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Abstract: Fetal growth restriction (FGR) has been linked to long-term neurocognitive impairment,
especially in males. To determine possible underlying mechanisms, we examined hippocampal
cellular composition and mTOR signaling of male rat FGR offspring during main brain growth
and development (postnatal days (PND) 1 and 12). FGR was either induced by a low-protein diet
throughout pregnancy, experimental placental insufficiency by bilateral uterine vessel ligation or
intrauterine stress by “sham” operation. Offspring after unimpaired gestation served as common
controls. Low-protein diet led to a reduced cell density in the molecular dentate gyrus subregion,
while intrauterine surgical stress was associated with increased cell density in the cellular CA2
subregion. Experimental placental insufficiency caused increased mTOR activation on PND 1,
whereas intrauterine stress led to mTOR activation on PND 1 and 12. To determine long-term
effects, we additionally examined mTOR signaling and Tau phosphorylation, which is altered in
neurodegenerative diseases, on PND 180, but did not find any changes among the experimental
groups. Our findings suggest that hippocampal cellular proliferation and mTOR signaling are
dysregulated in different ways depending on the cause of FGR. While a low-protein diet induced
a decreased cell density, prenatal surgical stress caused hyperproliferation, possibly via increased
mTOR signaling.

Keywords: FGR; IUGR; low-protein diet; placental insufficiency; intrauterine stress; mTOR signaling;
neurocognitive development; perinatal programming

1. Introduction

Fetal growth restriction (FGR) is defined as “the failure of the fetus to reach its growth
potential” [1]. While in developing countries FGR is typically caused by malnutrition, the
most common cause in North America and Europe is placental insufficiency [2–4]. Aside
from premature birth, FGR is the main cause of low birth weight, which is an important
marker for perinatal morbidity and mortality [3,5]. Further studies showed that the adverse
perinatal factors causing FGR also lead to long-term negative consequences. Apart from
the augmented risk for metabolic, cardiovascular and renal diseases [6,7], FGR is associated
with long-term neurocognitive impairment [8–10]. Children with FGR have a higher risk
for deficiencies in learning, memory and attention as adolescents and adults compared
to matching control groups [11–17]. Previous studies also linked low birthweight with a
higher probability of age-related cognitive impairment and dementia in adulthood [18].
Males seem to be especially at risk to develop FGR-associated neurocognitive impairment
in later life [19].

Cognitive impairment has also been shown in experimental FGR models in rats [20].
To study the FGR-associated consequences of maternal malnutrition, a model of maternal
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protein restriction during gestation is widely recognized [4,21]. A model of bilateral uterine
artery and vein ligation has been well established to induce uteroplacental insufficiency
in rats [4,21]. Previous studies showed that “sham” operation induces increased maternal
corticosterone levels [22] as well as moderate FGR and programming in the offspring and
therefore might be used as model for intrauterine stress [23].

Typical long-term neurocognitive consequences associated with FGR are deficien-
cies in learning and memory [17,20]. The hippocampus plays a central role in memory
consolidation [24]. It is also known to be especially vulnerable to developmental and envi-
ronmental influences [25–27]. Previous studies linked neurological long-term impairments
of FGR to reduced hippocampal volume [28] and changes in cellular composition [29],
expression of genes as well as epigenetic determinants [30–32]. However, the exact mecha-
nisms of intrauterine programming of neurological consequences of FGR remain largely
unknown [33].

Mammalian/Mechanistic Target of Rapamycin (mTOR) is a Serine/Threonine kinase,
which is involved in cellular growth and metabolism through activation of anabolic and
inhibition of catabolic processes. One of the best-studied processes regulated by mTOR
is protein synthesis through phosphorylation of eukaryotic translation initiation factor 4E
(eIF4E)-binding protein 1 (4E-BP1) and S6 kinase 1 (S6K1) [34,35]. Both are translational
regulators. The function of 4E-BP1, which is to bind the cap-binding protein eIF4E, is
inhibited by phosphorylation. As a result, the eIF4E complex can be formed and cap-
dependent translation is possible. Phosphorylation of S6K1 increases protein synthesis,
mRNA splicing, transcription, cell survival as well as cytoskeleton organization through its
interaction with different targets. There are different isoforms of S6K1; the most studied
form is p70 S6 kinase (p70S6K) [36].

In the central nervous system, mTOR plays an important role for brain develop-
ment [37–40]. Reduction in mTOR activity may lead to neuronal degeneration, whereas
mTOR hyperactivity may cause abnormal neuron and glia cell development and, sub-
sequently, brain malformation [41]. It is assumed that mTOR activation through mTOR
phosphorylation in the hippocampus plays an important role in spatial learning and short-
term memory [42]. Previous studies also indicate a connection between mTOR hyperactivity
and formation of abnormally hyperphosphorylated Tau protein, which is associated with
neurodegenerative diseases such as Alzheimer’s disease [43–45]. Therefore, dysregulation
of mTOR could be a possible explanation for long-term neurocognitive impairment in
association with FGR.

This study was designed to test the hypothesis of whether dysregulation of mTOR
signaling and altered cellular composition are common hippocampal signatures during
early brain development after FGR of different origins. For this purpose, hippocampal
tissue from FGR offspring after (1) low-protein (LP) diet throughout pregnancy, (2) bilateral
uterine vessel ligation (LIG) during terminal pregnancy and (3) intrauterine stress (IUS)
due to surgery without ligation (i.e., “sham” operation) in late pregnancy, each compared to
an unimpaired control (C) group, was studied during brain development in early postnatal
life (postnatal days (PND) 1 and 12) and adulthood (PND 180). Since previous studies
showed that neurological deficits and hippocampal changes after FGR are particularly
expressed in males [46–48], this study focused on male offspring.

2. Materials and Methods
2.1. Animals and Surgical Procedures

All animal procedures were conducted in accordance with the German regulations
and legal requirements. The experimental protocol was approved by institutional and
governmental review boards (LANUV NRW AZ 84-02.04.2012.A316).

In this study, male offspring from three rat models causing experimental FGR were
compared to a common control (C) offspring group after unimpaired pregnancy of their
dam (i.e., no surgery or special diet during gestation). FGR was induced either by low-
protein (LP) diet of the dam, or bilateral uterine artery ligation (LIG) on gestational day
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(GD) 18, or intrauterine stress (IUS) by “sham” operation on GD 18 as described before [49].
As the focus of this study was to evaluate the effect of FGR on brain development and the
hippocampus, and not to evaluate the effect of reduced uteroplacental blood flow itself, we
refer to the offspring after “sham” operation of the dam as intrauterine stress (IUS) group.
We did not compare LIG to IUS offspring.

Time-mated female Wistar rats were purchased from the research animal provider
Janvier. Dams of the groups C, LIG and IUS received a normal protein diet throughout
the study, dams of group LP received LP diet throughout pregnancy (i.e., from gestational
day E0 until birth) and normal protein diet thereafter as described before [49]. Normal
protein (NP) diet (Altromin C1000) is a standard rat maintenance diet containing 17%
protein, while LP diet (Altromin C1003) contains 8.8% protein. Contents of energy (NP
3500 kcal/kg; LP 3262 kcal/kg), fat (NP 5%; LP 6.1%), disaccharides (11%), starch (NP
47%; LP 48%), methionine (NP 10 mg/kg; LP 8.7 mg/kg), folate (10 mg/kg) and the
ratio of other amino acids, sodium (0.02%), vitamins and minerals were similar. In case
of surgery, procedures were performed on gestational day (GD) 18. LIG and IUS dams
were anesthetized with inhalative isoflurane 2.5% and received subcutaneous metamizole
(100 mg/kg) for analgesia. After midline laparotomy both uterine horns were carefully
placed out of the abdomen and a ligation of both uterine arteries and veins at the most
caudal point accessible was performed in the LIG dams using 6-0 Prolene (Ethicon). IUS
dams underwent identical anesthesia and surgery procedures, but without uterine vessel
ligation. Duration of the whole procedure was 15–20 min per dam.

All pups were born spontaneously on GD 21 or GD 22 within a period of 12 h. To
guarantee standard conditions, only litters between nine and 15 pups (mean litter size
was expected to be 12) were included in the study. Pups were cross-fostered in pairs of
two males and two females of every original litter whenever possible (C pups to other
C foster-dams, LP pups to other LP foster-dams, LIG and IUS pups to C foster-dams) to
minimize potential influences on brain development through maternal care and raised in
groups of eight animals (four females and four males from two different litters). C, LP and
IUS pups were chosen randomly for fostering. LIG pups were chosen randomly from the
6 smallest pups of the original litter for fostering. The rationale for preselection of LIG pups
was comprehensively described before [49]. Only male pups were included into further
analysis in this study. Half of the offspring was designated for molecular analyses, and the
other half for histological analyses. On postnatal days (PND) 1 (C, n = 20 from 10 litters; LP,
n = 16 from 8 litters; LIG, n = 16 from 10 litters; IUS, n = 20 from 10 litters), PND 12 (C, n = 16
from 8 litters ; LP, n = 15 from 8 litters; LIG, n = 13 from 7 litters ; IUS, n = 16 from 9 litters)
and PND 180 (C, n = 12 from 7 litters; LP, n = 4 from 2 litters; LIG, n = 6 from 4 litters;
IUS, n = 7 from 4 litters) the offspring were anesthetized using pentobarbital (5 mg/kg),
perfused with NaCl 0.9% and decapitated. Afterwards, the brain was removed within
30–60 s. For molecular analyses, the brain was immediately transferred to ice cold artificial
liquor and cut in the midline. Both halves of the hippocampus were obtained within 30 s,
shock frozen in liquid nitrogen and stored at −80 ◦C. For histological analyses, brains of
other offspring (from the same litters whenever possible) were immediately transferred
to 4% paraformaldehyde (PFA). As especially brains on PND 1, but also on PND 12, were
very vulnerable depending on time until transfer to PFA, we decided to restrict weighing
to a small number of brains originally intended for histology (PND 1: C, n = 4 from 4 litters;
LP, n = 7 from 7 litters; LIG, n = 4 from 3 litters; IUS, n = 3 from 3 litters; PND 12: C, n = 4
from 4 litters; LP, n = 7 from 7 litters; LIG, n = 6 from 6 litters; IUS, n = 7 from 7 litters).
All molecular and some histological analyses were performed in tissue from brains not
weighed before.

2.2. Protein and RNA Isolation

For protein isolation, the whole hippocampal tissue of one hemisphere either obtained
on PND 1 or PND 12 was lysed in protein extraction buffer (10 mM Tris, pH 6.8; 6.65 M
urea; 10% glycerol; 1% sodium dodecyl sulfate; 5 mM dithiothreitol; 0.5 mM phenyl-
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methylsulfonyl fluoride), the tissue was homogenized by sonication (3 × 10% cycle, 50%
energy), incubated on ice (1 h), and centrifuged (1600× g, 5 min, 4 ◦C). For isolation of
protein from hippocampal tissue obtained on PND 180, the NucleoSpin® RNA/Protein
Kit (Machery-Nagel GmbH & Co. KG, Düren, Germany) was used. Protein concentra-
tions were determined using the BCA protein assay kit (Thermo ScientificTM, Waltham,
Massachusetts, USA).

2.3. Western Blot Techniques

We randomly selected five male rats representing five different litters per group and
day for molecular studies on PND 1, PND 12 and PND 180 whenever possible. However,
only four rats from two litters remained in the LP group on PND 180, and the five rats
included from groups LIG and IUS on PND 180 represented four litters only. For protein
detection, 30 µg protein from each hippocampal probe were separated on 12% acrylamide
SDS-PAGE gels and transferred onto a nitrocellulose membrane for 120 min at 1.25 mA/cm2

using a Towbin buffer. Membranes were blocked with 5% milk and 2% BSA in Tris-buffered
saline containing 0.05% Tween 20 (TBST) and subsequently incubated in the primary
antibody (Table 1) at 4 ◦C overnight. After being rinsed with TBST and incubated with
the secondary antibody (anti-rabbit IgG HRP-linked antibody, Cell Signaling #7074) for
one hour at room temperature, they were developed using Amersham ECL Plus Solution
(GE Healthcare, Little Chalfont, UK) and the ChemiDoc™ MP Imaging System (Bio-Rad
Laboratories Inc., Hercules, California, USA). Western blots were performed to determine
the amount of phosphorylated and total protein amounts of mTOR and its downstream
proteins p70 S6 kinase (p70S6K) as well as eukaryotic initiation factor eIF4E-binding protein
1 (4E-BP1). Protein amounts were quantified through densitometry using Image LabTM

(Bio-Rad Laboratories Inc., Hercules, California, USA). Proteins of interest were normalized
to GAPDH. The phosphorylated protein to total protein ratio was determined to measure
protein activation (mTOR, p70S6K) or inactivation (4E-BP1). On PND 180, we additionally
examined expression and phosphorylation of Tau protein.

Table 1. Primary antibodies.

Antibody Manufacturer Molecular Weight Dilution *

4E-BP1 Rabbit mAb Cell Signaling Technology (#9644) 15–20 kDa 1:1000
Phospho-4E-BP1 (Thr37/46) Rabbit mAb Cell Signaling Technology (#2855) 15–20 kDa 1:2000

GAPDH Rabbit mAb Cell Signaling Technology (#2118) 20 kDa 1:3000
mTOR Rabbit mAb Cell Signaling Technology (#2983) 289 kDa 1:1000

Phospho-mTOR (Ser2448) Rabbit mAb Cell Signaling Technology (#5536) 289 kDa 1:500
p70S6K Rabbit mAb Cell Signaling Technology (#2708) 70/89 kDa 1:500

Phospho-p70S6K (Thr389) Rabbit mAb Cell Signaling Technology (#9234) 70/89 kDa 1:500
Tau Rabbit mAb Abcam (ab32057) 50–79 kDa 1:2000

Phospho-Tau (Ser396) Rabbit mAb Abcam (ab109390) 50–79 kDa 1:10,000

* in 5% BSA/TBST.

2.4. Histology

Brains from randomly selected males from each group (single males representing
separate litters) on PND 1 (C, n = 5; LP, n = 5; LIG, n = 4; SOP, n = 5) and PND 12 (C, n = 5;
LP, n = 7; LIG, n = 6; SOP, n = 7) were used for histological studies. Brains from PND
180 animals were not included in histological analysis due to technical issues. To fixate
the tissue, brains were stored in 4% paraformaldehyde (pH 7.4) for 24 h immediately after
removal. Afterwards, all samples were transferred into 70% isopropanol at 4 ◦C. After
dewatering and saturating with 100% isopropanol, they were embedded in paraffin.

Subsequently, 10 µm coronary sections were cut. The equivalent of −3.24 mm Bregma
in adult rat brains were stained with hematoxylin eosin. The cuts were analyzed using
transmitted light microscopy and the open access software ImageJ (https://imagej.nih.
gov/ij/, accessed on 15 January 2021). The hippocampal area was calculated by freehand

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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selection in the cut equivalent of −3.24 mm Bregma in adult rat brains. To study the effect
of experimental IUGR on hippocampal cell densities, we compared the molecular CA1
subregion and the cell bands of the CA2 and CA3 subregions of the cornu ammonis as well
as the molecular (MoGD) and granulated (GrDG) subregions of the dentate gyrus. Total cell
densities in the different hippocampal regions were measured using ImageJ Fiji. Therefore,
defined regions of interest (ROIs) were created in the cut equivalent of −3.24 mm Bregma
in adult rat brains. In that defined area, grayscale values were measured to determine
cell densities in different hippocampal regions. For each animal, measurements were
performed at three replicates per hippocampal region. For this purpose, three identical
ROIs were placed within the region of interest and data averaged from all three ROIs were
used for further analysis. All data were normalized to the mean of group C.

2.5. Statistical Analysis

All datasets were tested for standard distribution. In a few datasets one outlier was
identified by Grubb’s test and excluded. Analysis of weight data was performed by
Mann–Whitney tests with Bonferroni-adjusted p-values. Global analysis of cell densities
as well as protein concentrations (densitometric data from Western blots) was performed
by nonparametric one-way ANOVA. Dunn’s multiple comparison test was performed
afterwards for the comparisons LP—C, LIG—C, IUS—C. All data are shown as mean ±
standard deviation (SD). All (adjusted) p-values < 0.05 were considered significant.

3. Results
3.1. Postnatal Body Weight Was Reduced in All FGR Offspring Groups, While Brain- to
Body-Weight Ratios Were Elevated after Experimental Placental Insufficiency on PND 1 and after
Low-Protein Diet as Well as after Intrauterine Stress on PND 12

On PND 1, weight data of the offspring included in this study resembled birth weight
data of all offspring of the superordinate study published before [41] and were significantly
reduced in all three FGR offspring groups (mean values of LIG < LP = IUS (Figure 1a)). Brain
weight was not significantly altered in any of the FGR offspring groups (Figure 1b), and
brain- to body-weight ratio was increased in LIG offspring (which was not significant due
to the low number of available brain weights) but not in LP or IUS offspring (Figure 1c). On
PND 12, body weight still was significantly reduced in all FGR offspring groups (Figure 1d),
brain weight again was similar to controls (Figure 1e), and brain- to body-weight ratios
were significantly increased in LP and IUS, but no longer in LIG offspring (Figure 1f). In
the long term (PND 180), there were no significant differences in body weight among the
different groups (C, 572 ± 35 g; LP, 600 ± 28 g; LIG, 538 ± 45 g; IUS, 605 ± 51 g). All
groups showed similar brain weights (C, 2.21 ± 0.13 g; LP, 2.27 ± 0.05 g; LIG, 2.18 ± 0.06 g;
IUS, 2.27 ± 0.05 g) and brain-weight to body-weight ratios (C, 0.39 ± 0.03 g/100 g; LP,
0.38 ± 0.02 g/100 g; LIG, 0.41 ± 0.02 g/100 g; IUS, 0.36 ± 0.04 g/100 g).
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values (Mann–Whitney tests) are indicated above the bars; ns, not significant. 
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C, p = 0.002; LIG—C, p = 0.007) compared to the control offspring group. Absolute values 
of the hippocampal area were not significantly different between the groups on PND 12 
(C, 2.97 ± 0.54 mm2; LP, 3.00 ± 0.50 mm2; LIG, 3.16 ± 0.39 mm2; IUS, 2.88 ± 0.23 mm2). 

  

Figure 1. (a) Body weight, (b) brain weight and (c) brain- to body-weight ratio on postnatal day
(PND) 1 as well as (d) body weight, (e) brain weight and (f) brain- to body-weight ratio on PND 12.
For detailed offspring number information see methods section. C, control offspring after unimpaired
gestation; LP, offspring after low-protein diet throughout gestation; LIG, offspring after bilateral
uterine vessel ligation; IUS, offspring after intrauterine stress through “sham” operation. Values are
expressed as mean ± standard deviation. In case of significance compared to C, adjusted p-values
(Mann–Whitney tests) are indicated above the bars; ns, not significant.

3.2. Hippocampal Area in Relation to Brain and Body Weight Was Augmented after Low-Protein
Diet and Experimental Placental Insufficiency on PND 12

On PND 1, there were neither significant differences in hippocampal areas (C,
0.76 ± 0.19 mm2; LP, 0.65 ± 0.12 mm2; LIG, 0.60 ± 0.17 mm2; IUS, 0.70 ± 0.22 mm2)
nor in hippocampal area to body weight (C, 0.11 ± 0.02 mm2/g; LP, 0.11 ± 0.02 mm2/g;
LIG, 0.12 ± 0.02 mm2/g; IUS, 0.11 ± 0.04 mm2/g) between the offspring groups. On
PND 12, LP and LIG offspring showed significantly larger hippocampal area in relation to
body weight (C, 0.07 ± 0.01 mm2/g; LP, 0.13 ± 0.04 mm2/g; LIG, 0.11 ± 0.01 mm2/g; IUS,
0.09 ± 0.01 mm2/g; LP—C, p = 0.002; LIG—C, p = 0.007) compared to the control offspring
group. Absolute values of the hippocampal area were not significantly different between
the groups on PND 12 (C, 2.97 ± 0.54 mm2; LP, 3.00 ± 0.50 mm2; LIG, 3.16 ± 0.39 mm2;
IUS, 2.88 ± 0.23 mm2).
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3.3. Low-Protein Diet Led to Decreased Hippocampal Cell Density in the Molecular Dentate Gyrus
Subregion While Intrauterine Stress Was Associated with Increased Cell Density in the Cellular
CA2 Subregion

On PND 1, we did not find any significant alterations to cell densities in the hippocam-
pal subregions studied (Table S1). On PND 12, we found a significantly decreased cell
density in the molecular dentate gyrus (MoDG) hippocampal subregion of LP offspring
(C, 1.00 ± 0.02; LP, 0.90 ± 0.04; LIG, 0.94 ± 0.06, IUS, 1.03 ± 0.07) (Figure 2, Table S1) as
well as a significantly increased cell density in the cellular CA2 hippocampal subregion of
IUS offspring (C, 1.00 ± 0.06; LP, 0.97 ± 0.04; LIG, 1.00 ± 0.02, IUS, 1.09 ± 0.05) (Figure 3,
Table S1).
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Figure 2. (a) Results of cell density analysis in the molecular dentate gyrus (MoDG) subregion of
the hippocampus on postnatal day PND 12 (C, n = 5; LP, n = 7; LIG, n = 6; IUS, n = 6). For each
animal, grayscale measurements were performed at three replicates per hippocampal region. All
data were normalized to the mean of the control group (C). Representative images of cell density
measurement of (b) control (C) offspring and (c) offspring after low-protein (LP) diet in the MoDG
subregion of the hippocampus on postnatal day PND 12 (HE staining, 20-fold magnification). White
circles indicate regions of interest (ROIs) used for quantitative analysis. Scale bar = 50 µm. Asterisks
indicate significance; *, adjusted p < 0.05.
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Figure 3. (a) Results of cell density analysis in the cellular CA2 subregion of the hippocampus
on postnatal day PND 12 (C, n = 5; LP, n = 7; LIG, n = 6; IUS, n = 7). For each animal, grayscale
measurements were performed at three replicates per hippocampal region. All data were normalized
to the mean of the control group (C). Representative images of cell density measurement of (b)
control (C) offspring and (c) offspring after intrauterine stress (IUS) in the cellular CA2 subregion
of the hippocampus on postnatal day PND 12 (HE staining, 20-fold magnification). White circles
indicate regions of interest (ROIs) used for quantitative analysis. Scale bar = 50 µm. Asterisks indicate
significance; *, adjusted p < 0.05.

3.4. Experimental Placental Insufficiency Caused mTOR Activation on PND 1, Whereas
Intrauterine Stress Caused mTOR Activation throughout Postnatal Hippocampal Development

Western blot analysis revealed a significantly increased amount of phosphorylated
mTOR (p-mTOR/GAPDH: C, 1.00 ± 0.49; LP, 0.96 ± 0.64; LIG, 1.79 ± 0.25; IUS, 2.12 ± 0.50)
as well as significantly elevated p-mTOR/mTOR ratios in LIG and IUS but not LP pups
compared to pups of group C on PND 1 (Figure 4). On PND 12, IUS pups still presented
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with an elevated p-mTOR/mTOR ratio in comparison to C (Figure 4). On PND 180,
there were no significant alterations to mTOR phosphorylation in any of the FGR groups
compared to the control group (Figure 4).
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Figure 4. Western blot analyses of phospho-mTOR (p-mTOR, Ser2448) and mTOR proteins in the
hippocampus of male rats on postnatal days PND 1, PND 12 (C, n = 5; LP, n = 5; LIG, n = 5; IUS,
n = 5) and PND 180 (C, n = 5; LP, n = 4; LIG, n = 5; IUS, n = 5). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as additional reference protein for quality assurance but not
used for calculations. Densitometric ratios were calculated for p-mTOR/mTOR and are shown for
each group (C, controls; LP, low protein; LIG, ligation; IUS, intrauterine stress) as mean ± SD directly
below the appropriate Western blot signals. Data were compared by nonparametric one-way ANOVA.
Dunn’s post-test was performed for the comparisons LP—C, LIG—C, IUS—C. Asterisks indicate
significance; *, adjusted p < 0.05; **, adjusted p < 0.01. The ratio of p-mTOR/mTOR was significantly
increased in LIG offspring on PND 1, as well as in IUS offspring on PND 1 and PND 12.

Looking at downstream mediators, LIG pups presented with a significantly higher
expression of total p70S6K on PND 1 (p70S6K/GAPDH: C, 1.00 ± 0.40; LP, 0.86 ± 0.39;
LIG, 1.68 ± 0.19, IUS, 1.13 ± 0.51) and PND 12 (p70S6K/GAPDH: C, 1.00 ± 0.17; LP,
1.36 ± 0.26; LIG, 1.58 ± 0.36; IUS, 1.29 ± 0.37). However, neither phosphorylated p70S6K
(p-p70S6K/GAPDH), being the active mediator, nor p-p70S6K/p70S6K ratios were signifi-
cantly different in any of the FGR groups compared to C (Figure 5). Total 4E-BP1, which
is the active mediator inhibiting transcription, was significantly increased in IUS pups on
PND 1 (4E-BP1/GAPDH: C, 1.00 ± 0.81; LP, 3.07 ± 1.93; LIG, 2.63 ± 1.30, IUS, 7.23 ± 3.85).
The p-4E-BP1/4E-BP1 ratio was significantly decreased in LP, LIG as well as in IUS on PND
1 (Figure 6). On PND 12, there were no significant differences in 4E-BP1 protein expression
or phosphorylation. On PND 180, the p-4E-BP1/4E-BP1 ratio was significantly increased in
IUS in comparison to C (Figure 6).
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Figure 5. Western blot analyses of phospho-p70 S6 Kinase (p-p70S6K, Thr389) and p70S6K proteins
in the hippocampus of male rats on postnatal days PND 1, PND 12 (C, n = 5; LP, n = 5; LIG, n = 5;
IUS, n = 5) and PND 180 (C, n = 5; LP, n = 4; LIG, n = 5; IUS, n = 5). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as additional reference protein for quality assurance but not
used for calculations. Densitometric ratios were calculated for p-p70S6K/p70S6K and are shown
for each group (C, controls; LP, low protein; LIG, ligation; IUS, intrauterine stress) as mean ± SD
directly below the appropriate Western blot signals. Data were compared by nonparametric one-way
ANOVA. Dunn’s post-test was performed for the comparisons LP—C, LIG—C, IUS—C. There were
no significant differences between the groups.
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Figure 6. Western blot analyses of phospho-eukaryotic translation initiation factor 4E binding protein
1 (p-4E-BP1, Thr37/46) and 4E-BP1 proteins in the hippocampus of male rats on postnatal days PND
1, PND 12 (C, n = 5; LP, n = 5; LIG, n = 5; IUS, n = 5) and PND 180 (C, n = 5; LP, n = 4; LIG, n = 5;
IUS, n = 5). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as additional reference
protein for quality assurance but not used for calculations. Densitometric ratios were calculated for
p-4E-BP1/4E-BP1 and are shown for each group (C, controls; LP, low protein; LIG, ligation; IUS,
intrauterine stress) as mean ± SD directly below the appropriate Western blot signals. Data were
compared by nonparametric one-way ANOVA. Dunn’s post-test was performed for the comparisons
LP—C, LIG—C, IUS—C. Asterisks indicate significance; *, adjusted p < 0.05; **, adjusted p < 0.01. The
ratio of p-4E-BP1/4E-BP1 was significantly reduced in LIG, IUS and LP offspring on PND 1, as well
as increased in IUS offspring on PND 180.

3.5. Experimental Placental Insufficiency, Intrauterine Stress and Maternal Low-Protein Diet Did
Not Have Long-Term Effects on Expression or Phosphorylation of Tau Proteins

Western blot analysis did not reveal any significant differences in the expression of
hippocampal Tau protein in LP, IUS or LIG rats on PND 180. Furthermore, the level of Tau
phosphorylation at S396 was similar among the different groups (Figure 7).
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of male rats on postnatal day PND 180 (C, n = 5; LP, n = 4 LIG, n = 5; IUS, n = 5). Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used as additional reference protein for quality assurance
but not used for calculations. Densitometric ratios were calculated for p-Tau/Tau and are shown
for each group (C, controls; LP, low protein; LIG, ligation; IUS, intrauterine stress) as mean ± SD
directly below the appropriate Western blot signals. Data were compared by nonparametric one-way
ANOVA. Dunn’s post-test was performed for the comparisons LP—C, LIG—C, IUS—C. There were
no significant differences between the groups.

4. Discussion

Fetal growth restriction (FGR), which is most commonly caused by undernutrition and
placental insufficiency, remains a highly relevant global health problem [2]. Neurocognitive
short- and long-term consequences subsequent to impaired neuronal development includ-
ing the hippocampus have been described after FGR [8,9]. The present study was designed
to test the hypothesis that dysregulation of mTOR signaling during the period of maximal
brain growth between birth and PND 12 and altered cellular composition are common
hippocampal signatures after FGR of different origins in male rats. In our experimental
setting, FGR was either induced by maternal low-protein (LP) diet, experimental utero-
placental insufficiency due to bilateral ligation (LIG) of the uterine arteries and veins or by
intrauterine stress (IUS) by “sham” operation during pregnancy. Our results demonstrate
that cellular proliferation and mTOR signaling in the hippocampus are dysregulated in
different ways depending on the cause of FGR.

As we have shown previously, our present data confirm that not only maternal low-
protein diet and bilateral ligation of the Arteriae and Venae uterinae, but also intrauterine
stress through prenatal surgical procedures in the dam caused significant global growth
restriction in the pups [23]. All groups showed catch-up growth leading to similar body
weights on PND 180. While all FGR groups showed constant postnatal growth restriction,
absolute brain weight did not significantly differ from the control group. As a result, the
brain- to body-weight ratio was significantly increased in all FGR offspring groups at some
point of postnatal brain development. These data are in line with a phenomenon commonly
known as brain sparing effect [2]. However, it remains controversial if brain sparing is a
result of mechanisms protecting the brain or rather indicates pathology [50–52]. As we had
hypothesized, we found significant alterations to cellular density in hippocampal tissue
after FGR. Notably, these alterations were dependent upon the cause of FGR. While placen-
tal insufficiency did not have a significant impact and maternal low-protein diet caused
decreased cell densities, perinatal stress seems to be associated with hyperproliferation.
In addition, different hippocampal subregions are affected. This is in line with a previous
study on maternal malnutrition which showed that different hippocampal subregions were
affected differently depending on the composition of maternal nutrition [28].

In our LP group, we could demonstrate decreased cell densities in the molecular
dentate gyrus (MoDG) subregion. The MoDG region is known to be crucial in the process
of recalling contextual memories after several hours or longer [53]. Our findings indicate
that a low-protein diet during brain development may particularly affect this region, with
possible consequences for long-term memory. These results support previous studies.
Thus, Berardino et al. and Ferroni et al. showed that a perinatal low-protein diet in mice
was associated with memory deterioration in the offspring [54,55]. Wang et al. found
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impairment of spatial learning and memory associated with decreased hippocampal brain-
derived neurotrophic factor (BDNF) levels in rats after maternal low-protein diet during
pregnancy [56].

In contrast, IUS pups presented with increased hippocampal cell densities. Interest-
ingly, we found significantly increased cell densities in the CA2 region, which was neither
affected in LP nor LIG offspring. Thus, perinatal stress can be considered as an independent
risk factor for region-specific changes in neuronal development [57–60]. Stress may also be
a compensating factor with respect to hippocampal proliferation in situations impairing
proliferation, such as placental insufficiency, which may explain the absence of significantly
reduced cell densities in our LIG offspring group.

On the molecular level, the low-protein group did not show significant differences
in mTOR activation in comparison to the control group. However, both experimental
placental insufficiency as well as intrauterine stress induced increased hippocampal mTOR
activation on PND 1. Since both LIG and IUS pups experience perinatal stress by surgery,
surgical stress and post-operative recovery might explain common findings in these groups.
Furthermore, the anesthetics used during maternal surgery may have had a neurotoxic
effect. Several studies have shown that isoflurane may increase mTOR activity, which has
been discussed as a possible underlying cause for anesthetic-induced neurotoxicity [61,62].
Interestingly, while mTOR activity of LIG offspring normalized on PND 12, IUS offspring
presented with significant mTOR activation throughout early postnatal life. In the context of
the earlier described changes in hippocampal cellular composition, these findings suggest
that late increased mTOR phosphorylation may contribute to the observed increased
cell density in the CA2 region. Pursuing this hypothesis could provide potential “re-
programming” approaches using mTOR inhibitors such as rapamycin.

Since downstream results of mTOR signaling appear to be inconsistent, further stud-
ies are needed to clarify the exact mechanisms. We found increased concentrations of
total p70S6K1 in LIG and of total 4E-BP1 in all experimental groups on PND 1. However,
despite increased mTOR phosphorylation, there was no significant difference in phospho-
rylation of 4E-BP1 or p70S6K1 in LIG or IUS throughout early postnatal life. Previous
studies have shown that 4E-BP1 and p70S6K1 are phosphorylated by other kinases be-
sides mTOR [63–65], possibly explaining the differences in phosphorylation observed in
this study.

Apart from neurodevelopmental aspects, previous studies have shown that hippocam-
pal mTOR activation plays a role in spatial learning. Qi and colleagues compared hip-
pocampal mTOR signaling in a learning group to a control group and found similar total
amounts of the crucial proteins, but significantly increased amounts of phosphorylated
proteins. Additionally, they described retardation of the learning process by infusion of
rapamycin into the ventricle system [42]. Even if we could not provide evidence for differ-
ences in mTOR phosphorylation in adult FGR animals, this does not rule out functional
dysregulation. Significantly increased 4E-BP1 phosphorylation in adult IUS offspring could
also contribute to IUGR-associated hippocampal sequels through induction of protein
translation. In our study, timing of sacrifice was not synchronized to learning tasks.

Additionally, when looking at late effects of mTOR activity, both human and exper-
imental studies indicate a direct and indirect connection between mTOR hyperactivity
and formation of abnormally hyperphosphorylated Tau protein, which is associated with
Alzheimer’s disease [43–45]. Most interestingly, Caccamo and colleagues found an asso-
ciation between Alzheimer’s disease, such as cognitive impairment and mTOR hyperac-
tivity, in a mouse model and additionally showed that genetic mTOR suppression leads
to reduction of beta-amyloid plaques and cognitive deficiencies [66]. Streptozotocin in-
duced diabetic mice also develop activation of mTOR and cognitive impairment [67]. The
diabetes-associated cognitive deficiencies were eliminated by small doses of rapamycin by
gavage [67]. In contrast, our study showed no long-term effects on mTOR phosphorylation,
although FGR was associated with early postnatal changes in hippocampal mTOR activity.
Correspondingly, we did not observe long-term changes of expression and phosphorylation
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of hippocampal Tau protein after FGR. Hence, we conclude that cognitive impairment in
the context of FGR is mediated by mechanisms differing from the neurocognitive changes
in tauopathies such as Alzheimer’s disease.

Our study has a couple of limitations. First, area measurements and histologic analyses
were limited to global analysis of cell densities and were performed at a single Bregma
level only. Immunofluorescence staining regarding mTOR signaling was not possible due
to technical issues within the available thickness of brain cuts. Second, protein was isolated
from total hippocampal tissue. Therefore, region-specific or cell-type specific protein
dysregulation could not be analyzed. To support results regarding protein expression,
mRNA expression analysis (e.g., Transcriptomics) could be included in future studies. A
strength of our study is the longitudinal design comparing different causes of FGR.

We used different rat models to investigate different causes of fetal growth restriction.
Previous studies have shown that, similar to humans, rats also develop neurocognitive
impairment of learning and memory after FGR [20]. Males are affected more often [19,68].
Hippocampal changes associated with FGR have been found in both rat and human
studies. Thus, reduced hippocampal volume has been demonstrated in MRI studies of
children born small for gestational age [69,70] as well as in common experimental FGR rat
models [28,30]. Although possible underlying molecular mechanisms in the hippocampus
have been mainly studied in experimental animal models, there is reason to assume that
the histological and molecular observations made in our study also might apply to humans
to some extent. Nevertheless, as previous studies have pointed out, differences between
species regarding the course of gestation, placental physiology, brain development as
well as the severity and timing of the interventions in the experimental models need to be
considered when interpreting the presented data and limit transferability to humans [31,71].

5. Conclusions

In conclusion, our findings provide evidence that cellular proliferation in the hip-
pocampus and hippocampal mTOR signaling are dysregulated during postnatal brain
development after FGR. Interestingly, the time course and the type of dysregulation depend
on the cause of FGR. While a low-protein diet induces decreased cell densities, especially in
the MoDG hippocampal subregion, prenatal stress by surgery in the dam causes hyperpro-
liferation in the CA2 region, possibly via increased mTOR signaling. Basal hippocampal
mTOR phosphorylation in adult FGR animals was unaltered while we did not test mTOR
signaling during specific learning tasks.
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