 (14.7) 0.903

Skin and soft tissue 113 (13.4) 180 (15.2) 0.305 29 (13.6) 47 (16.0) 0.453

Abdominal cavity 195 (23.2) 182 (15.3) 0.489 48 (22.4) 67 (22.9) 1.000

Microorganisms, n (%)

Gram-positive 433 (51.5) 579 (48.8) 0.241 114 (53.3) 143 (48.8) 0.324

Gram-negative 407 (48.4) 581 (49.0) 0.822 106 (49.5) 121 (41.3) 0.071

Fungus 318 (37.8) 456 (38.4) 0.817 82 (38.3) 103 (35.2) 0.513

Virus 18 (2.1) 33 (2.8) 0.391 4 (1.9) 7 (2.4) 0.767

Medications, n (%)

Antibiotic

Antiviral drug 30 (3.6) 18 (1.5) 0.004 13 (6.1) 4 (1.4) 0.005

Cephalosporins 170 (20.2) 124 (10.4) <0.001 40 (18.7) 28 (9.6) 0.004

Penicillin 142 (16.9) 92 (7.7) <0.001 35 (16.4) 23 (7.8) 0.004

Antifungal 172 (20.5) 148 (12.5) <0.001 50 (23.4) 39 (13.3) 0.004

Macrolides 77 (9.2) 55 (4.6) <0.001 25 (11.7) 16 (5.5) 0.013

Aminoglycosides 60 (7.1) 38 (3.2) <0.001 9 (4.2) 8 (2.7) 0.455

Quinolones 234 (27.8) 149 (12.6) <0.001 70 (32.7) 34 (11.6) <0.001

Carbapenem antibiotics 86 (10.2) 45 (3.8) <0.001 25 (11.7) 10 (3.4) 0.001

Sulfamethoxazole 31 (3.7) 46 (3.9) 0.906 16 (7.5) 10 (3.4) 0.065

Analgesic and sedative drugs

Propofol 142 (16.9) 93 (7.8) <0.001 42 (19.6) 22 (7.5) <0.001

Midazolam 156 (18.5) 99 (8.3) <0.001 45 (21.0) 28 (9.6) <0.001

Opioids 273 (32.5) 213 (17.9) <0.001 76 (35.5) 53 (18.1) <0.001

Etomidate 12 (1.4) 14 (1.2) 0.690 9 (4.2) 2 (0.7) 0.011

Oxycodone 119 (14.1) 121 (10.2) 0.008 35 (16.4) 26 (8.9) 0.013

Vasopressor 245 (29.1) 225 (19.0) <0.001 63 (29.4) 47 (16.0) <0.001

Diphenhydramine Hydrochloride 90 (10.7) 47 (4.0) <0.001 15 (7.0) 10 (3.4) 0.095

Metoclopramide 68 (8.1) 76 (6.4) 0.160 20 (9.3) 22 (7.5) 0.515

Electrolyte solution

Calcium gluconate 231 (27.5) 171 (14.4) <0.001 61 (28.5) 41 (14,0) <0.001

Magnesium Sulfate 208 (24.7) 248 (20.9) 0.046 66 (30.8) 58 (19.8) 0.005

Thiamine 20 (2.4) 34 (2.9) 0.487 11 (5.1) 5 (1.7) 0.038

Heparin Sodium Injection 258 (30.7) 228 (19.2) <0.001 79 (36.9) 54 (18.4) <0.001

Vital signs

Heart rate (bmp) 110 (94–126) 111 (95–127) 0.768 113 (98–129) 112 (95–130) 0.895

Dys bp (mmHg) 82 (73–92) 84 (75–93) 0.032 84 (74–94) 83 (75–91) 0.810

Dias bp (mmHg) 38 (31–46) 41 (34–47) <0.001 39 (31.8–46) 42 (33.5–49) 0.007

Resp rate (bmp) 28 (25–33) 29 (25–34) 0.226 29 (24–33.3) 29 (24.5–34) 0.460

Tempc (◦C) 37.4 (36.9–38.2) 37.5 (37.0–38.3) 0.220 37.6 (37.0–38.2) 37.6 (37.0–38.3) 0.929

Laboratory parameters

Lactate (mmol/L) 1.9 (1.3–3.0) 1.9 (1.3–2.9) 0.494 1.9 (1.4–3.1) 1.8 (1.3–3.0) 0.294

PCO2 (mmHg) 40 (35–43) 40 (35–43) 0.766 40 (35–42) 40 (34–44) 0.753

PO2 (mmHg) 92 (89–95) 92 (89–95) 0.101 92 (89–94.3) 92 (90–95) 0.387

PH 7.34 (7.31–7.40) 7.34 (7.30–7.40) 0.725 7.34 (7.33–7.39) 7.34 (7.30–7.39) 0.425

Glucose (mg/dL) 113 (96–135) 114 (97–135) 0.497 114.5 (99–140) 115 (97.5–137) 0.694

Creatinine (mg/dL) 1.2 (0.8–2.1) 1.2 (0.8–2.1) 0.133 1.2 (0.7–2.0) 1.2 (0.8–2.1) 0.335

Blood urea nitrogen (mg/dL) 26 (17–44) 25 (15–43) 0.091 26 (15–38) 27 (17–43) 0.088

(Continued)
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TABLE 2 | (Continued)

Primary cohort Validation cohort

SAE patients
n = 841

Non-SAE patients,
n = 1,187

P SAE patients,
n = 214

Non-SAE patients,
n = 293

P

Alanine aminotransferase (IU/L) 27 (15–53.5) 27 (16–65) 0.025 27 (14–57) 27 (16–58) 0.408

Aspartate aminotransferase (IU/L) 35 (22–66) 34 (21–71) 0.799 31 (21–64.3) 35 (21–66) 0.244

Albumin (g/dL) 2.8 (2.4–3.2) 2.9 (2.4–3.3) 0.359 2.9 (2.5–3.4) 2.8 (2.4–3.2) 0.096

Hemoglobin (g/dL) 9.7 (8.6–10.9) 9.6 (8.6–10.8) 0.265 9.5 (8.4–10.6) 9.6 (8.3–10.8) 0.586

Platelet (K/uL) 179 (117–257) 181 (111–261) 0.842 174.5 (112–278.3) 192 (116–279) 0.422

Potassium (mEq/L) 4.1 (3.7–4.5) 4.0 (3.7–4.4) 0.499 4.0 (3.7–4.6) 4.0 (3.7–4.5) 0.609

Sodium (mEq/L) 139 (136–142) 138 (135–141) 0.003 139 (136–142) 139 (135.5–141) 0.599

Partial thromboplastin time (s) 31.9 (27.7–38.7) 32.4 (27.9–39.7) 0.508 30.5 (26.4–38.5) 30.9 (27.7–38.0) 0.331

White blood cell count (K/uL) 10.9 (7.2–15.3) 11.3 (7.2–16.9) 0.203 11.2 (7.9–16.8) 11.8 (7.2–17.4) 0.971

Lymphocyte (%) 9.4 (5.2–16.0) 8.9 (4.4–16.0) 0.103 10.0 (5.6–16.1) 8.6 (4.9–14) 0.028

Neutrophil (%) 80.7 (70.2–87.8) 80 (70–87.9) 0.775 79.7 (69.0–87.1) 83 (73.9–88.3) 0.021

Monocytes (%) 4.0 (2.5–6.0) 4.0 (2.4–6.0) 0.732 4.0 (2.4–6.3) 4.0 (2.7–5.4) 0.445

Eosinophils (%) 0.4 (0.0–1.8) 0.4 (0.0–1.6) 0.579 0.6 (0.0–1.8) 0.6 (0.0–1.6) 0.728

Outcome

Mechanical ventilation, n (%) 357 (42.4) 639 (53.8) <0.001 81 (37.9) 155 (52.9) 0.001

Renal replacement therapy, n (%) 49 (5.8) 90 (7.6) 0.130 8 (3.8) 23 (7.8) 0.062

Organ failure, n (%)

Respiratory 371 (44.1) 584 (49.2) 0.024 89 (41.6) 149 (50.9) 0.047

Cardiovascular 408 (48.5) 591 (49.8) 0.589 99 (46.3) 137 (46.8) 0.928

Renal 504 (59.9) 685 (57.7) 0.337 133 (62.1) 175 (59.7) 0.645

Hepatic 56 (6.7) 89 (7.5) 0.485 13 (6.1) 23 (7.8) 0.488

Hematologic 198 (23.5) 237 (20.0) 0.055 51 (23.8) 59 (20.1) 0.328

SOFA 6.0 (4.0–9.0) 5.0 (3.0–8.0) <0.001 6.0 (3.0–9.0) 5.0 (3.0–8.0) 0.199

qSOFA 2.0 (2.0–3.0) 2.0 (2.0–2.0) <0.001 2.0 (2.0–3.0) 2.0 (2.0–2.0) <0.001

SAPS II 45 (35–57) 40 (31–51) <0.001 44 (33–57) 40 (32–53) 0.014

ICU stay time, days 2.9 (1.7–6.8) 3.4 (1.8–8.7) 0.010 2.5 (1.5–5.7) 3.3 (1.7–9.2) 0.015

Hospital mortality, n (%) 258 (30.7) 318 (26.8) 0.056 64 (30.0) 92 (31.4) 0.719

Feature Selection and SAE Signature
Building
In the primary cohort (Figure 2), 89 features were reduced to
nine potential predictors of texture features of 2,028 patients.
These features are shown in the SAE-score calculation formula
(Supplementary Material 13; Data supplement).

Development of an Individualized
Prediction Model
A LASSO logistic regression analysis identified age, qSOFA,
quinolone antibiotics, carbapenem antibiotics, midazolam,
diphenhydramine hydrochloride, heparin sodium injection,
steroids, and H2-antagonist as independent predictors
(Supplementary Material 13). The nomogram included all
the significant independent factors of the logistic regression
model in the training cohort. It established scoring criteria
according to the odds ratio (OR) values of risk factors and gave
a score for each level of prognostic factors. Through summation
of the scores associated with each variable and projection of the
total scores to the bottom scale, probabilities could be estimated
for SAE, and it was possible to effectively predict SAE according

to the individual characteristics of the patient. The diagnostic
nomogram for SAE is shown in Figure 3.

Discrimination and Calibration
To evaluate the calibration of the model, the study used internal
validation with the 1,000 bootstrap resampling method as
shown in Figure 4. The calibration plot of current depression
rates suggests good agreement between the observed and
predicted values.

We used the ROC curve to evaluate the discrimination
capability of the model. The area under the curve (AUC) of the
nomogram was 0.743 (95% CI: 0.720–0.766). The predictive SAE
of the model’s sensitivity was 0.585 and specificity was 0.879. A
cut-off was 0.435 calculated by Youden’s index (Figure 5).

Clinical Utility
The decision curve analysis (DCA) for the SAE nomogram is
in Figure 6. According to the DCA, the SAE model of net
benefit had threshold probabilities ranging from 10 to 90%
in the primary cohort. The decision curve showed that if the
threshold probability was between 10% and 90%, using the SAE
nomogram to predict SAE would be of more benefit to predict
SAE compared to not utilizing the nomogram. In the validation
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FIGURE 2 | The LASSO logistic regression model was used by texture feature selection. (A) 10-fold cross-validation via minimum criteria was used by tuning
parameter (λ) selection in the LASSO model. The area under the receiver operating characteristic curve (AUC) was plotted vs. log(λ). For each λ value, around the
mean value of the target parameter shown by the red dot, we can get a confidence interval for the target parameter. The two dashed lines, respectively, indicate two
special values of λ. The dotted line on the left in panel (A) (lambda.min) refers to the one that obtains the mean value of the smallest target parameter among all λ
values. The dotted line on the right in panel (A) (lambda.1se) refers to the λ value of the simplest model within a variance range of lambda.min. A λ value of 0.009,
with log(λ) = 24.709 was chosen (1-SE criteria) according to 10-fold cross-validation. (B) LASSO coefficient profiles of the 89 texture features. Each curve in the
panel (B) represents the change trajectory of each variable coefficient. The ordinate is the value of the coefficient, the lower abscissa is log(λ), and the upper
abscissa is the number of non-zero coefficients in the model at this time.

set, the SAE model of net benefit had threshold probabilities
ranging from 10 to 89%, and thus the model was beneficial in its
prediction of SAE.

DISCUSSION

The study observed that 41.6% of sepsis patients with SAE were
identified during admission to the ICU. A hospital mortality rate
of up to 64.7% was observed in patients with SAE. We identified
that clinically relevant risk factors for SAE, including age,
qSOFA score, and medications such as carbapenem antibiotics,
quinolones antibiotics, steroids, midazolam, H2-antagonist,
diphenhydramine hydrochloride, and heparin sodium injection,
had a significant impact on the occurrence of SAE. The
study has established a comprehensive visual prediction model
which can provide a probabilistic estimate of SAE at the
earlier stages in individual sepsis patients. Furthermore, the
nomogram showed satisfactory validity, discrimination, and
clinical utility.

In this study, 41.6% of sepsis patients suffered from SAE.
Previous studies have published the rates of SAE in patients with
sepsis ranging from 8 to 70% (Bartynski et al., 2006). This could
be the result of different diagnostic criteria. Feng et al. (2019)
reported a 42.3% incidence of SAE in septic patients, whereas
Yang et al. (2020) reported 50% incidence. This study result is
consistent with their study results.

Our cohort study showed that SAE patients had higher SOFA,
qSOFA, and APACHE II when compared to non-SAE patients
and also a high hospital mortality rate of 64.7%. It shows that
SAE patients with more severe organ dysfunction are associated
with an increased risk of mortality and the related adverse clinical
outcomes. The result is consistent with Yang et al.’s study. SAE
patients presented significantly high APACHE II, SOFA scores,
and 30-day mortality in a recent retrospective analysis involving
more than 2,400 SAE patients (Yang et al., 2020). Feng et al.
(2019) demonstrated that the incidence of 28-day mortality was
45.95% and 180-day mortality was 55.41%, and the multivariate
stepwise regression analysis demonstrated that the risk of death
in the SAE group was significantly higher than in the non-SAE
group and that SAE was a risk factor for sepsis-related death
(OR = 2.868). These results are consistent with our findings.

We identified clinical and potential risk factors for SAE, which
confirms that SAE patients were older and had urinary system
infection when compared to non-SAE patients. Sonneville et al.
(2017) showed that compared to the non-SAE group, the SAE
group included patients who were significantly older in age.
Presence of comorbid urinary system infection in patients with
delirium had been confirmed by many studies (Chae and Miller,
2015; Carson et al., 2017). Previous studies have also reported
that urinary system infection is a risk factor for delirium (Gau
et al., 2009; Dahl et al., 2010), urinary tract infections (UTI)
increase a subject’s risk of developing delirium, or urinary system
infection is a “common cause” of delirium (Lerner et al., 1997;
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FIGURE 3 | Nomograms for the prediction of the incidence of SAE in patients with sepsis. To use the model, firstly, the position of each variable on the
corresponding axis should be determined. Secondly, draw a line to the points axis for the number of points, and then add the points from all the variables. Thirdly,
draw a line from the total points axis to determine the incidence of SAE at the lower line of the nomogram. The total points projected to the bottom scale indicate the
percentage probability of the incidence of SAE. *** < 0.001, ** < 0.05.

Kamel, 2005). The potential mechanisms of the association
between urinary system infection and neuropsychiatric disorders
are induced by antibiotic treatment for urinary system infection.
The antibiotics that were most frequently implicated were
macrolides and fluoroquinolones. Mostafa et al. reported 15 cases
of antibiotic-induced psychosis during treatment of a urinary
system infection, with 60% of the cases determined to be “highly
suggestive” of a causal relationship between antibiotic usage and
psychosis (Mostafa and Miller, 2014). Contrary to previously
published data (Zhang et al., 2012; Sonneville et al., 2017), we did
not find any microorganism as the pathogen associated with SAE.
It is attributed to different data sources.

The results of our cohort study show that medications were
a critical risk factor for SAE. The most significant impact is
from the use of antibiotics, followed by analgesics, sedative
drugs, and other drugs. The study demonstrated that more SAE
patients used antivirals, cephalosporins, penicillin, antifungal,
macrolides, aminoglycosides, quinolones, carbapenem in
antibiotic, quinolones, and carbapenem are associated with
SAE by filter variables with the LASSO method. This method

surpasses the method of choosing predictors based on the
strength of their univariable association with the outcome. In
the study, the use of quinolones and carbapenem tended to
be associated with SAE, in line with the study by Sonneville
et al. (2017) and recent reviews highlighting their neurotoxicity
(Bhattacharyya et al., 2016). Previous studies have suggested that
the pathophysiology of quinolones and carbapenem-associated
encephalopathy is associated with a disturbance of gamma-
aminobutyric acid-ergic (GABAergic) interneurons. They affect
the central nervous system mainly by inhibiting GABA receptors
interfering with inhibitory neurotransmission and enhancing
bursts of excitatory neurons, which is concentration-dependent
(Hori and Shimada, 1993; Munoz-Gomez et al., 2015). Our
results also suggested that the use of propofol, midazolam, and
opioids was found to be more likely observed in SAE patients.
Further analysis found that midazolam is found to be a risk
factor with SAE patients. It is widely accepted that midazolam is
an independent risk factor for delirium in critically ill patients.
In a large population-based cohort study, Zaal et al. found that
the risk of delirium occurrence in critically ill adults is related
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FIGURE 4 | Calibration curves of a nomogram estimating the incidence of
SAE in sepsis patients. Predicted and observed SAE rates are plotted as the
logistic calibration. The y-axis represents the actual SAE occurrence rate. The
x-axis represents the predicted SAE occurrence risk. The diagonal dotted line
represents a perfect prediction by an ideal model. The blue solid line
represents the performance of the nomogram, of which a closer fit to the
diagonal dotted line represents a better prediction.

FIGURE 5 | Discriminatory accuracy for predicting the incidence of SAE
assessed by receiver operator characteristics (ROC) analysis calculating area
under the curve (AUC).

to benzodiazepine use. A daily dose of only 5 mg of midazolam
administered to a coma- and delirium-free patient increased
the odds of this patient developing delirium in the following
day by 4%. It supports the study results. A large number of SAE
patients used vasopressors. On the one hand, SAE patients were

found to be more critically ill and had a higher incidence of
circulatory failure. On the other hand, the use of vasopressor
was found to be a risk factor for SAE, although our further
analysis has not been confirmed. Vasopressor use is a known risk
factor for long-term cognitive impairment after critical illness.
However, the specific mechanisms of these factors cannot be
individually determined by our data, and this question requires
further research.

Besides, our cohort study demonstrated that the use of
H2-antagonist, steroids, and heparin sodium injection were risk
factors for SAE. It has been reported by many studies that
H2-antagonist and steroids cause delirium (Nguyen et al., 2011;
Mauran et al., 2016). Tawadrous et al. (2014) demonstrated that
compared to a lower dose, initiation of the current standard dose
of histamine 2 receptor antagonists (H2RA) in older adults is
associated with a small absolute increase in the 30-day risk of
altered mental status. Yamada et al. (2018) found that steroid use
was the determinant of progression to delirium in an intensive
care unit, and research by Romain Sonneville et al. also found that
steroid use was an independent risk factor for SAE (Yamada et al.,
2018). These studies supported our study results. An interesting
finding in the study was that heparin sodium injection and
diphenhydramine hydrochloride were found to be risk factors
for SAE. The result is consistent with several other studies
(Shobugawa et al., 2007; Rothberg et al., 2013; Bidaki et al., 2017).
However, the study for the first time demonstrated a strong
association between heparin sodium injection, diphenhydramine
hydrochloride, and SAE in a large cohort of sepsis patients. It is
proposed that we pay attention to monitoring the mental changes
in patients when using the above drugs.

The lack of validated predictive tools for early-stage SAE in
sepsis patients and the equivocal efficacy of SAE interventions
prompted us to develop a novel predictive modeling system
using the nomogram methodology. For the construction of the
clinical features and risk factors, 89 candidate features were
reduced to nine potential predictors (carbapenem antibiotics,
quinolones antibiotics, steroids, midazolam, H2-antagonist,
diphenhydramine hydrochloride, and heparin sodium injection)
by the LASSO method. The nine potential predictors established
a comprehensive visual nomogram for predicting SAE patients.
The nomogram demonstrated adequate discrimination in the
primary cohort (AUC, 0.743; 95% CI: 0.720–0.766), which
surprisingly improved in the validation cohort (AUC, 0.762; 95%
CI: 0.716–0.807). We developed and validated a nomogram in
the study, which could assess clinical variables. Both physicians
and patients could perform an individualized prediction of the
risk of SAE with this easy-to-use scoring system, which is in line
with the current trend toward personalized medicine. The most
important reason for using the nomogram is based on the need
to interpret the individualized needs for additional treatment
and improve patient outcomes. DCA was applied in this study.
This novel method offers insight into the clinical consequences
based on the threshold probability, from which the net benefit
could be derived. The decision curve showed that if the threshold
probability of a patient or doctor was > 10%, then using the SAE
nomogram to predict SAE added more benefit compared to not
using the SAE nomogram.
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FIGURE 6 | The DCA curve of SAE patients with the nomogram. (A) Primary cohort; (B) validation cohort. Solid line: The patient does not use the predictive SAE
model without treatment for SAE, the net benefit is zero; Gray line: All patients used the predictive SAE model with effective treatment measures; Blue lines: If the
SAE predictive model exceeds a threshold (ranging from approximately 10–90%), the patient needs to be treated immediately. For example, a patient would be
treated for SAE if the probability was greater than 10%.

There were two limitations in the study. Firstly, the study
was based on electronic MIMIC-III, whose data were generated
during routine clinical practice. Thus, it is possible that the
cohort selection is not exactly consistent with the definition of
sepsis based on the guidelines, and neuroimaging data were also
not included in the database. Besides, the study only conducted
internal validation, and thus external validations are needed.
Thus, the current nomogram can only provide a certain reference
for SAE forecasts, and further modifications may be required
once diagnostic methods are developed.

CONCLUSION

A nomogram was established for individualized prediction of
SAE in sepsis patients and it showed satisfactory performance.
It can be conveniently used in the clinical setting and may help
physicians to identify SAE patients on time. It can also help
physicians to take timely intervention measures to reduce the
incidence of SAE and improve patient prognosis.
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