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ABSTRACT
Proteins are the most versatile macromolecules in living systems and perform crucial
biological functions. In the advent of the post-genomic era, the next generation
sequencing is done routinely at the population scale for a variety of species.
The challenging problem is to massively determine the functions of proteins that are
yet not characterized by detailed experimental studies. Identification of protein
functions experimentally is a laborious and time-consuming task involving many
resources. We therefore propose the automated protein function prediction
methodology using in silico algorithms trained on carefully curated experimental
datasets. We present the improved protein function prediction tool FunPred 3.0,
an extended version of our previous methodology FunPred 2, which exploits
neighborhood properties in protein–protein interaction network (PPIN) and
physicochemical properties of amino acids. Our method is validated using the
available functional annotations in the PPIN network of Saccharomyces cerevisiae
in the latest Munich information center for protein (MIPS) dataset. The PPIN
data of S. cerevisiae in MIPS dataset includes 4,554 unique proteins in 13,528
protein–protein interactions after the elimination of the self-replicating and the
self-interacting protein pairs. Using the developed FunPred 3.0 tool, we are able to
achieve the mean precision, the recall and the F-score values of 0.55, 0.82 and
0.66, respectively. FunPred 3.0 is then used to predict the functions of unpredicted
protein pairs (incomplete and missing functional annotations) in MIPS dataset of
S. cerevisiae. The method is also capable of predicting the subcellular localization of
proteins along with its corresponding functions. The code and the complete prediction
results are available freely at: https://github.com/SovanSaha/FunPred-3.0.git.

Subjects Bioinformatics, Biophysics, Computational Biology, Genomics
Keywords Protein–protein interactions, Protein interaction networks, Neighborhood approach,
MIPS Database, Protein function prediction, Physico-chemical properties

How to cite this article Saha S, Chatterjee P, Basu S, Nasipuri M, Plewczynski D. 2019. FunPred 3.0: improved protein function prediction
using protein interaction network. PeerJ 7:e6830 DOI 10.7717/peerj.6830

Submitted 20 July 2018
Accepted 21 March 2019
Published 22 May 2019

Corresponding author
Dariusz Plewczynski,
d.plewczynski@cent.uw.edu.pl

Academic editor
Yuriy Orlov

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj.6830

Copyright
2019 Saha et al.

Distributed under
Creative Commons CC-BY 4.0

https://github.com/SovanSaha/FunPred-3.0.git
http://dx.doi.org/10.7717/peerj.6830
mailto:d.�plewczynski@�cent.�uw.�edu.�pl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6830
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
Proteins with similar functions are more likely to interact. If the function of one protein
is known then the functions of the binding un-annotated protein may either be
experimentally assigned or computationally predicted (Chatterjee et al., 2011a, 2011b;
Moosavi, Rahgozar & Rahimi, 2013; Prasad et al., 2017; Saha et al., 2012, 2014; Sriwastava,
Basu &Maulik, 2015). Several computational techniques have been developed using either
the protein sequence (Ng & Henikoff, 2003), protein structure (Lee, Redfern & Orengo,
2007; Mills, Beuning & Ondrechen, 2015), protein–protein interactions (Moosavi,
Rahgozar & Rahimi, 2013; Schwikowski, Uetz & Fields, 2000; Vazquez et al., 2003; Xiong
et al., 2013), or sequence motifs or signatures (Chatterjee et al., 2011a; Chen et al., 2007;
Lichtarge, Bourne & Cohen, 1996). Protein interaction datasets are represented as
graphs (with every node corresponding to an individual protein and each edge between a
pair of nodes representing the interaction between them) can be used to assign biological
functions to a protein with an assumption that close neighbors of a protein are
functionally similar.

The protein function prediction problem is characterized by several factors like the
diversity of members for functional groups, the hierarchical relationships among functional
classes, incomplete or missing information about proteins and their functions. Thus, it
defines a complex multi-label learning problem (Jiang & McQuay, 2012; Valentini, 2014;
Zhang & Zhou, 2014). Hierarchical relationships among labels are described in Munich
information center for protein (MIPS) functional catalogue and gene ontology. Valentini
(2014) uses a binary classifier for each label according to true path rule and the funCat.
Recent work of Guoxian and the co-authors (Yu, Zhu & Domeniconi, 2015), explored the
incomplete label problem in a hierarchical manner using function correlation. Another
approach for predicting protein function, as proposed by Piovesan et al. (2015), includes the
combination of the trio: PPIN information, protein domain and sequence. In another work,
Zhao et al. (2016) invokes dynamic weighted interaction network instead of the static
one. This dynamic network is enriched with PPIN, time course gene expression data,
protein’s domain information and protein complex information which ultimately predict
function of a protein using majority ranking. While most of the predictive models highlights
on the most highly related similar proteins in the neighborhood of the test protein, Reinders,
Van Ham & Makrodimitris (2018) focuses on the less similar proteins. It is shown by
the application of label-space dimensionality reduction techniques that though these
proteins are less similar but they are quite informative and plays an important role in protein
function prediction. Another iterative algorithm is implemented by Sun et al. (2018) for
predicting protein functions. It is completely dependent on the identification of the functional
dependencies which are based on proteins and their interactions. The sequence similarity
network is another important aspect for protein function prediction, which is considered in
the development of the Effusion methodology as proposed in the work of Yunes & Babbitt
(2018). Other notable works in this field are Wang et al. (2018) and Fa et al. (2018).

All these methods discussed above have already taken protein function prediction
to the next higher level. Yet, the still-uncovered details in the study and analysis support
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the need for new computational methods exploiting the protein–protein interaction
networks for biological function identification. In our novel methodology FunPred 3.0,
the functions of test proteins are determined by analyzing the neighborhood
properties of their protein interaction network. At the same time, certain selected
physicochemical properties of amino acids are also used along with it. This task is
challenging because of several reasons; for example, large number of functional groups,
different levels of the interconnection hierarchy, proteins with multiple functional
groups, and incomplete or missing labels. In this proposed methodology, the MIPS
dataset (Mewes et al., 2002) is used. It contains protein pairs along with their
corresponding functions. At the initial phase, to estimate the effectiveness of FunPred
3.0, essential proteins are selected as test proteins. The functions of these proteins are
considered to be unknown for experimental purpose though their functions are defined
in the dataset. Then we have applied FunPred 3.0 to predict the functions of the test
proteins. Predicted functions are hence matched with the original ones to compute
precision, recall and F-score. While executing FunPred 3.0, it has been observed that 870
PPIs out of 13,528 protein-protein interactions (PPIs), that is, ∼6.4% of the overall
MIPS dataset (Mewes et al., 2002) are unpredicted, that is, either unknown or missing.
FunPred 3.0 has been also applied to predict the unannotated protein function and
protein interaction (Mamoon, Sumathy & Gajendra, 2010), and also assigning the
functional annotations for 767 PPIs out of 870 PPIs, representing circa ∼5.7% of the
overall MIPS dataset. Similar instances have been also observed in the case of the
subcellular location of proteins where 1,679 proteins out of 6,721 unique number of
proteins are still unpredicted; the subcellular localization of these proteins are still
unknown. The predicted functional annotations and subcellular localization of these
unpredicted proteins and protein pairs, respectively result in relevant biological
information, such as vital processes, diseases related mutations.

METHODOLOGY
In one of our two earlier works, Funpred-1 (Saha et al., 2014), the selection of 10% of test
proteins of the top eight functional groups from the dataset was done randomly. Top eight
functional groups were selected on the basis of maximum number of occurrences and
interactions of proteins in them. While in another, FunPred 2 (Saha et al., 2017a), protein
clusters are formed initially by the application of node and edge weight. Then 50% of
proteins from each of the formed clusters are selected as test proteins. In both the cases,
test proteins are chosen randomly. Since both these works are completely based on protein
function prediction from PPIN, so network formed for each test protein is extensively
large (up to level 2) enough to process which gradually enhances the overall computational
overhead. Randomness is basically implemented to filter out the most essential proteins
out of the entire PPIN and select them as the test protein. However, variation of test set
(i.e., proteins beyond 10% in FunPred-1% or 50% in FunPred 2) as well as application of
node and edge weight thresholds (in FunPred 2) might also play an important role in
prediction accuracy level which has not been yet tested. It may be also considered as a
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major drawback and limitation of our previous two methodologies, which FunPred 3.0
has tried to overcome. FunPred 3.0 is an extended and advanced version of FunPred 2.
The basic outlay of the both is the same, but the uniqueness of FunPred 3.0 can be defined
in a three-way approach:

1. Application of three levels of threshold for the formation of clusters and selecting all
proteins from the clusters as test set to overcome the limitations of its predecessors.

2. Incorporation of feature selection.

3. Capable of prediction of functions of unpredicted protein pairs (incomplete and missing
functional annotations) in MIPS dataset of Saccharomyces cerevisiae.

4. Capable of prediction of subcellular localization of proteins.

PPIN formed of proteins and their corresponding interactions may contain essential/
non-essential proteins as well as reliable/unreliable edges. Proteins having maximum
number of interconnected neighbors are considered as essential proteins while proteins
having less number of interconnected neighbors are considered as non-essential
ones. Presence of non-essential neighbors in the PPIN might affect the unknown
protein function prediction level accuracy. Therefore, proper identification and
elimination of non-essential proteins is needed to ensure the presence of maximum
number of essential proteins in the PPIN. In the proposed work, detection of
essential proteins is implemented by node weight. Node weight (Wang & Wu, 2013)
basically assigns a weightage score to each node or protein based on its corresponding
degree. High node weight determines essential while low node weight detects non-
essential protein. Thus, non-essential proteins are discarded from PPIN along their
corresponding edges. Even after this initial phase of PPIN refinement, there are still some
unreliable edges present in the network. Since protein clusters are formed, so it is obvious
that two nodes with an edge between them belong to the same cluster if they have
high similarity. Edge between two nodes of high similarity is considered as reliable edge
while that of low similarity is denoted as unreliable edge. In the proposed work,
detection of reliable edges is executed by edge weight. Edge weight (Wang & Wu, 2013)
also assigns a weightage score to each edge connected by two proteins in the
terminals. Assignment of edge weight to an edge depends on the number of common
neighbors between the two terminal proteins of the corresponding edge. More number
of common neighbors signifies high similarity which in turn detects reliable edges. On
the other hand, unreliable edges have low similarity since they have less number of
common neighbors. Thus, unreliable edges are identified and pruned from the PPIN.
Filtered out PPIN after these refinements, contains only essential proteins and reliable
edges, which ultimately helps in enhancing prediction accuracy level.

In newly proposed algorithm, FunPred 3.0, first detects protein cluster and then selects
all the proteins as test proteins from different predicted clusters. We have adopted
the approach of forming protein cluster as mentioned in the work of Wang & Wu (2013).
Protein clusters, thus formed, comprises of proteins belonging to any functional group.
It results in accumulating larger number of functional groups as compared with only
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eight functional groups in our previous work (Saha et al., 2014). The novel computational
method works in two stages:

1. All the unique proteins are first clustered into M mutually exclusive clusters based on
their node weight and edge weight in the overall PPIN. Node and edge weight have been
used to ensure all the most essential nodes with higher reliability are present in the
cluster and get selected as test proteins.

2. Functional annotations are then derived from the multi-level neighborhood of an
unknown protein within each cluster.

More specifically, FunPred 3.0 is categorized into two sections: FunPred 3.0_Clust and
FunPred 3.0_Pred.

FunPred 3.0_Clust uses the node weight and edge weight properties to rank and cluster
all the proteins, creating M mutually exclusive protein clusters (Wang & Wu, 2013).
The number of functional labels, associated with each interacting pair is large and in some
cases annotations in each such cluster is unpredicted (incomplete or missing). This fact
forces us to heuristically choose the node and edge weight threshold values, such that
the unlabeled proteins are associated with larger protein clusters and have many
neighborhood interactions (see Figs. 1 and 2). Three thresholds (high, medium and low)
are set for each of node and edge weight using Eq. (1) (Zhang et al., 2016).

Figure 1 Filtering of PPIN. Application of node weight and edge weight at three levels of threshold: High, Medium and Low in FunPred 3.0_Clust.
Full-size DOI: 10.7717/peerj.6830/fig-1
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Thk ¼ aþ k � s � 1� 1
1þ s2

� �
(1)

Where for node weight/edge weight, k ∈ {1, 2, 3} denotes three different thresholds, that
is, low, medium and high, respectively. a is the mean of node weight/edge weight
values of all proteins. s is the standard deviation of node weight/edge weight values of
all proteins. Proteins and edges having value less value than these node and edge weight
thresholds get discarded and are considered as non-essential proteins and unreliable edges
in the network, respectively.

The entire methodology has been described in Algorithm 1 as well as pictorially
highlighted in Figs. 1 and 2. In Fig. 1, sample Table 1 (node weight table) is formed from
the initial PPIN of yeast. Hence, node weight threshold is calculated using Eq. (1) at
three levels: high, medium and low. These thresholds are applied on the initial PPIN to
filter out three sub-networks, that is, sub-network1, sub-network2, sub-network3,
respectively at high, medium and low node weight thresholds. Respective edge weight
tables, that is, sample Table 2 (in Fig. 1), sample Table 3 (in Fig. 1), sample Table 4
(in Fig. 1) are formed from sub-network1, sub-network2, sub-network3, upon which high,
medium and low edge weight thresholds (obtained using Eq. (1)) are applied to form
pruned sub-network4, sub-network5 and sub-network3.

Figure 2 Cluster formations. Formation of clusters from refined network after application of three levels of node and edge weight threshold in
FunPred 3.0_Clust. Full-size DOI: 10.7717/peerj.6830/fig-2
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Algorithm 1 FunPred 3.0_Clust: (For formation of protein clusters which consist of essential proteins and reliable edges).

Input: Undirected PPIN G.

Output: Protein clusters at three levels of threshold: high, medium and low

Begin

//computation of node weight of G

for all nodes in G

compute node weight

//computation of node weight threshold

compute node weight threshold at three levels: high, medium and low using equation 1

//Elimination of non-essential proteins based on node weight threshold

for each level of threshold

for all nodes in G

if node weight does not exceed threshold

remove corresponding node.

//Formation of refined sub-networks Ghigh′ , Gmedium′ and Glow′ from G

G′high, G′medium and G′low consisting of only essential proteins (high node weight) are formed

//computation of edge weight of G′

for all edges in G′high, G′medium and G′low

compute edge weight

//computation of edge weight threshold

compute edge weight threshold at three levels: high, medium and low using equation 1

//Elimination of unreliable edges based on edge weight threshold

for all edges in G′high

if edge weight does not exceed high level of edge threshold

remove corresponding edge.

repeat the same for low, medium level of threshold and G′medium and G′low respectively.

//Formation of refined sub-networks G″high,high, G″medium,medium and G″low,low from

G′high, G′medium and G′low at high node and edge weight threshold, medium node and edge weight threshold, low node and edge weight
threshold respectively.

form G″high,high, G″medium,medium and G″low,low consisting of only reliable edges (high edge weight)

//Formation of clusters at three levels of thresholds

for all proteins in G″high,high

form node weight table

sort the node weight table based on the node weights

select the first protein P in the node weight table as the seed of initial cluster CM
high

i.e. CM
high = {P} where 1=<M<=W (W is the total no. of nodes in node weight table)

neighbors of P are added to CM
high provided its inclusion does not cause edge weight to fall below high edge weight threshold value

i.e. Chigh
M ¼ Pf g [ NP1

update the node edge table by eliminating all the proteins present in CM
high and continue with the next seed to form clusters in the same

way mentioned above till all the proteins in the node weight table belongs to a cluster.

repeat the same procedure for G″medium,medium and G″low,low.

End
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In Fig. 2, sample Table 5 (node weight table formed from sample Table 1 under high
threshold in Fig. 1) has been generated from refined sub-network4 which afterward is sorted
in descending order to form sample Table 6 (in Fig. 2). From sample Table 6 (in Fig. 2), first
protein having the highest node weight is selected as seed of the initial cluster. Then
corresponding level 1 neighbors of the seed are included in the cluster provided its inclusion
in the cluster does not let the edge weight to fall below the high threshold (verified using
sample Table 2 in Fig. 1). The entire initial cluster contents are discarded from sample
Table 6 (in Fig. 2) and the next cluster is formed with the next selected seed. This process
continues until all the proteins in sample Table 6 (in Fig. 2) get clustered. ThusM mutually
exclusive protein clusters are formed where 1 =< M <= N4 (N4 is the total number of
proteins present in sample Table 6 in Fig. 2). The entire procedure is repeated for refined

Table 1 Top-ranked selected physicochemical features (marked in blue and bold)-using four
classifiers based on the maximum number of hits.

Physicochemical properties Classifiers used
(Returns #5 top-ranked physicochemical properties/features)

XGBoost Random tree Extra tree Recursive feature
elimination

#Hits

Aromacity ✖ ✓ ✓ ✖ 2

Gravy ✖ ✓ ✓ ✓ 3

Instability index ✖ ✓ ✖ ✖ 1

Isoelectric point ✓ ✓ ✓ ✓ 4

Negatively charged particle ✓ ✖ ✖ ✓ 2

Positively charged particle ✓ ✖ ✓ ✓ 3

Extinction coefficient ✓ ✖ ✖ ✖ 1

Aliphatic index ✓ ✓ ✓ ✖ 3

Absorbance ✖ ✖ ✖ ✓ 1

Ip/mol weight ✖ ✖ ✖ ✖ 0

Table 2 Performance analyses of FunPred 3.0_Pred_SL.

Types of Proteins
(based on Subcellular-
localization)

Total no. of
proteins in
database

Total number of
selected annotated
proteins

Total number
of selected
essential
test proteins

Prediction accuracy
(Total no. of
matched proteins)

Prediction accuracy
(Total no. of
unmatched proteins)

Failed to
predict

Nuclear proteins 1,771 1,609 162 112 32 18

Cytoplasm proteins 1,757 1,566 191 109 51 31

Interface proteins 2,246 2,176 70 37 23 10

Table 3 Precision, recall and F-score obtained at three levels of node and edge weight threshold.

Threshold type Node weight
threshold

Edge weight
threshold

Selected test
proteins

Precision Recall F-score

High 1.072 0.110 433 0.55 0.82 0.66

Medium 1.068 0.109 433 0.55 0.82 0.66

Low 1.064 0.107 520 0.54 0.82 0.65
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sub-network5 and refined sub-network6 until M mutually exclusive protein clusters is
formed for each of them.

All the proteins belonging toMmutually exclusive protein clusters (under three levels of
thresholds: high, medium and low separately), obtained from FunPred 3.0_Clust are

Table 4 Performance analyses of FunPred 3.0 with other protein function prediction methodologies.

Methods Precision Recall F-score

FunPred 3.0 0.55 0.82 0.66

FunPred-2 (Saha et al., 2017a) 0.51 0.90 0.65

FPred_Apriori (Prasad et al., 2017) 0.64 0.66 0.65

FunPred 1.1 (Saha et al., 2014) 0.61 0.50 0.55

FunPred 1.2 (Saha et al., 2014) 0.63 0.56 0.59

Deep_GO (Kulmanov et al., 2018) 0.48 0.49 0.48

Chi-square #1&2 (Hishigaki et al., 2001) 0.20 0.25 0.22

Chi-square #1 (Hishigaki et al., 2001) 0.25 0.27 0.26

Neighborhood counting #1&2 (Schwikowski, Uetz & Fields, 2000) 0.28 0.41 0.33

Neighborhood counting #1 (Schwikowski, Uetz & Fields, 2000) 0.26 0.45 0.33

Fs-weight #1&2 (Chua, Sung & Wong, 2006) 0.36 0.43 0.39

Fs-weight #1 (Chua, Sung & Wong, 2006) 0.33 0.42 0.37

Nrc (Moosavi, Rahgozar & Rahimi, 2013) 0.37 0.43 0.40

Zhang (Zhang et al., 2009) 0.20 0.19 0.19

DCS (Peng et al., 2014) 0.36 0.37 0.36

DSCP (Peng et al., 2014) 0.39 0.40 0.39

PON (Liang et al., 2013) 0.15 0.14 0.14

Table 5 Predicted samples of unpredicted protein pair interactions/functions (“missing” protein-pair-interactions/functions) in the MIPS
dataset.

Interacting protein pairs Predicted interactions Predicted functions

Protein#1 Protein#2 Interaction#1 Interaction#2 Function#1 Function#2

YAL014c YAL030w Two hybrid Coimmunoprecipitation – –

YAL014c YMR197c Two hybrid Coimmunoprecipitation – –

YLR459w YDR434w Unable to Predict – – –

YDR167w YBR081c Two hybrid – – –

YGL173c YML085c Synthetic lethal – – –

YGL190c YKL048c Synthetic lethal Two hybrid Cell polarity –

YMR167w YNL082w Coimmunoprecipitation Copurification DNA repair –

YDR027c YJR060w Affinity chromatography,
affinity-tag GST

Two hybrid – –

YGR082w YNL131w Crosslinking Coimmunoprecipitation – –

YJR066w YHR186c Synthetic lethal – – Lipid metabolism

YDR363w-a YER008c Synthetic lethal – Vesicular transport –

YDR309c YLR319c Synthetic lethal Cell structure – –

YLR336c YPL268w Unable to predict – – –

YKR099w YDL106c Unable to predict – – –
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considered as essential proteins and hence they are included in the test set of our proposed
methodology. In the second step, FunPred 3.0_Pred predicts labels these selected unlabeled
(or test) proteins using neighborhood properties and physicochemical properties of
amino acids (see Algorithm 2 and Fig. 3). In Fig. 3, for each test protein (say P1 belonging
to refined sub-network4 in Fig. 1) its level 1 neighborhood graph is formed including those
proteins which are present in its corresponding node weight table: sample Table 1
under high threshold in Fig. 1. Then protein clusters are formed at level 1 (considering
each level 1 protein as the seed of the cluster) in a similar way as formed in FunPred
3.0_Clust. It should be noted here that the number of clusters formed here is equivalent to
the number of proteins in level 1. Distance between the mean of the physico-chemical
features of each protein cluster as well as test protein is computed and the test belongs to
the cluster having the least distance. All the functions of the selected cluster are allocated
to the test protein.

The relevant level 1 neighbors of the test proteins are chosen to form their individual
neighborhood graph. In finding the level 1 neighbors or forming their individual
neighborhood graph, relevance is measured in terms of edge weight properties. Next,
PCP score is computed for the neighborhood graph of each test protein. Six different
high-ranked physico-chemical features: aliphatic index (Singh, Wadhwa & Kaur, 2008),
gravy (Kyte & Doolittle, 1982), aromacity (Lobry & Gautier, 1994), number of negatively
charged residues (Singh, Wadhwa & Kaur, 2008), number of positively charged
residues (Singh, Wadhwa & Kaur, 2008), isoelectric point (Bjellqvist et al., 1994) are used
to reckon this physico-chemical property (PCP) based score. These high-ranked features
are selected from 10 divergent physico-chemical features (see Supplementary) by the
enactment of four distinct classifiers: XGBoost classifier (Chen & Guestrin, 2016;

Table 6 Predicted samples of unpredicted protein pair interactions/functions (“unknown” protein-pair-interactions/functions) in the MIPS
dataset.

Interacting protein pairs Predicted interactions Predicted functions

Protein#1 Protein#2 Interaction#1 Interaction#2 Function#1 Function#2

YLR418c YIL040w Two hybrid – Pol II Transcription –

YOR326w YNL120c Mitosis – Cell polarity Cell cycle control

YJR057w YDR438w Unable to Predict – – –

YFL037w YMR299c Cell structure – RNA processing DNA repair

YHR129c YGL124c Mitosis Two hybrid – –

YGR078c YAL011w Synthetic lethal Two hybrid – –

YNL153c YDR149c Two hybrid – Pol II transcription –

YMR307w YMR317w Two hybrid – Carbohydrate metabolism –

YLR039c YIL039w Vesicular transport Two hybrid – –

YMR307w YHR004c Two hybrid – Carbohydrate metabolism –

YDL003w YGL250w Two hybrid – Energy generation –

YNL271c YGR228w Meiosis – Cell polarity Protein modification

YML094w YBR108w Unable to predict – – –

YEL003w YDR334w Unable to predict – – –
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Pedregosa et al., 2011), Random Forest classifier (Breiman, 2001; Pedregosa et al., 2011),
Extra Tree classifier (Geurts, Ernst &Wehenkel, 2006; Pedregosa et al., 2011) and Recursive
feature elimination (RFE) classifier (Pedregosa et al., 2011). High-ranked five among
10 features have been picked at first by each classifier. Then from these picked features,
frequency of maximum occurrences for each individual feature has been noted from
which endmost six features get selected (see Table 1). Finally, each test protein is assigned
to a functional group of the neighborhood graph, based on the nearest neighborhood
approach on the basis of mean PCP score. FunPred 3.0_Clust (see Algorithm 1)
and FunPred 3.0_Pred (see Algorithm 2) describes the methodology of unknown
protein selection and function prediction, respectively.

It needs to be highlighted here that both FunPred 3.0_Clust and FunPred 3.0_Pred have
been executed at three levels: (1) high node and edge weight threshold, (2) medium node
and edge weight threshold, (3) low node and edge weight threshold. So, we have tested
FunPred 3.0 at each of the three levels to assess its performance impact.

Besides predicting protein function, it has been observed that the protein subcellular
localization is yet another important aspect which needs to be considered since it helps in

Algorithm 2 FunPred 3.0_Pred: (Protein function prediction of test proteins).

Input: Set of un-annotated proteins in CM
high, CM

medium, CM
low selected by FunPred 3.0_Clust

Output: Functional group of un-annotated proteins

Begin

// Formation of clusters at level -1 of un-annotated protein

for each protein P in CM
high

for each level -1 neighbor N of P present in G′high

add N as the seed of the cluster Ki i.e. Ki = {N}.

//where 1=<i<=g, g is the total number of level – 1 neighbors of P

add immediate neighbors of N i.e. INN in the cluster Ki provided such inclusion does not cause the edge weight to fall below the
high edge weight value of threshold as computed in . FunPred 3.0_Clust i.e. Ki = {N} ∪ INN.

//Feature selection

compute Physico-Chemical features of each protein from the amino acid sequence of each protein and execute the selected classifiers to
select the most essential features.

//Here six features get selected as the essential ones from the initial list of ten features.

//Computation of PCPscore

for each protein P in CM
high

compute its mean PCPscore of six selected Physico-Chemical features

for each formed cluster Ki of protein P

compute its mean PCPscore of six selected Physico-Chemical features

//Assigning of Functional Groups to the proteins in CM
high

for each protein P in CM
high

for all clusters Ki of protein P

obtain the difference of PCPscore of P and clusters Ki

functional groups of cluster Ki are assigned to protein P having least difference.

Repeat all the above steps for annotation of protein functions in CM
medium and CM

low

End.
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better understanding of protein function. So, subcellular localization dataset of yeast has been
obtained from UniProt database (Apweiler et al., 2004). On careful observation it has been
noted that there are 6,721 unique number of proteins out of which localization of some
proteins are still unpredicted. It is similar as that of 6.4% of the overall MIPS dataset (Mewes
et al., 2002) which are unpredicted, that is, either unknown or missing. So FunPred 3.0 is also
implemented to predict these unpredicted protein subcellular localization.

In FunPred 3.0, the subcellular localization dataset of yeast is centrally categorized
under three major sections: proteins residing in nucleus (termed as nuclear proteins),
proteins residing in cytoplasm (termed as cytoplasm proteins) and proteins residing in
other regions (termed as interface proteins). Besides these, there is also another section
termed as unpredicted localization proteins, consisting of those whose localization are not
yet predicted (see Figs. 4–6). Therefore, before dealing with the unpredicted localization
proteins, the predictive accuracy of FunPred 3.0 needs to be assessed just in a similar

Figure 3 FunPred 3.0_Pred. Working Model of FunPred 3.0_Pred. A: Selected test protein B: Formation of PPIN of test protein C: Formation of
clusters D: Computation of distance of the test protein from each of the formed cluster E: Allocation of test protein to the selected cluster having
minimum distance along with all it’s functions. Full-size DOI: 10.7717/peerj.6830/fig-3
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way earlier as that of protein function prediction. The same test set of essential proteins
(as generated by FunPred 3.0_Clust) of yeast (MIPS) is also considered here (localization
of which are known but considered to be unknown for experimental purpose). Selected test
and candidate proteins in the PPIN of nuclear, cytoplasm and interface proteins are
highlighted in Figs. 7–9, respectively. Now for each test protein, its corresponding level 1
neighborhood graph is formed. In a PPIN, a protein almost shares similar properties as
that of its neighborhood proteins. The same is also applicable to the test protein but
all the properties or functions of the neighborhood cannot be transmitted to it. Therefore,
proper assessment needs to be implemented in the neighborhood of the test protein. For
this purpose, FunPred 3.0_Pred_SL (SL stands for Subcellular Localization) is applied.
It first assigns respective subcellular localization information to the neighborhood of the
test protein using UniProt database. Hence, it counts the frequency of occurrence of each
subcellular location (nucleus, cytoplasm or any other region). The subcellular location
having the highest frequency of occurrence among the neighborhood is allocated to the test
protein. The test protein becomes nuclear or cytoplasm or interface proteins according
to the allocated subcellular location. Then, the allocated subcellular localization is checked
from the Uniprot database. The overall result which is achieved by the application of
FunPred 3.0_Pred_SL, has been highlighted in Table 2. An overall accuracy of 69.1%,

Figure 4 Categorization of proteins based on subcellular localization. PPIN of yeast (Saccharomyces
cerevisiae): cytoplasm proteins (red), nuclear proteins (green), interface proteins (blue), unpredicted
localization proteins (orange). Full-size DOI: 10.7717/peerj.6830/fig-4
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57% and 53% is reckoned for nuclear, cytoplasm and interface proteins, respectively. It is
observed from Table 2, that our method fails to predict the subcellular localization of
few proteins among all the three categories. This is because our method mainly predicts
subcellular localization using PPIN neighborhood based approaches and if there is
practically no information or significantly less amount of interactive information in the
PPIN for a particular test protein then our method fails. This can be considered as one of
our limitations which can be redressed in future works by incorporating protein sequence.

Subcellular localization dataset of yeast contains 1,679 number of unpredicted
localization proteins out of which our method predicts the localization of 638 proteins
successfully. Localization information for the remaining 1,041 proteins cannot be
predicted because of the absence of PPIN interaction in MIPS dataset as discussed earlier.
This extra added layer of biological information about subcellular localization of proteins
along with the protein function prediction boost up our methodology FunPred 3.0 to
the next higher level.

RESULTS
Initially, PPIN of yeast consists of 4,554 unique proteins in 13,528 protein-protein
interactions (PPINs) after the elimination of the self-replicating and the self-interacting
protein pairs. After the network refinement through the execution of node and edge weight

Figure 5 Network view of PPIN of yeast. Sequential formation of cytoplasm proteins (red), nuclear
proteins (green), interface proteins (blue), unpredicted localization proteins (orange) in PPIN of yeast.

Full-size DOI: 10.7717/peerj.6830/fig-5

Saha et al. (2019), PeerJ, DOI 10.7717/peerj.6830 14/26

http://dx.doi.org/10.7717/peerj.6830/fig-5
http://dx.doi.org/10.7717/peerj.6830
https://peerj.com/


threshold, non-essential proteins along with unreliable edges get eliminated and the initial
PPIN gets reduced to almost 3,174 unique proteins and 6,936 PPINs (approx.) considering
three levels of thresholds from which FunPred 3.0_Clust form protein clusters to
generate test set of proteins.

During the result analysis it is observed that proteins belonging to random functional
groups like lipid metabolism, DNA Repair etc., get selected as test proteins. In FunPred
3.0_Pred, all proteins from each protein cluster formed from FunPred 3.0_Clust are
considered as test proteins. The overall initial PPIN of yeast is highlighted in Fig. 10
while in Fig. 11, 433 test proteins (most essential ones among the refined PPIN of yeast
consisting of 3,174 unique proteins and 6,936 PPINs) selected by FunPred 3.0_Clust at

Figure 6 Disintegrated network views of PPIN of yeast. Separate PPIN’s of cytoplasm proteins (red),
nuclear proteins (green), interface proteins (blue), unpredicted localization proteins (orange) and their
interactions. Full-size DOI: 10.7717/peerj.6830/fig-6
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high node and edge weight threshold values, are highlighted in yellow circle (shape) in
the initial PPIN of yeast consisting of 4,554 unique proteins in 13,528 protein-protein
interactions (PPINs). It should be noted in Fig. 11, that all the selected test proteins belongs
to the most densely connected region of PPIN which establishes the fact that these
are indeed most strongly connected essential proteins. The performance of FunPred 3.0 is
evaluated using standard performance measures, such as precision (P), recall (R) and
F-score (F) values, which are calculated using the following equations:

P ¼ TP
TPþ FP

R ¼ TP
TPþ FN

F ¼ 2 � ðP � RÞ
P þ R

(2)

where TP, FP, FN represent True Positive, False Positive and False Negative, respectively.
The performance of FunPred 3.0 has been analyzed under different levels of thresholds

of node and edge weights as highlighted in Table 3. It should be noted here that under
high and medium thresholds, the same precision, recall and F-score have been retrieved
since number of selected test proteins are equivalent in both the cases. The result analysis
as depicted in Table 3 shows that there are not many significant changes in the result
varying the thresholds except for a slight fall in precision and F-score under low threshold
as compared to the others. The fall is due to the relaxation in the node and edge
weight thresholds resulting in incorporation of less essential proteins in the test set. So, the

Figure 7 Nuclear PPIN of yeast. Candidate (green) and test (yellow) proteins in nuclear PPIN (green
and yellow) of yeast (violet: other nodes in the network). Full-size DOI: 10.7717/peerj.6830/fig-7
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high threshold ensures inclusion of the most essential proteins. So the precision, recall
and F-score of FunPred 3.0 are reckoned as 0.55, 0.82 and 0.66, respectively under high
threshold. High recall and low precision emerges out as a major characteristic of
FunPred 3.0 when compared to the other methodologies except FunPred-2. It highlights
the fact that most of the admissible results are successfully generated by FunPred 3.0.
Table 4 shows a detailed performance comparison of other methodologies along with
our proposed systems (like FunPred 1.1, FunPred 1.2 (Saha et al., 2014)), the neighborhood
counting method (Schwikowski, Uetz & Fields, 2000), the Chi-square method (Hishigaki
et al., 2001), a recent version of the neighbor relativity coefficient (NRC) (Moosavi, Rahgozar
& Rahimi, 2013), FPred_Apriori (Prasad et al., 2017), Zhang methodology (Zhang et al.,
2009), domain combination similarity (DCS) (Peng et al., 2014), domain combination
similarity in context of protein complexes (DSCP) (Peng et al., 2014), protein overlap
network (PON) (Liang et al., 2013), Deep_GO (Kulmanov et al., 2018) and the FS-weight
based method (Chua, Sung &Wong, 2006)). All these data are collected from their respective
works which are executed on the same organism, that is, yeast. The results of Deep_GO
(Kulmanov et al., 2018) are computed manually for the yeast dataset, the code of which is
available at https://github.com/SovanSaha/FunPred-3.0.git. From Table 4, it can be also
highlighted that our method, FunPred 3.0, yields relatively higher F-score values than the
others including its earlier version FunPred-2.

Figure 8 Cytoplasm PPIN of yeast. Candidate (red) and test (yellow) proteins in cytoplasm PPIN (red
and yellow) of yeast (violet: other nodes in the network). Full-size DOI: 10.7717/peerj.6830/fig-8
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Table 4 also discloses the fact that NRC method has overpowered the rest except
FunPred 1.1 (Saha et al., 2014), FunPred 1.2 (Saha et al., 2014), FPred_Apriori (Prasad
et al., 2017) and FunPred 3.0. The reason behind this is observed as follows: Both version of
FunPred 1 has incorporated two levels (i.e., level 1 and level 2) of PPIN as well as lot
of essential neighborhood properties like neighborhood ratio, protein path connectivity
and relative functional similarity (includes both ancestor and descendant information of a
specific protein) have been utilized to assess the reliability of each node (protein) along
with its associated edges (protein interaction) during the unannotated protein function
prediction. FPred_Apriori (Prasad et al., 2017) executes both closeness centrality and edge
clustering coefficient to make its predictive approach more effective than the others.
Last but not least, FunPred 3.0 combines PCP of each protein along with neighborhood
analysis (like node weight, edge weight etc.) for predicting protein function which
ultimately promotes it to the next higher level in the terms of performance analysis
when compared to the others.

Though the neighborhood counting method is simple in nature yet the performance
measure of it has descended considerably in comparison to NRC (Moosavi, Rahgozar &
Rahimi, 2013), FS-weight #1 (directly connected proteins) and FS-weight #1 and #2 (directly
and indirectly connected proteins) despite of its simplicity (Chua, Sung & Wong, 2006).
This is because no differentiation has been observed between the direct and indirect

Figure 9 Interface PPIN of yeast. Candidate (blue) and test (yellow) proteins in Interface PPIN (blue and
yellow) of yeast (violet: other nodes in the network). Full-size DOI: 10.7717/peerj.6830/fig-9
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neighborhood connection. Beside most of the methods included in Table 4 like NRC
(Moosavi, Rahgozar & Rahimi, 2013), Chi square #1&2 (Hishigaki et al., 2001), Chi square
#1 (Hishigaki et al., 2001), Neighborhood counting #1&2 (Schwikowski, Uetz & Fields, 2000),
Neighborhood counting #1 (Schwikowski, Uetz & Fields, 2000) etc., are not utilized for
the refinement of the PIN by pruning unreliable proteins or edges which in turn increases
false positives in their prediction accuracy level. In FPred_Apriori (Prasad et al., 2017),
a bottom-up predictor of existing Apriori algorithm has been utilized for protein function
prediction by exploiting two most important neighborhood properties: closeness centrality
and edge clustering coefficient of protein interaction network. Though the method is
unique in the fact that the functions of the leaf nodes in the interaction network have been
back propagated and thus labeled up to the root node (test protein) but yet it fails to generate
high Recall and F-score than FunPred 3.0. But it returns substantially high precision
values than the others as well as all our methods. DCS (Peng et al., 2014), DSCP (Peng et al.,
2014), PON (Liang et al., 2013), Deep_GO (Kulmanov et al., 2018) and Zhang methodology
(Zhang et al., 2009) are well developed methods for protein function prediction
incorporating domain specific as well as neighborhood based properties but they fail to
compete with all our methodologies due to the lack of important feature selection
methodologies of physicochemical properties and proper assessment of nodes and edges
involved in test set protein function prediction through node and edge weights.

Figure 10 Network view. PPI network of Yeast (Saccharomyces cerevisiae).
Full-size DOI: 10.7717/peerj.6830/fig-10
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During experimental evaluation, the validation set is prepared with 4,554 labeled S.
cerevisiae proteins, collected from the MIPS dataset. Using FunPred 3.0_Clust, we identify
M mutually exclusive protein clusters (Wang & Wu, 2013). Experimental variations
with K = 1,2,3 are included in Table 2. Using an optimal choice of K = 3, we identify
433 test targets for the validation set. Now, the functional labels of these test proteins are
assigned using FunPred 3.0_Pred. The precision, recall, F-scores of our method over the
test targets of the validation set is obtained as 0.55, 0.82 and 0.66, respectively.

DISCUSSION
Our results (characterized by the precision, recall and F-score) and comparison with the
other protein functional group prediction models show the superiority of our approach.
The FunPred 3.0 software has better performance than any existing function prediction
in silico method. The network structure may be pruned based on the edge weight
and along with it use of physico-chemical properties lead to improved and faster functional
prediction in complex and diverse protein–protein interaction networks. We would like to
estimate the effectiveness of our in silico method for other organisms, such as in
human protein–protein interactions with even more complex network architectures.

The initial results motivate us to predict the subcellular localization and unpredicted
protein pair functions (missing/unknown functions) for 870 PPIs extracted from MIPS

Figure 11 Selected candidate and test proteins. PPIN of annotated (red circle) and test/unannotated
proteins (yellow circle) of the yeast network (Saccharomyces cerevisiae).

Full-size DOI: 10.7717/peerj.6830/fig-11
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dataset. A protein can perform multiple functions in isolation. It may also perform some
specific functions while interacting with one protein while perform some other specific
functions while reacting with other proteins. But considering the fact that a protein
often shares similar functions with proteins that interact with it (Chakicherla et al., 2009;
Chatterjee et al., 2012; Shatsky et al., 2016), each protein pair is disintegrated in two
constituent proteins and functions of each protein is predicted using FunPred 3.0. For an
unknown protein pair P1P2, we predict the functions as an intersection of FunPred
3.0_Pred(P1) ∩ FunPred 3.0_Pred(P2). The results of all the predicted annotations for the
MIPS dataset are available at https://github.com/SovanSaha/FunPred-3.0.git. Examples
of the prediction of protein function and interactions for unpredicted pairs (both unknown
and missing protein pair) have been shown in Table 5 and Table 6, respectively.

Summarizing, 767 unpredicted protein pair functions (511 unknown protein pair
functions and 256 missing protein pair functions) in the MIPS dataset could be predicted
using our FunPred 3.0 algorithm. Our approach failed to predict 103 unpredicted protein
pairs since they have less number of acceptable neighbors. Simultaneously our
methodology also performs very well in predicting subcellular localization of proteins as
discussed earlier in the methodology section earlier. All the datasets and supplementary
files are also freely available at https://github.com/SovanSaha/FunPred-3.0.git.

CONCLUSION
FunPred 3.0 proved to be an improved and advanced version of our previous
methodology FunPred-2. The enhanced performance of FunPred 3.0 is due to the use
of node weight, edge weight and physicochemical properties of proteins in the
prediction pathway of test set of proteins. It should be highlighted here that FunPred 3.0
incorporates the most essential features classified through four classifiers: XGBoost,
Random Forest, Extra Tree and RFE. RFE which indeed plays an important role in
improving the performance of the proposed methodology. This method does not
consider dynamic PPIN and integration of other multiple types of data like domain
(Chatterjee et al., 2011a, 2011b) etc., but topological analysis, association between
function and protein have been proven to be significant for this research. The use of
FunPred 3.0 to detect the subcellular localization of proteins as well as the function of
unpredicted protein pair functions (unknown and missing pairs of proteins) in the MIPS
database add an extra dimension to this work. Incorporation of other protein-related
features and their integration and the use of the other benchmark datasets for different
organisms may give a proper insight for prediction. Beside this unannotated protein
function prediction, the methodology behind the FunPred 3.0 algorithm can be also
used in disease-specific datasets (Saha et al., 2017b), which also may be a future
direction. In a nutshell, the work presented here proposes the statistical learning
evaluation of various features for prediction of protein functions in the complex yeast
PPIN with reasonable accuracy. The dataset used in this study and the complete source
codes of the FunPred 3.0 software package are available in the public domain
(https://github.com/SovanSaha/FunPred-3.0.git) for non-commercial research.
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