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Introduction

Growing evidence suggests that food and drug cues may activate similar brain

networks (1), pointing to shared brain abnormalities in obesity and substance use

disorder. These are of crucial importance, given the worldwide cost in individuals’

health, wellbeing, and direct and indirect health costs (2, 3). Neuroimaging research

has focused on the cue-reactivity paradigm (4), an experimental procedure involving

the examination of neurofunctional responses to the controlled exposure to stimuli

(food- or drug-related) inducing craving, namely the strong and intense desire to

seek and consume a substance. These studies have revealed a distributed network

of brain regions recruited during exogenous (i.e., perceptual food pictures, odors, or

tastes) and endogenous (i.e., imagery) cue-reactivity [see (5) for a review and (6, 7)

for meta-analyses].

At the functional level, these regions can be categorized into two main circuits:

those underlying the sensory and motivational responses (“cue-reactivity”), and

those supporting higher-order attentional, decision-making, and inhibitory control

processes (“cue-regulation”; Figure 1A). Although the former is more tightly related to

“bottom-up” processes prompted by the exposure to cues, and the latter to “top-down”

processes, we underline that these two circuits do not always operate separately and, as

such, do not represent a dichotomous system. Indeed, they are better represented by a

dynamic system in which “interface areas,” such as the orbitofrontal cortex (OFC) (8, 9),

may act as a target region where a balance between the circuits is reached in order to

orient behavior toward cues or prompting executive control. In other words, similarly to

what proposed for substance use disorder, we speculate that the OFC lies at the center of

two opposing processes (reward-related go-signals and executive-related no-go signals)

(9, 10), therefore acting as a “target” around which the two processes exert their influence

over behavior [for a discussion see also (11)].

Recently, Jasinska et al. (12) proposed a model to examine individual-specific (e.g.,

addiction severity) and study-specific factors (e.g., drug availability) that modulate the

neural reactions to drug cues.

Here, we propose a first attempt to translate Jasinska et al.’s model to the domain

of food cue-reactivity (Figure 1B): this framework fits well the current literature of
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eating behaviors (normal and pathological), and it may help

identifying transdiagnostic processes that can be targeted by

treatment and prevention strategies. Slightly differently from

the original model (12), we suggest that the neural response to

food cues might be modulated by internal (depending on the

status of the organism), and external factors (depending on the

environmental and sensory conditions).

We will first describe these internal and external factors, and

then address how theymight have a role for giving rise to specific

brain activation patterns. Finally, we will discuss the importance

of our model for framing new research ideas in the domain of

food behavior.

Factors a�ecting neural food
cue-reactivity

Internal factors: Biological and
psychological

Biological factors such as one’s genetic make-up can strongly

influence the neural reactivity to food cues (both craving

and intake). Young adults with the A2/A2 allele (TaqIA

rs1800497 polymorphism in chromosome 11) express 30–40%

more dopamine D2 receptors (13), a neurotransmitter that is

crucial in modulating the motivational value of rewards. This

greater availability of dopamine D2 receptors is accompanied

by increased activity in the basal ganglia (i.e., the caudate) in

response to food cues (i.e., milkshakes), which also predicts

greater future weight gain (14, 15) (opposite pattern shown in

individuals with the A1 allele). Furthermore, the fluctuating

levels of several peripheral homeostatic signals can modulate

neural responses to food cues. Orexigenic signals that promote

appetitive behaviors, such as the hormone ghrelin, can increase

the neural activity of key regions of the cue-reactivity network

(i.e., striatum, amygdala and insula) and cue-regulation network

(i.e., OFC) in response to visual food cues (16). Conversely,

anorexic signals such as insulin (17), leptin (18), or PYY (19)

normally dampen such responses.

Of note, recent models on the Brain-Gut-Microbiome axis

suggest that a diet rich in fat/sugar and low in fiber is

associated with reduced microbial diversity, mucus-stimulating

microorganisms, mucus thickness, and increased epithelial

leakiness, leading to reduced intestinal barrier function and

activation of the gut-associated immune system (20, 21). This

state of “metabolic endotoxemia” is thought to reduce central

satiety mechanisms by (i) influencing enteroendocrine secretion

of satiety hormones such as PYY and cholecystokinin, and by

(ii) reducing the expression of anorexigenic peptide receptors

on vagal afferents and leptin receptors in the hypothalamus,

leading to a disinhibition of satiety mechanisms (22, 23). Despite

we are not aware of any study addressing the influence of

the gut microbiome on the neural responses to food cues, we

believe that this may represent another biological factor worth

of investigation.

Growing evidence suggests that another modulating factor

is weight status, usually measured with the Body-Mass Index

(BMI)1. Compared to healthy weight, individuals with obesity

show increased activity in areas involved inmotivation and habit

formation [caudate and nucleus accumbens (NAc)], salience

and memory (insula and hippocampus), as well as in regions

involved in reward evaluation and goal-directed behaviors (i.e.,

OFC), while viewing food cues (24–26).

Psychological factors such as the motivation to change

one’s own dietary habits can shape the neural response to

food cues. Compared to ex-dieters, healthy weight individuals,

who are currently on diet, show increased activity of regions

involved in cognitive control prefrontal cortex (PFC) in response

to food cues, suggesting that long-term goals of weight loss

can increase the reactivity of the cue-regulation network (27).

Interestingly, this difference across dieters was only evident in

the fed condition, pointing to higher-level interactions between

biological and psychological factors (27). Likewise, the explicit

cognitive regulation of craving of foods (e.g., mindful attention,

thinking about long-term costs of eating high-calories food)

has been associated with increased cognitive control and goal-

directed behavior (greater activity in dorsolateral PFC (dlPFC)

and OFC) and a concomitant reduced motivation and salience

of such cues (decreased activity in ventral tegmental area (VTA),

NAc, and amygdala) (28).

Preliminary evidence points to the role of personality

traits in this framework. Self-directedness (linked to emotional

stability and goal-directed behavior) (29), was negatively

associated with emotional regulation (amygdala activity) in

response to appetizing food vs. non-foods (30), suggesting that

it may represent a protective factor against cue-driven food

cravings and intake. Conversely, increased disinhibited eating

and trait impulsivity were positively associated with greater

insula and amygdala responses to palatable foods (31).

External factors: Environmental and
cue-specific

Environmental factors play an important role in driving

the neural reactions to food cues. Compared to the domain of

drug addiction (32, 33), fewer studies investigated the effects

of food availability on the brain responses. When the food

was made available during (or immediately after) cue exposure,

healthy weight participants exhibited heightened activity of

1 The BMI is an indirect measure of adiposity and obesity severity. It is

calculated as weight (in kilograms)/height squared (in meters). Healthy

weight: 18.5 BMI < 25; underweight: BMI < 18.5; overweight: 25 BMI <

30; obese: BMI 30.

Frontiers inNutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2022.954523
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Devoto et al. 10.3389/fnut.2022.954523

FIGURE 1

Neural circuits mediating food cue-reactivity: the influence of internal and external factors. (A) Cue-reactivity network (red), “interface area”

(violet), and “cue-regulation” network (blue). Dashed circles represent medial structures on the lateral surface. OFC may represent an “interface”

area, and serve as a target region around which a push-pull balance is reached between the cue-reactivity and the cue-regulation circuits. ACC,

anterior cingulate cortex; AMY, amygdala; CAU, caudate; dlPFC, dorsolateral prefrontal cortex; HIPP, hippocampus; INS, insula; MC, motor

cortex; NAc, nucleus accumbens; OC, occipital cortex; OFC, orbitofrontal cortex; PAL, pallidum; PPC, Posterior Parietal Cortex; preSMA, pre

supplementary motor area; SN, substantia nigra; SSC, somatosensory cortex; VS, ventral striatum; VTA, ventral tegmental area. (B) This simplified

model, adapted from (10), displays the main internal (biological and psychological) and external factors (environmental and cue-specific) that

modulate the neural response to food cues. These factors are expected to act in isolation, by up- or down-regulating the responses of the

cue-reactivity and/or cue-regulation network, or in interaction, giving rise to specific brain activation patterns. These, in turn, are expected to

influence craving and, ultimately, food intake.

regions involved in appetitive behaviors, emotional regulation

and reward evaluation (striatum, insula, amygdala, and OFC)

(34, 35), suggesting the augmented reward value of food when it

is readily available for consumption. Exposure to environmental

stressors can alter the neural response to food cues and,

ultimately, food intake. In women with high self-reported stress,

exposure to high-calories food pictures induced greater activity

of the striatum, amygdala, and anterior cingulate cortex (ACC)

together with a decreased activation of dlPFC compared to low-

calorie foods (36), suggesting that high stress may predispose

overeating by increasing the motivational value of food and

decreasing executive control. Using a guided mental imagery

paradigm, overweight/obese women exhibited greater right

amygdala activity in response to milkshake intake while imaging

a stressful vs. relaxing scenario, and this activity was positively

associated with their basal cortisol level (37).

Concerning the actual and perceived caloric content, high-

calories vs. low-calories food pictures elicit greater activity

of regions involved in motivation and habit formation

(dorsal and ventral striatum), salience (amygdala, insula),

and reward evaluation (OFC) (25, 38), especially in fasting

conditions (38). This heightened reactivity to high-calories

food is greater in overweight/obese individuals [see (39)

for a meta-analysis]. Recent evidence showed that the level

of processing of foods (i.e., raw carrots vs. roasted carrots

vs. carrot cake) must be taken into account since this

human intervention in modifying the natural state of foods

also holds distinct brain representations that are by some
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means independent from the brain responses to caloric

content (40).

Toward a new model of food
cue-reactivity shaping the interplay
of internal and external factors

The drive for pleasure is “hard-wired” in our brain (41, 42):

from the gratification derived from the fulfillment of biological

and social needs, that granted the survival of our species,

to the enjoyment of beauty and discovery, which led to the

realization of remarkable endeavors in arts and sciences. The

relentless search for pleasure guided our evolution. Yet, there are

situations where these adaptive motivational processes result in

compulsive and addictive-like intake of rewards, whereby highly

reinforcing stimuli, such as foods or drugs, disrupt the normal

motivational processes and lead to maladaptive behaviors.

Frustrating as it might be, greatly pleasurable stimuli such as

high-calories food, and drugs of abuse, can “hijack” the same

neurocognitivemachinery evolved to grant our survival (43, 44).

Here we suggest that the core idea behind Jasinska et al.’

model of drug cue-reactivity (12) can be translated in the

domain of eating behaviors, unveiling intriguing similarities

between the two.We highlighted the role of somemajor internal

and external factors that can influence the neural reactivity to

food cues and, ultimately, food craving and intake, suggesting

that this grouping of the factors best captures the nature of

feeding behaviors as arising from the integration of internal

(e.g., homeostatic signals) and external (e.g., food availability)

sources of information (45). We argue that Jasinska et al.’ claim

regarding the importance of the interactive effects of the factors

(12) also holds for the domain of food cue-reactivity. Crucially,

we propose that the described external and internal factors

may act in isolation, by up- or down-regulating the responses

of the cue-reactivity/cue-regulation network, or in interaction,

giving rise to specific brain activation patterns. These factors

are expected to influence craving and, ultimately, food intake.

We anticipate that these networks most likely lie in a “dynamic

balance:” interface regions such as OFC (8, 10, 11) may serve

as a target region around which a push-pull balance is reached

between the cue-reactivity and the cue-regulation circuits, as

a function of the abovementioned factors. As shown by a

recent meta-analysis by Devoto et al. (7), weight status interacts

with the homeostatic signals and with the sensory modality of

stimulus presentation, reinforcing the notion that individuals

with obesity exhibit greater activity in regions involved in

motivation (i.e., striatum) in response to visual food cues, despite

their satiety state (46).We argue that this impaired central satiety

signalingmay depend on complex interactions across all levels of

the Brain-Gut-Microbiome axis (22, 23): this is made plausible

by the observation that obesity is frequently associated with a

higher consumption of the kind of food that favors metabolic

endotoxemia due to a “bad” gut microbiome. The interaction

between food availability and the caloric content of food was

also found (35), with higher striatal activity in response to

high-calorie (vs. low-calorie) foods only when food was available

for immediate consumption.

We believe that there are several reasons why this new

perspective may prove useful, for both basic research and

translational medicine. First, the evidence that different factors

—in isolation and in interaction— can influence the neural

response to food cues should lead future studies to acknowledge

these effects by controlling for possible confounding variables.

Second, a deeper comprehension of the contextual factors

that determine the neural food cue-reactivity and craving is

indeed crucial for the development of effective treatments to

tackle the current prevalence and rise of obesity (47). Cognitive-

Behavioral interventions, particularly if they include the

empowerment of cognitive and emotional regulation in response

to food cues, may also benefit from the integration of contextual

factors into their design. For instance, a Cognitive-Behavioral

intervention aimed at reducing food cravings in individuals

with obesity may be performed under specific circumstances

(e.g., satiety) and with a particular cue (e.g., pictures of high-

calorie food). Similarly, brain-centered treatments, whether they

involve real-time neurofeedback (48) or the use of non-invasive

brain stimulation techniques, were effective in reducing craving

and intake for both food (in eating disorders) (49) and drug [in

addiction; see (50) for a meta-analysis] and may easily integrate

contextual factors into their design.

Dovetailing with this hypothesis, previous studies

demonstrated that deep excitatory repetitive Transcranial

Magnetic Stimulation (TMS) over the bilateral insula and PFC

is effective in inducing weight loss in individuals with obesity

(51), and resting-state neuroimaging data suggests that this

effect is driven by a decreased reactivity to sensory stimuli,

accompanied by an increased reliance on higher-order processes

(49). It follows that a fine-grained characterization of the role

of contextual factors at the neurofunctional level is essential to

develop ecological and personalized treatments.

This fine-grained characterization can only be accomplished

by the concomitant manipulation of different internal and

external factors: in fact, food cues are usually perceived

under specific internal (e.g., homeostatic state) and external

contingencies (e.g., food availability; social factors), rather than

in the vacuum. With this respect, our opinion paper provides a

first pool of factors that can be manipulated by the researcher

interested in the brain reaction to food cues. For instance,

one might be interested in the differential responses to food

cues in healthy weight vs. individuals with obesity, under

different homeostatic states (hunger vs. satiety), and when food

is available (vs. unavailable).

We acknowledge that the model presented here does not

include other factors that can modulate brain responses to food

cues, such as sex (52), age (53), sensory modality (7), and length
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of stimulus presentation. Future studies will help to determine,

by modeling internal and external factors in factorial designs,

which main effects and interactions are crucial to understand

the neurocognitive bases of normal and pathological eating

behaviors. As in the domain of drug addiction (12), elucidating

such interactions will pave the way to more effective, ecological,

and tailor-made (behavioral or brain-centered) interventions.

Finally, we speculate that most factors illustrated here

may influence the neural reactivity to different biological (e.g.,

sexually arousing) and non-biological (e.g., gambling) rewards,

in the normal and pathological motivation. We anticipate

that multidisciplinary researchers will take up the challenge,

enriching our understanding on how the brain copes with

pleasurable stimuli in our everyday life.
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