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Abstract: Litter size is an economically important trait in sheep breeding. The objectives of this
study were as follows: (1) to ascertain if any of the 19 known variants in the BMPRIB, BMP15,
and GDF9 genes are present and associated with the litter size of Mongolia sheep; (2) to identify
novel variants in GDF9 and perform association analysis; and (3) to validate the effects of these GDF9
promoter variants on the activity of the gene. The results of the 19 known variants showed that the
FecBB affected the litter size of Mongolia sheep (p < 0.001). The association analysis results of novel
variants showed that the g.46544883A>G (GenBank accession: NC_040256, the same below) in the 3’
untranslated region (3’ UTR), the c.1040T>C (Phe347Ser) in the exon 2, and the g.46547859C>T SNP
in the promotor of GDF9 were significantly associated with litter size of Mongolia ewes (p < 0.01,
p < 0.05, and p < 0.001, respectively). In addition, the GDF9 promoter activity analysis showed that
the C allele at the −332 position (g.46547859C>T) could decrease luciferase activity compared with
the T allele (p < 0.01). Our findings may facilitate effective marker-assisted selection to increase litter
size in Mongolia sheep populations, as well as bring new insights into GDF9 expression.

Keywords: FecBB; GDF9; litter size; Mongolia sheep; promoter activity; molecular markers

1. Introduction

Litter size is an important economic trait for sheep breeding. Genetic variation in sheep
litter size has been widely documented. Substantial differences exist among breeds and
numerous variations within breeds/sub-breeds. To date, the morphogenetic protein receptor type IB
(BMPRIB) [1–3], bone morphogenetic protein 15 (BMP15) [4], growth differentiation factor 9 (GDF9) [5],
beta-1,4-N-acetyl-galactosaminyl transferase 2 (B4GALNT2) [6], and leptin receptor (LEPR) [7] genes were
considered as major candidate genes for prolificacy of sheep. It was determined that several sheep
breeds with altered fecundity presented with >19 known variants in the BMPRIB (FecBB), BMP15
(FecXB, FecXG, FecXH, FecXI, FecXL, FecXO, FecXR, FecXBar, and FecXGr), GDF9 (FecGA, FecGE, FecGF,
FecGH, FecG1, FecGT, and FecGV), B4GALNT2 (FecLL), and LEPR (FecDD) genes (Table 1). The FecBB

mutation was found in Booroola Merino [1–3], Javanese [8], small-tailed Han [9], Hu [10], Garole
and Kendrapada [11], Kalehkoohi [12], and Wadi sheep [13]. Mutations in BMP15 were detected in
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Romney and Inverdale (FecXH and FecXI) [4], Cambridge and Belclare (FecXB and FecXG) [5], Lacaune
(FecXL) [14], Rasa Aragonesa (FecXR) [15], Olkuska (FecXO) and Givette (FecXGr) [16], and Barbarine
sheep (FecXBar) [17]. The GDF9 mutations were observed in Cambridge and Cambridge (FecGH) [5],
Thoka (FecGT) [18], Santa Ines (FecGE) [19], Baluchi (FecG1) [20], Norwegian White Sheep, Finn
Ile de France sheep and Belclare (FecGF) [21,22], Ile de France (FecGV) [23], and Araucana creole
sheep (FecGA) [24]. The FecLL and FecDD mutations were seen in Lacaune [6] and Davisdale [7]
sheep, respectively (Table 1). These mutations affecting ovulation rate and litter size have been well
characterized in many different sheep populations globally, however, they might be present in as yet
uncharacterized populations, and new mutations that are as yet described might also exist.

Mongolia sheep (Ovis aries), an old and primitive sheep breed, are mainly distributed in grassland,
desert, and agricultural areas in northern China, Mongolia, and Central Asia [25]. According to
archaeological and genetic research, the Mongolia sheep is the common ancestor of Chinese short
fat-tailed sheep breeds, such as Sonid, Ujimqin, Hulunbuir, Tan, Bayanbulak, Small-tailed Han, Duolang
sheep, and Hu sheep [25]. They are fat-tailed; produce quality meat; carpet wool; and have sound
body conformation, strong walking ability, and admirable adaptation to very different ecological
conditions [25–27]. Recently, the mutton of Mongolia sheep was recognized as a natural green food
and has become increasingly popular in China. However, owing to seasonal estrus and low prolificacy
(mean litter size was 1.03~1.13), the production rate of Mongolia sheep is limited. There have been
very few studies to date investigating polymorphisms in the prolificacy of Mongolia sheep [28,29].

GDF9, which is an oocyte-derived growth factor in the transforming growth factor β (TGF-β)
superfamily, can regulate female fertility in several mammals [30,31]. The GDF9 mRNA and protein
are present in germ cells during follicular formation and in oocytes of primordial follicles and at all
subsequent stages of follicular growth in sheep [32–34]. To date, several studies have focused on the
mutations in the GDF9 coding region associated with ovulation rate or litter size and found they were
highly breed-specific in sheep (Table 1) [35,36]. However, the transcriptional mechanisms by which
variants alter GDF9 promoter activity remain unclear.

The objectives of this study reported herein were as follows: (1) to ascertain if any of the 19 known
variants in the BMPRIB, BMP15, and GDF9 genes are present and associated with litter size of Mongolia
sheep; (2) to identify novel variants in the candidate gene GDF9 and perform association analysis with
litter size in Mongolian sheep; (3) to investigate the genetic diversity of novel variants in six Mongolia
sheep subspecies; and (4) to validate the effects of these variants in the GDF9 promoter region on
promoter activity.
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Table 1. Causative mutations of prolificacy genes and distribution of prolific sheep breeds of the world.

Gene (Current GenBank
Accession) 1

Allele
Symbol Nucleotide Change Amino Acid

Change Breed Distribution References

BMPRIB (NC_040257) FecBB c.746A>G Q249R Booroola Merino Australia [1–3]
Javanese Indonesia [8]

Small China [9]
Hu China [10]

Garole India [11]
Kalehkoohi Iran [12]

Wadi China [13]
BMP15 (NC_040278) FecXI c.896T>A V299D Romney and Inverdale New Zealand [4]

FecXH c.871C>T Q291Ter Romney New Zealand [4]
FecXG c.718C>T Q239R Belclare and Cambridge Ireland and England [5]
FecXB c.1100G>T S367I Belclare Ireland and England [5]
FecXL c.962G>A C321Y Lacaune France [14]

FecXR c.525_541delTG
GGTCCAGAAAAGCCC - Rasa Aragonesa Spain [15]

FecXO c.1009A>C N337H Olkuska Poland [16]
FecXGr c.950C>T T317I Givette France [16]

FecXBar c.301G>T, c.302_304delCTA and
c.310insC - Barbarine Tunisia [17]

GDF9 (NC_040256) FecGH c.1184C>T S395F Belclare and Cambridge Ireland and England [5]
FecGT c.1279A>C S427R Thoka Ireland [18]
FecGE c.1034T>G F345C Santa Inês Brazil [19]
FecG1 c.260G>A R87H Baluchi Iran [20]
FecGF c.1111G>A V371M Norwegian White Sheep Norway [21,22]
FecGV c.943C>T R315C Ile de France Brazil [23]
FecGA c.994G>A V332I Araucana creole Chile [24]

B4GALNT2 (NC_040262) FecLL g.25929893T>A (g.36938224T>A) 2 - Lacaune France [6]
LEPR (NC_040252) FecDD c.185C>T R62C Davisdale New Zealand [7]

Note: 1 the mutation locations of nucleotide and amino acid changes of each gene were referred to in the current GenBank accession; 2 the mutation location of nucleotide change was
referred to in the previous GenBank accession.
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2. Materials and Methods

2.1. Ethics Standards

The animal care and experiments were conducted according to the Administration of Affairs
Concerning Experimental Animals (Ministry of Science and Technology, 2004) of China. The protocol
was approved on 15/05/2015 by the Institutional Animal Care and Use Ethics Committee of Inner
Mongolia University, with the permit number for conducting animal experiments of (IMU-2015-03).

2.2. Animals

The total of 260 purebred Mongolia (MG) sheep were sampled from Inner Mongolian Sainuo
Grassland Sheep Industry Co., Ltd of China. The owners randomly selected more than 1000 ewes that
produced twins when they were one and two years old from many farms in the Sonid Right and Left
Banners, and the Dorbod Banner of Inner Mongolia of China in 2011. Since then, the ewes that produce
twins were left, and the ewes that produce a single lamb were removed from group. All matings
were natural in autumn from 2011 to 2013. There was no specific ram used for mating from 2011 to
2013. Until 2014, the 77 MG-T (twins) that stably produced twin lambs were alive and sampled for
genotyping. The ewes that stably produced a single lamb were randomly sampled from many farms
in the Sonid Left Banner and the Dorbod Banner. There was no genetic relationship among ewes
and crossbreeding with any other sheep breed. All of the Mongolia sheep were raised under similar
conditions of free access to food and water.

In addition, 30 Hulunbuir sheep (big tail type) (HBB) ewes and 30 Hulunbuir sheep (short tail type)
(HBS) ewes were collected from Old Barag Banner and Evenk Banner of Inner Mongolia, 36 Ujimqin
(UM) sheep ewes were collected from East Ujimqin Banner of Inner Mongolia, and 30 small-tailed Han
(STH) sheep ewes and 30 Hu sheep ewes were collected from Zhengzhou of Henan Province, China.
There was no strong bias for a specific father or a specific maternal grandfather of the ewes within each
sheep breed, and the animal panel for each breed likely represents a random sample of the population
of each sheep breed. The information of the six sheep breeds is shown in Table 2.

Table 2. Information of six sheep breeds selected for genotyping. MG-T, Mongolia twins.

Breed Abbreviation Number of Ewes Type

Mongolia MG 260 (single lamb 183 +
twin lambs 77 (MG-T)) Single birth

Hulunbuir (big tail type) HBB 30 Single birth
Hulunbuir (short tail type) HBS 30 Single birth

Ujimqin UM 36 Single birth
Small-tailed Han STH 30 Multiple birth

Hu Hu 30 Multiple birth

Ten milliliters of blood was collected from each ewe and used for variants sequencing and
genotyping. Genomic DNA samples of total 416 sheep were extracted from blood samples with
a TIANamp Blood DNA kit (TIANGEN Biotech, Beijing, China). The quality and quantity of the
extracted DNA were evaluated using a NanodropR spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and by agarose gel electrophoresis.

2.3. Re-Sequencing and Variants Detection in GDF9

Twenty ewes (13 ewes that stably produced twin lambs and seven ewes stably produced a single
lamb) were used to detect variants in the GDF9 gene of MG. Ovine specific PCR primers were designed
using Premier Primer 5.0 software (Premier Biosoft International, Palo Alto, CA, USA) and the National
Center for Biotechnology Information (NCBI) primer BLAST tool was applied to amplify the full length
of the GDF9 gene, according to the ovine GDF9 DNA sequence (NCBI reference sequence: NC_040256)
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(Table S1). PCR amplifications were performed with 25 ng of the prepared DNA as a template in a final
volume of 50 µL containing 1 µM of each primer, 0.25 mM of each dNTP, 5 µL of 10 × La Taq buffer II,
and 1.0 U of Taq DNA polymerase (Takara, Dalian, China). The PCR conditions were as follows: 95 ◦C
for 3 min, 35 cycles of 98 ◦C for 1 min, annealing for 30 s, 72 ◦C for 45 s, and a final extension step at 72
◦C for 10 min. The annealing temperatures for each fragment are shown in Table 2. The PCR products
were analyzed by 1.0% agarose gel electrophoresis to determine DNA sequencing quality and quantity.
The products were sequenced by the Beijing Genomics Institute (BGI, Beijing, China). Variant calling
was run in Sequencher v. 4.5 (Gene Codes Corporation, Ann Arbor, MA, USA). Annotations of the
detected variants were verified in the NCBI database.

2.4. Genotyping

2.4.1. iPLEX MassARRAY

The FecXR, FecXGr, FecXO, and FecXBar in BMP15, and the FecGT, FecGV, FecGA, and FecG1 in
GDF9 genes, were genotyped with the MassARRAY® SNP genotyping system (Agena Bioscience, San
Diego, CA, USA) in the 260 MG population. PCR and extension primers were designed from sequences
containing each target mutation and ~100 upstream and downstream bases with Assay Design Suite
(http://agenabio.com/assay-design-suite-20-software) using the default settings. The genotype of each
allele was analyzed using the Sequenom MassARRAY iPLEX platform [37]. The resulting data were
analyzed using the MassARRAY Typer 4.0 Analyzer software (Agena Bioscience, San Diego, CA, USA).

2.4.2. PCR-Restriction Fragment Length Polymorphism (RFLP)

The FecBB in BMPRIB; the FecXB, FecXG, FecXH, and FecXI in BMP15; as well as the FecGH, FecGE,
and FecGF in GDF9 were genotyped using the PCR-restriction fragment length polymorphism (RFLP)
method, as described previously [3,5,19] (Table S2), in the 260 MG population.

2.4.3. Direct Sequencing

The FecXL mutation in BMP15 was genotyped using direct sequencing [14] (Table S2) in the 260 MG
population. The variants g.46544883A>G, c.1040T>C, g.46547859C>T, g.46547876C>T, g.46547934T>G,
g.46548061A>G, g.46548232A>G, g.46548307C>T, g.46548326C>T, and g.46548349T>C, according to the
Chromosome 5 in OAR_rambouillet_v1.0 (GenBank accession: NC_040256), were identified during
the re-sequencing and genotyped across the 416 ewes by direct sequencing. PCR amplification
was performed as described above. The primers and the annealing temperature are shown in
Table S1. The g.46547859C>T, g.46548061A>G, and g.46548326C>T SNPs, as well as the g.46547934T>G,
g.46548232A>G, and g.46548307C>T SNPs, had strong linage disequilibrium (LD). These were validated
in this experimental MG population and named LD-M1 and LD-M2, respectively.

2.5. Promoter Activity

2.5.1. Cell Culture

Human embryonic kidney cells 293 (HEK293T) were purchased from the Chinese Academy of
Sciences (Shanghai, China) and cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen,
Carlsbad, CA, USA) with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA, USA)
and 0.5% penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA) at 37 ◦C under an atmosphere
containing 5% CO2. The cells were seeded into 96-well plates at 50,000 cells/well, and reached 80%
confluence after 24~48 h for transfection.

2.5.2. Plasmid Construction

Fragment primers for −1533, −1,292, −726, −460, −177, −110, and +49 bp (Table S3) were
designed to amplify the various lengths of the ovine GDF9 promoter region and gradually delete

http://agenabio.com/assay-design-suite-20-software
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the g.46548326C>T SNP (between −1292 and −726 bp), the g.46548061A>G SNP (between −726 and
−460 bp), and the g.46547859C>T SNP (between −460 and −177 bp) of LD-M1. The primers used to
construct the vectors containing the NheI and MluI restriction sites (NEB, Ipswich, MA, USA) are shown
in Table S3. Nine plasmids were constructed by inserting the promoters between the NheI and MluI sites
of the pGL3 Basic vector (Promega, Madison, WI, USA). Nine promoters were obtained from the DNA
templates of a random sheep with the C allele at the g.46547859C>T, the C allele at the g.46547876C>T,
the T allele at the g.46547934T>G, the A allele at the g.46548061A>G, the A allele at the g.46548232A>G,
the C allele at the g.46548307C>T, the C allele at the g.46548326C>T, and the T allele at the g.46548349T>C
SNP, except for the −460 bp fragment with the T allele at the g.46547859C>T SNP, which was derived
from the other sheep. The −726 bp fragment with the G allele at the g.46548061A>G SNP and the
−1292 bp fragment with the T allele at the g.46548326C>T SNP were amplified from the same sheep by
primers with mutated allele (Table S3). Colonies were selected in LB supplemented with ampicillin.
Sanger sequencing was used to validate the sequences of the resulting constructs. The recombinant
plasmids were named pGL3-1533, pGL3-1292-C, pGL3-1292-T, pGL3-726-A, pGL3-726-G, pGL3-460-C,
pGL3-460-T, pGL3-177, and pGL3-110, respectively, and numbered relative to the first base of the ATG
codon in the ovine GDP9 gene (NCBI reference sequence No. NC_040256).

2.5.3. Luciferase Reporter Assay

Differences in promoter activity caused by variations in promoter length, LD-M1 sites, and alleles
at each SNP of LD-M1 were measured by luciferase assay. HEK293T cells were transfected with
DNA for each reporter plasmid and incubated in a 96-well plate. For the promoter assays, each
of the seven reporter plasmids and the TK-Renilla reporter were co-transfected into HEK293T cells
with Lipofectamine™ LTX and PLUS™ reagents (Invitrogen, Carlsbad, CA, USA). Transfections were
incubated for 48 h at 37 ◦C in growth medium (DMEM + 10% FBS). Firefly and Renilla luciferase activity
levels were measured after 48 h transfection with a Dual Luciferase Report Array System (Promega,
Madison, WI, USA) in a Varisskan Flash Microplate Reader (Thermo Fisher Scientific, Waltham, MA,
USA) according to the manufacturers’ protocols. The firefly luciferase activity levels in each well were
normalized by those for Renilla luciferase. There were three replicates per experiment and each assay
was performed thrice.

2.6. Bioinformatics Analysis

The core promoter was predicted with the Promoter v. 2.0 Prediction Server (http://www.cbs.dtu.
dk/services/Promoter/). The transcription factor (TF) binding sites in the GDF9 promoter were identified
with JASPAR (http://jaspar.genereg.net/) [38] using standard settings for the highest matrix similarity.
Alignment of the wild-type sequence in various species of Phe347Ser mutation was performed with
Clustal Omega using UniProt (http://www.uniprot.org) online tools. PROVEAN 1.1 online software
(http://provean.jcvi.org/seq_submit.php) predicts whether a protein sequence variation affects protein
function based on alignment of clusters of closely related sequences generating a PROVEAN score.
If the PROVEAN score is equal to or less than a predefined threshold (−2.5 in this study), the protein
variant is predicted to have a deleterious effect [39]. PolyPhen-2 (Polymorphism Phenotyping v2)
(http://genetics.bwh.harvard.edu/pph2/) is a sequence and structure-based method that determines the
structural and functional consequences of non-synonymous SNPs. PolyPhen-2 calculates the posterior
probability that a non-synonymous SNP is damaging by a Bayesian classifier [40]. The conservation
of a position in the multiple sequence alignment and the deleterious effect on the protein structure
results in the position-specific independent count score that ranges from 0 to 1. The classification of the
non-synonymous SNPs results in possibly damaging and probably damaging (PSIC > 0.5) or benign
(PSIC < 0.5). Homology modeling of ovine GDF9 was performed with the Advanced Homology
Modeling Tool [41] in Maestro program [42] of Schrodinger platform. The crystal structure of human
GDF11 (sequence identity 24%, both in TGF-β domain family) was used as a template for modeling
(PDB ID: 5E4G [43]).

http://www.cbs.dtu
http://jaspar.genereg.net/
http://www.uniprot.org
http://provean.jcvi.org/seq_submit.php
http://genetics.bwh.harvard.edu/pph2/
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2.7. Statistical Analysis

Genotypic and allelic frequencies and Hardy–Weinberg equilibria were calculated for MG, HBB,
HBS, UM, STH, and Hu breeds. Population genetic indices, gene heterozygosity (He), effective allele
numbers (ne), and polymorphism information content (PIC) were calculated by Nei’s methods [44].
The allelic frequency of each SNP was compared by a χ2 test. The LD, including D’ and r2, was assessed
with HAPLOVIEW v. 4.2 [45]. Haplotypes were obtained using SHEsis [46]. The genetic effects of
each SNP or haplotype on litter size of MG were analyzed by one-way analysis of variance (ANOVA)
followed by a Tukey multiple comparison test. Luciferase assay results are presented as means ±
SD with ≥3 independent replications. Significant differences among groups were identified with
independent sample t-tests.

3. Results

3.1. Association Analysis of 19 Known Variants with Litter Size in Mongolia Sheep

None of the FecXB, FecXG, FecXH, FecXI, FecXL, FecXO, FecXR, FecXBar, and FecXGr in BMP15, as well as
the FecGE, FecGF, FecGT, FecGH, and FecGV in GDF9 gene, were detected in this experimental MG population,
except for the FecBB in BMPRIB, as well as the FecG1 and FecGA in GDF9. Ten AG heterozygotes of the FecBB

mutation were found in MG ewes that stably produced twin lambs (Figure 1a). Statistically significant
differences between AG and AA genotypes were identified in the litter size of MG (p < 0.001) (Figure 1b).
The distribution of the well-characterized G allele frequency of the FecBB mutation was very low in the MG
ewes and significantly lower than those in the STH [9,10] (Table 3; Figure 1c). The G allele frequency of
the FecBB mutation in 77 MG-T was significantly lower than those in the STH and Hu sheep (p < 0.001)
and significantly higher than those in the 260 MG (p < 0.01) (Figure 1c). No evidence of the relationship
between the FecG1 and FecGA of GDF9 and litter size of MG was exhibited (p > 0.05). The genetic indices of
FecBB, FecG1, and FecGA in MG are shown in Table 3.

Figure 1. Genotyping and association analysis of FecBB in Mongolia sheep. (a) The result of
PCR-restriction fragment length polymorphism (RFLP) for FecBB is shown. (b) The litter size of
Mongolia (MG) ewes with the AG are significantly higher than the MG ewes with the AA genotype. (c)
The allelic frequency of the G allele in Mongolia sheep (MG, 0.019) is significantly lower than those in
the 77 ewes (MG-T) that stably produced twin lambs, small-tailed Han sheep (STH, 0.729, [9]), and Hu
sheep (1.000, [10]) breeds. ** p < 0.01, *** p < 0.001.

Table 3. Genotypic, allelic frequencies, and diversity parameters of FecBB, FecG1, and FecGA in
Mongolia sheep.

Mutations Genotypic Frequencies Allelic Frequencies Diversity Parameters

GG AG AA G A Ho He ne PIC 1 χ2 (HWE 2)

FecBB 0.000 0.038 0.962 0.019 0.981 0.962 0.038 1.039 0.037 0.100
FecG1 0.004 0.104 0.892 0.056 0.944 0.895 0.105 1.118 0.100 0.051
FecGA 0.854 0.138 0.008 0.923 0.077 0.858 0.142 1.166 0.132 0.163

Note: Ho, observed heterozygosity; He, expected heterozygosity; ne, effective allele numbers; PIC, polymorphism
information content; HWE, Hardy–Weinberg equilibria; 1 the classification was conducted according to the PIC
values (PIC value < 0.25, low polymorphism; 0.25 < PIC value < 0.5, moderate polymorphism; and PIC value > 0.5,
high polymorphism); 2 no Hardy–Weinberg departure was detected from the obtained genotype frequencies.
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3.2. Variants Discovery in GDF9 of Mongolia Sheep

The sequence analysis revealed 10 SNPs in the GDF9 gene of MG. Among them were eight SNPs
(g.46547859C>T, g.46547876C>T, g.46547934T>G, g.46548061A>G, g.46548232A>G, g.46548307C>T,
g.46548326C>T, and g.46548349T>C) in the promoter region, one novel single nucleotide mutation
(c.1040T>C) in exon 2, and one SNP (g.46544883A>G) in the 3’ untranslated region (3’ UTR) of the
GDF9 gene (Figure 2a,b).

Figure 2. Identification of variants in the ovine GDF9. (a) The physical locations of each
of the 10 variants identified in this study are shown. The g.46544883A>G (rs409657477),
c.1040T>C (rs589708049), g.46547859C>T (rs428242918), g.46547876C>T (rs591690695), g.46547934T>G
(rs406740996), g.46548061A>G (rs400597589), g.46548232A>G (rs411447528), g.46548307C>T
(rs401365297), and g.46548326C>T (rs412658916) variants were submitted to the National Center for
Biotechnology Information (NCBI) dbSNP (https://www.ncbi.nlm.nih.gov/snp), and the g.46548349T>C
SNP at the −882 upstream from GDF9 transcription initiation site was the novel SNP that was first
discovered in this study. (b) Nucleotide substitutions of the 10 GDF9 variants are shown. The variant
sites were according to Chromosome 5 in OAR_rambouillet_v1.0 (GenBank accession: NC_040256). 3’
UTR, 3’ untranslated region.

https://www.ncbi.nlm.nih.gov/snp
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The c.1040T>C mutation in exon 2 of the GDF9 gene caused an amino acid change from
Phenylalanine to Serine at 347 position (Phe347Ser) in GDF9 protein. The c.1040T>C mutation
was predicted to have a deleterious effect on protein function with a PROVEAN score of −2.934
(cut off = −2.5) and was predicted to be “possibly damaging” with a score of 0.810 in Polyphen-2.
The Phenylalanine at residue 347 in sheep GDF9 is related and highly conserved among vertebrates
ranging from fish to mammals, except humans (Figure 3a). Homology modeling showed F347 resides
at a loop close to the homodimer interface (Figure 3b). Therefore, mutation to serine (hydrophilic and
smaller in size) may interrupt the dimer formation, and thus affect the function of GDF9.

Figure 3. Alignment of the wild-type sequence in various species and three-dimensional illustration
of the c.1040T>C mutation in GDF9 protein. (a) GDF9 multispecies alignment in the region of the
Phe347Ser (F347S) mutation. GDF9 amino acid sequences of each species were obtained from the
Uniprot database. (b) Homology model of GDF9 homodimer (chain A, color orange; chain B, color
green). The position of F347 (shown as spheres) is close to the homodimer interface, thus mutation to
serine (shown as black sticks) may interrupt the dimer formation.

3.3. Linkage Disequilibrium Analysis of Novel Variants in GDF9

To identify the linkage relationships among the 10 SNPs, D’ and r2 were estimated for each sheep
breed population of all 416 animals. The resulting r2 indicated that the g.46547859C>T, g.46548061A>G,
and g.46548326C>T SNPs, as well as the g.46547934T>G, g.46548232A>G, and g.46548307C>T SNPs,
were in nearly complete LD (Figure 4a–f) for these experimental sheep breed populations, as r2 >

0.33 indicates LD [47]. Thus, these two LD groups were analyzed together and marked as a single
locus, designated LD-M1 and LD-M2. D’ and r2 for each sheep breed are shown in Table S4.



Genes 2020, 11, 375 10 of 19

Figure 4. Linkage disequilibrium (LD) estimated among GDF9 variations in six sheep
populations. The r2 values indicated that the group of the g.46547859C>T, g.4654806146548061A>G,
and g.46548326C>T SNPs, as well as the group of the g.46547934T>G, g.46548232A>G,
and g.46548307C>T SNPs, were in LD in the experimental populations of Mongolia sheep (MG)
(a), Hulunbuir sheep (big tail type, HBB) (b), Hulunbuir sheep (short tail type, HBS) (c), Ujimqin sheep
(UM) (d), small-tailed Han sheep (STH) (e), and Hu sheep (f), respectively. The values in the boxes are
pair-wise SNP correlations (r2). The values of D’ and r2 are also shown in Table S4.

3.4. Associations Between Novel Variants and Litter Size

Owing to the effect of FecBB on the litter size of Mongolia sheep, the 10 ewes with the FecBB mutation
were removed from statistical analysis. The effects of the g.46544883A>G SNP, c.1040T>C mutation,
g.46547859C>T SNP of LD-M1, g.46547934T>G SNP of LD-M2, g.46547876C>T SNP, and g.46548349T>C
SNP on litter size were analyzed in 250 Mongolia sheep ewes. For the g.46547859C>T SNP of LD-M1,
there were only two ewes with the TT genotype. Therefore, their associations and effects could not be
reliably estimated and they were excluded from the analysis. The mean litter size of the ewes with
the CT genotype was significantly higher (0.35 additional lambs, p < 0.001) than those with the CC
genotype (Table 4). For the c.1040T>C mutation, no CC homozygote was detected in our experimental
MG population. The MG ewes with the genotype TC had 0.28 (p < 0.05) more lambs than those
with the genotype TT (Table 5). For the g.46544883A>G SNP, two ewes with the GG genotype were
excluded from our statistical analysis. The MG ewes with the heterozygous mutant AG genotype had
0.22 (p < 0.01) more lambs than those with the AA genotype. No significant difference between the
g.46547934T>G SNP of LD-M2, g.46547876C>T as well as g.46548349T>C SNPs and litter size was
detected in this experimental MG sheep population (Table 4).
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Table 4. Effect of the genotypes of the six variants of GDF9 on the litter size in Mongolia sheep. LD,
linkage disequilibrium.

Variant Genotype Number Litter Size

g.46548349T>C TT 240 1.28 a
± 0.20

TC 10 1.10 a
± 0.10

g.46547934T>G in LD-M2 TT 156 1.22 a
± 0.17

GT 85 1.36 a
± 0.23

GG 9 1.22 a
± 0.19

g.46547876C>T CC 234 1.27 a
± 0.20

CT 16 1.25 a
± 0.20

g.46547859C>T in LD-M1 CC 204 1.21 a
± 0.16

CT 44 1.57 b
± 0.25

c.1040T>C TT 233 1.25 e
± 0.19

TC 17 1.53 f
± 0.26

g.46544883A>G AA 191 1.22 c
± 0.17

AG 57 1.44 d
± 0.25

Note: a, b: p < 0.001; c, d: p < 0.01; e, f: p < 0.05.

Table 5. Main haplotypes and their frequencies of GFD9 in Mongolia sheep.

Haplotype g.46548349T>C g.46547934T>G
in LD-M2 g.46547876C>T g.46547859C>T

in LD-M1 c.1040T>C g.46544883A>G Frequency

H1 T T C C T A 0.734
H2 T G C C T A 0.080
H3 T G C T T G 0.072

3.5. Associations Between Haplotypes and Litter Size

To further analyse the associations between haplotypes and litter size, different haplotypes were
constructed in the experimental population of Mongolia sheep using the online tool SHEsis, so as to
perform haplotype-based association analysis. A haplotype with a frequency of >5% was considered
as a distinguishable haplotype, while the haplotypes with relative frequency of <5% were pooled
into a single group. Thus, haplotype 1 (TTCCTA, H1) had the highest frequency (0.734), followed by
haplotype 2 (TGCCTA, H2, 0.132) and haplotype 3 (TGCTTG, H3, 0.116) (Table 5). By haplotype-based
association analyses, we found that the H1H3 had 0.39 (p < 0.05) more lambs than those with the H1H1,
and 0.47 (p < 0.001) more lambs than those with the H1H2 (Table 6).

Table 6. Associations between haplotypes of GDF9 and mean litter sizes in Mongolia sheep.

Haplotype Number Frequency Litter Size

H1H1 129 0.516 1.20 a
± 0.16

H1H2 33 0.132 1.12 c
± 0.11

H1H3 29 0.116 1.59 bd
± 0.25

Note: a, b: p < 0.05; c, d: p < 0.001.

3.6. Genetic Diversity Analysis

For each variant, the frequencies of the two alleles and the three genotypes in the MG, HBB,
HBS, UM, STH, and Hu sheep breeds are listed in Table S5, as are the genetic indices (Ho, He, ne,
and PIC). No significant departures at the 5% level were detected by any test for each variant (Table S5).
The frequencies of the T allele, C allele, and G allele in the three variants (g.46547859C>T, c.1040T>C,
and g.46544883A>G, respectively), which were associated with litter size of MG, showed a related
low distribution in each sheep breed, as well as the values of PIC of the three variants presented with
related low polymorphism in each sheep breed [48] (Table S5). In addition, the frequency of the T
allele in the g.46547859C>T SNP of LD-M1 was significantly higher in MG-T than that in MG (p < 0.01)
(Table S6).
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3.7. GDF9 Promoter Activity Analysis in HEK293T

To investigate GDF9 promoter activity, the recombinant plasmids pGL3-1533, pGL3-1292-C,
pGL3-726-A, pGL3-460-C, pGL3-177, and pGL3-110 were synthesized and transfected into HEK293T
cells. The luciferase reporter assay revealed that, when the GDF9 promoter was deleted to
−177 bp, its activity was significantly increased than −460, −726, −1292, and −1533 bp (p < 0.01) in
HEK293T (Figure 5). There was no significant difference of luciferase activity between pGL3-177 and
pGL3-110 (Figure 5). Moreover, the luciferase activities of the pGL3-1533, pGL3-1292-C, pGL3-726-A,
and pGL3-460-C were significantly lower than those of the control (p < 0.01) in HEK293T (Figure 5).
Thus, the DNA sequence from −177 bp to −460 bp could influence GDF9 promoter activity in
the HEK293T.

Figure 5. GDF9 promoter activity analysis in HEK293T. The g.46547859C>T, g.46548061A>G,
and g.46548326C>T SNPs were in LD of Mongolia sheep populations, designated LD-M1.
Luciferase reporter assay used the recombinant plasmids pGL3-1533, pGL3-1292-C, pGL3-726-A,
pGL3-460-C, pGL3-177, and pGL3-110, and the g.46548326C>T, g.46548061A>G, and g.46547859C>T
SNPs of LD-M1 is located between −1292 and −726, −726 and −460, and −460 and −177 bp upstream,
respectively, of GDF9 translation initiation site. Luciferase activities of different GDF9 promoter
fragments are shown on the right panel. Results are shown as mean± SD and the data are representative
of at least three independent assays. The statistically significant difference between groups was tested
by independent sample t-test. * p < 0.05, ** p < 0.01.

3.8. Effect of the LD-M1 on GDF9 Promoter Activity

The g.46548326C>T, g.46548061A>G, and g.46547859C>T SNPs of LD-M1 are located between
−1292 and −726 bp, −726 and −460 bp, and −460 and −177 bp upstream, respectively, of the GDF9
translation initiation site (TIS). The luciferase activity of pGL3-460-T was significantly higher than
that of pGL3-460-C (p < 0.01), and higher than the control (p < 0.05) in the HEK293T (Figure 6a).
There was no significant difference of luciferase activity between the pGL3-1292-C and pGL3-1292-T,
as well as the pGL3-726-A and pGL3-726-G (Figure 6a). In silico analysis showed that the C allele at
the g.46547859C>T SNP may have induced binding of TF MAF bZIP transcription factor B (MAFB),
E2F transcription factor 1 (E2F1), and Spi-C transcription factor (SPIC) (Figure 6b). In contrast,
the substitution from C to T allele at the g.46547859C>T SNP constitutes the binding motif of the paired
box 2 (PAX2) TF (Figure 6b), and may play a prominent role in the regulation of transcription activities.
Data for these TFs are listed in Table S7.
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Figure 6. Effect of the LD-M1 on promoter activity of ovine GDF9. (a) Luciferase activity results
showed that the C allele at the g.46547859C>T SNP could decrease promoter activity than T allele.
Results are shown as mean ± SD and the data are representative of at least three independent assays.
The statistically significant difference between groups was tested by independent sample t-test. *
p < 0.05, ** p < 0.01. (b) Prediction of transcription factor binding motif in conserved sequence including
the g.46547859C>T SNP site.

4. Discussion

4.1. Source of FecBB Mutation in Mongolia Sheep Populations

The source of the FecBB mutation in MG population is still unclear. A previous study also found
the FecBB mutation in the MG breed [28]. The existence of the FecBB mutation in the purebred MG
population of this study should be the result of large collections at the beginning, ongoing selection,
and retention from 2011 to 2013 by the owner. However, this speculation still needs additional MG
population to be proven. Although the G allelic frequency was higher in 77 MG-T than that in MG,
it was still significantly lower than those in STH and Hu sheep (Figure 1c). Most modern Chinese sheep
breeds have a relationship to MG, including high prolificacy breed, STH, and Hu sheep [25]. More than
2000 years ago, with the development of free trade, inter-ethnic war, and the southward migration of
steppe tribes, a large number of populations had moved south of the Great Wall. Records suggest that
traders brought MG to Zhejiang, Jiangsu, Hebei, Henan, and Shandong provinces as early as the 5th
century AD [49], and Hu (Zhejiang and Jiangsu) and STH (Hebei, Henan, and Shandong) sheep are
presently concentrated in these provinces of China. As a result of the microclimates, environments,
feeding conditions, and artificial selection pressure to which they have been subjected, STH and
Hu sheep have evolved high prolificacy [50,51] with the causative mutation FecBB [28]. In addition,
the HB (HBB and HBS) and UM sheep of the grasslands of Inner Mongolia are relatively closer to MG
(genetically speaking), because they share the same natural environment and cultural background.
The LD-M1 and LD-M2 identified for MG have strong linkage disequilibria in HB, UM, STH, and Hu
breeds or populations possibly because they share MG as their common ancestor. The well-known
mutations FecGH, FecGE, and FecGF were not detected in our experimental MG population. These results
are consistent with a previous study [29].

4.2. Identification and Distribution of Novel Variants

Our current study firstly describes the identification of previously unreported variants
in GDF9, although the g.46544883A>G (rs409657477), c.1040T>C (rs589708049), g.46547859C>T
(rs428242918), g.46547876C>T (rs591690695), g.46547934T>G (rs406740996), g.46548061A>G
(rs400597589), g.46548232A>G (rs411447528), g.46548307C>T (rs401365297), and g.46548326C>T
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(rs412658916) variants had been submitted to NCBI dbSNP (https://www.ncbi.nlm.nih.gov/SNP/

snp_viewBatch.cgi?sbid=1059601) through an International Sheep Genomics Consortium project
(http://www.sheephapmap.org/participants.php), which discovered SNP from the whole genome
sequence of 68 domestic sheep from 44 breeds and 5 wild sheep. Our present study is the first to
discover the g.46548349T>C SNP at −882 bp upstream from the GDF9 TIS. Five breeds or populations
other than MG exhibited comparatively low genetic diversity because of their small population sizes.

4.3. Novel Variants and Haplotypes in Mongolia Sheep

The g.46544883A>G in 3’ UTR and c.1040T>C in exon 2, as well as the g.46547859C>T,
g.46548061A>G, and g.46548326C>T variants of LD-M1 in promoter of GDF9, are the first variants
confirmed to be associated with litter size of the MG. In particular, the r2 indicated that the
g.46544883A>G and g.46547859C>T SNPs were in related low LD (0.46; Figure 4a; Table S4) in
the experimental MG population, as r2 > 0.33 [47]; on the contrary, the c.1040T>C mutation was not
linked to the other two variants. However, we should note that the g.46544883A>G in 3’ UTR maybe
regulate the expression of GDF9 via a microRNA to effect the ovulation rate and litter size in sheep.
Among the three variants, only the allelic frequency of the T allele in the g.46547859C>T SNP was
significantly higher in MG-T than that in MG (Table S6). This result suggests that the significant increase
of the T allelic frequency of g.46547859C>T SNP in MG-T may be because of the ongoing selection and
retention from 2011 to 2013. For c.1040T>C mutation, no difference of the C allele frequency between
MG and MG-T was observed, possibly owing to the very low frequency of the C allele (0.033 in MG).

The results of haplotype-based association analyses further proved the effect of the g.46547859C>T
SNP of LD-M1. Because only the H3 haplotype has the T allele for the g.46547859C>T SNP of LD-M1,
the significant association with litter size of MG was obtained in H1H3. Furthermore, because the
frequencies of haplotypes including the C allele of the c.1040T>C mutation were 0.007 (TAGCCCA),
0.010 (TAGCCCG), 0.010 (TATCCCA), 0.004 (TATCCCG), 0.002 (CATTCCG), and 0.002 (TGGCTCG),
the C allele could not be included in the haplotype-based association analysis. Thus, the results of
single SNP and haplotype-based associations should be confirmed in a bigger sheep population in the
future study.

Meanwhile, reproduction is a complex process, and traits such as ovulation rate and litter size are
genetically affected by some major genes as well as many minor genes [35,52]. Drouilhet et al. [53]
reported the combined effect of FecXL (affecting BMP15) and FecLL (affecting B4GALNT2) in Lacaune
sheep. In the same manner, FecBB (affecting BMPRIB) and FecXG (affecting BMP15) combined to
influence litter size in STH sheep [9]. Additionally, the g.25921552C>T (C482T, NC_040262.1) and
g.25935026C>T (C865T; NC_040262.1) in the B4GALNT2 gene also have effects on litter size in STH
sheep [54]. These findings suggested that there are multiple mechanisms in the genetically regulated
ovulation and reproductive traits in the various sheep breeds. Indeed, this study showed that the
FecBB was associated with litter size in MG, although there was an extra-low allelic frequency of the
FecB mutation in MG ewes with twin lambs. Simultaneously, we found that the g.46544883A>G SNP in
3’ UTR, the c.1040T>C in exon 2, as well as the g.46547859C>T SNP in the promotor of GDF9 were
significantly associated with litter size in MG. Together with the results of this study, we speculated that
the MG breed could be genetically regulated by a set of different genes, each having a small effect as in
the Romanov sheep breed [55]. Hence, the results of the present study could be used in marker-assisted
selection to increase mean litter sizes in MG populations and other low-prolificacy breeds.

4.4. Possible Effect of c.1040T>C Mutation of GDF9

GDF9 is member of the TGF-β family, which encodes prepropeptides containing a signal
peptide, a proregion, and a C-terminal mature region that is the biologically active peptide.
However, the GDF9 protein lack the cysteine residue in the mature domain responsible for dimeric
covalent binding [56], giving rise to the possible formation of non-covalently associated homo- or
heterodimers [57]. The FecGH (Ser395Phe) in GDF9 associated with ovulation rate and sterile in the

https://www.ncbi.nlm.nih.gov/SNP/snp_viewBatch.cgi?sbid=1059601
https://www.ncbi.nlm.nih.gov/SNP/snp_viewBatch.cgi?sbid=1059601
http://www.sheephapmap.org/participants.php
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Belclare and Cambridge breeds, which introduces a non-conservative amino acid change, is thought
to disrupt interaction with a type 1 TGF-β family receptor [5]. Subsequently, the FecGV (Arg315Cys),
which affected ovulation rate and litter size in Ile de France ewes, provokes a residue change in the
cleavage site for the proprotein convertase subtilisin kexin proteases, highlighting the necessity of the
proteolytic processing for the biological activity of GDF9 [23]. Further, the FecGE (Phe345Cys) has been
linked to an increased ovulation rate when ewes are homozygous for the nonconservative change
in an amino acid predicted to be involved in dimer formation [19,58]. The c.1040T>C (Phe347Ser)
found in our current study is close to FecGE (Phe345Cys) mutation, and also exhibited that mutation to
serine may interrupt the dimer formation. Furthermore, the c.1040T>C may have a deleterious effect
or be “possibly damaging” on protein function, which was predicted by PROVEAN and Polyphen-2,
respectively. We hypothesize that this c.1040T>C mutation may reduce or abolish biological activity by
predisposing GDF9 to dimer instability. Because the 77 MG-T that stably produced twin lambs were
retained from more than 1000 ewes that produced twins from many farms, together with the in silico
analysis, suggesting that there was a high selective pressure on the 77 MG-T, thus the association is
likely to be true. In addition, there were two ewes with CT genotype and 15 ewes with CC genotype of
the g.46547859C>T SNP of LD-M1 in the 17 ewes with TC genotype of the c.1040T>C, together with the
c.1040T>C mutation, which was not linked to the g.46547859C>T SNP of LD-M1 in the experimental
MG population, suggesting that the MG breed may be have a different regulatory mechanism in
reproductive traits.

4.5. Effect of Variants on Promoter Activity of GDF9

The expression levels of ovine GDF9 were shown to be higher in both fetal and adult ovaries
when compared with expression in other tissues [59]. In this study, we performed the luciferase
reporter assay for investigating the promoter activity of GDF9 using HEK293T cell line. The results
implied that the fragment between –460 and –177 bp could be considered as a key region that could
influence GDF9 promoter activity, and the fragment between –110bp and TIS might be a minimal core
promoter regulating the expression of GDF9 in the HEK293T cells. Although, some studies perform
GDF9 promoter luciferase in the HEK293 cell line [60,61], the results of GDF9 promoter activity in this
study could not truly restore the condition in the oocyte because the HEK293T cell line is of kidney
origin. Up to now, all proven mutations affecting the ovulation rate in sheep negatively affect the
BMP/GDF signaling system as a causal mechanism [58,62]. The luciferase activity of pGL3-460-T is
significantly higher than the control in HEK293T cells and the T allele associated with a large litter size.
This opposite result is likely owing to the experiment of luciferase reporter assay performed in the
HEK293T. Our hypothesis is that the g.46547859C>T SNP might be a site to control the preferential
expression of GDF9 in the oocyte. Nevertheless, this hypothesis still requires further experiments in
ovine oocyte. This study identified eight SNPs in the GDF9 promoter, giving new possibilities for
further studies in promoter activity and expression level of GDF9.

5. Conclusions

The results of the present study suggest that the g.46544883A>G (rs409657477), c.1040T>C
(rs589708049), and g.46547859C>T (rs428242918) variants of the GDF9 gene may influence litter size in
Mongolia sheep populations. The effect of the c.1040T>C mutation might interrupt the dimer formation
of GDF9, which is the biologically active form of the protein. The results of this study, particularly
the GDF9 SNP (g.46547859C>T, c.1040T>C, and g.46547859C>T), could be applied in marker-assisted
selection for the purpose of increasing the mean litter sizes in Mongolia sheep.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/4/375/s1.
Table S1. Primers used for re-sequencing and genotyping. Table S2. PCR primers and restriction enzymes used for
PCR-RFLP and sequencing. Table S3. Primers used for vector construction. Table S4. Linkage disequilibrium
as measured by D’ and r2 among variants in the six sheep populations. Table S5. Genotypic, allelic frequencies,
and diversity parameters of each variant in six sheep populations. Table S6. Statistical significance for differences
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in the allele frequency of each variant among six sheep populations. Table S7. The different potential cis-acting
elements between C and T alleles at the g.46547859C>T SNP of ovine GDF9 promoter.
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