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Introduction
The Coronavirus-19 (COVID-19) disease was first discov-
ered in Wuhan, China, where a significant outbreak is caused 
by the disease’s rapid transmission from person to person. 
Because of COVID-19, the world has seen a health epidemic 
spread so swiftly across countries, damaging complex health 
systems, and threatening the whole economy.1 There are some 
significant parameters that are responsible for the rapid 
spread of COVID-19. These can include climate conditions, 
air quality, air pollution, and population density.2 Evidence 
suggests COVID-19-confirmed cases and deaths were shown 
to be higher in places with high levels of air pollution.3

Droplets, person-to-person transmission, infected objects, 
and airborne transmission are all ways for the severe acute  
respiratory syndrome coronavirus 2 (SARS-CoV-2) virus to 
infect the respiratory system.4 If virus-carrying droplets or bio-
aerosols penetrate the human body through coughing or sneez-
ing and reach an uninfected host, they can cause illness. 
Furthermore, any unprotected contact with an infected object 
increases the risk of the virus spreading. Another route for 
COVID-19 transfer is through the inhalation of small airborne 
particles with a diameter of less than 5 m.5,6

Several studies have been carried out to examine if the 
COVID-19 coronavirus may be transmitted through the 

environment. Pramanik et  al7 discovered a significant rela-
tionship between COVID-19 occurrences and temperature 
in humid target areas. Temperature, PM2.5, and median age 
have all been reported to play a role in the propagation of 
COVID-19 in some studies.2,8-12 There was no correlation 
between COVID-19 and 7-day lagged meteorological indi-
cators, according to a study by Islam et al13 that looked into 
the relationship between weather conditions and COVID-19. 
Although COVID-19 and 14-day delayed temperature have 
a positive association, COVID-19 and 14-day lagged humid-
ity have a negative relationship. It should be kept in mind that 
many diseases are contagious and can be transmitted through 
epidemiological mechanisms.9,14-16

Rosario et al17 revealed that high sun radiation, temperature, 
and wind speed all slowed the progression of COVID-19 cases. 
According to Li et al18, air pollution had a positive effect on 
COVID-19 new occurrences, but temperature had a negative 
effect. Pei et al19 found a strong correlation between COVID-
19 cases and air quality, and COVID-19 cases and air quality, 
and their findings show a clear relationship between air pollu-
tion and temperature, but COVID-19 has a negative connec-
tion with carbon monoxide. Pearson correlation analysis was 
used by Tanis and Karakaya20 to examine the effects of air pol-
lutants like PM2.5, PM10, nitrogen oxides (NO2), sulfur dioxide 
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(SO2), carbon monoxide (CO), ozone (O3), and SARS-CoV-2 
cases. Simultaneously, other literature found a link between 
weather variables, like temperature and wind speed, and 
COVID-19 cases. In 3 Chinese cities, Jiang et al21 evaluated 
the relationship between air pollutants such as PM2.5, PM10, 
SO2, NO2, CO, and O3 daily meteorological factors of COVID-
19. According to the researchers, in all cities, daily COVID-19 
incidence was positively associated with PM10 and humidity, 
but negatively associated with PM10 and temperature.

The impact of weather-related and climatic variables on the 
COVID-19 outbreak in Canada was examined by Sarwar 
et  al.22 They looked at how different meteorological factors 
influence COVID-19 spread and made the case that weather, 
and climate change significantly increase COVID-19 infec-
tions using key variables like daily COVID-19 cases, carbon 
dioxide emissions, nitrogen dioxide (NO2), sulfur dioxide 
(SO2), PM2.5, ozone (O3), average temperature, and humidity. 
According to their argument, the COVID-19 infection rate is 
significantly increased by weather and climate change.

In Jakarta, Indonesia, Tosepu23 used the Spearman rank cor-
relation test to evaluate the relationship between climate data 
such as different situation of temperature, rainfall, humidity, 
and the daily confirmed cases of epidemic. Air pollution and 
weather variables are connected to COVID-19 confirmed 
cases and fatality rates. It can be explained by disparities in 
medical and health insurance systems, as well as regional poli-
cies in different cities and countries, according to Yuan et al24 
and Suhaimi et  al.4 The purpose of our research is to learn 
more about the COVID-19 virus’s propagation in Bangladesh 
by investigating the methods of climatic factors-to-human 
transmission and COVID-19-confirmed cases’ human-to-
human transmission.

Simply expanding the forest canopy is not an effective strat-
egy to reduce carbon emissions.25 In 2020, fossil CO2 emis-
sions are expected to have decreased by 2.4 billion metric tons 
because of the global COVID-19 lockdowns, according to new 
calculations from University of East Anglia researchers (UEA). 
Compared to 2019, 184 countries’ combined carbon emissions 
decreased by 438 Mt in 2020. The reduction in carbon emis-
sions during the pandemic will not be lasting because it is 
anticipated that global economic activity will gradually return 
to its pre-COVID-19 state. Therefore, it is crucial to look into 
the relationship between carbon emissions and Bangladesh’s 
COVID-19 status.

The relationship between the COVID-19 outbreak and 
climatic or weather-related factors was investigated sepa-
rately in the previous literature review. Bangladesh has a 
tropical monsoon climate and is primarily an air-polluted 
nation. The COVID-19 pandemic had the biggest negative 
economic impact on Bangladesh. After Pakistan and India, 
Bangladesh is the third country in South Asia to be affected. 
Therefore, it is crucial to investigate how Bangladesh’s 
COVID-19 pandemic is affected by climatic factors and air 

pollution. As previously indicated, most of the research has 
focused on the linear association between climatic factors 
and COVID-19. These variables, on the other hand, exhibit 
regular oscillations and nonlinear behavior, which have been 
disregarded in prior investigations. As a result, the nonlinear 
framework was applied in this study in Dhaka, Bangladesh, 
to fill in this gap. This study employed correlation measure-
ments to examine the intensity of the association between 
climatic variables and COVID-19 spreads. This period 
included the use of Spearman’s correlation analysis. To arrive 
at novel results and recommendations, this study employed 
correlation measurements, including Spearman’s correlation 
analysis. As a result, we believe our paper will contribute to 
closing this gap in literature. The study’s research objectives 
are as follows:

•• to examine the link between climate variables like 
temperature, humidity, carbon emissions, wind speed, 
and PM2.5 on COVID-19 confirmed cases in Dhaka, 
Bangladesh.

•• to identify the distribution of COVID-19 confirmed 
cases asymmetrically or symmetrically linked to climate 
variables such as temperature, humidity, carbon emis-
sions, wind speed, and PM2.5.

•• introducing methods can be utilized to halt the spread of 
the SARS-CoV-2 virus.

Materials and Methods
Data

The time-series data (daily) used for the study area, Dhaka, 
Bangladesh in this analysis span the dates of May 1, 2020, and 
April 14, 2021. Meteorological factors, such as average tem-
perature (°C), PM2.5 (a proxy for air quality), humidity (%), 
carbon emissions (per capita), and wind speed (km/h) were 
selected for the study area. As control variables, 2 non-weather 
variables are used, such as population mass and the human 
development index. Table 1 summarizes the definitions and 
data sources.13,26,27 IBM Statistical Package for the Social 
Sciences (SPSS version 19.0) and Eviews 10 were used to carry 
out the statistical analysis.

Analysis

Correlation analysis. Since we are unsure at first whether the 
data are normally distributed or not, it is preferable to use non-
parametric correlation analysis to determine whether there is a 
linear relationship between the variables. A previous study con-
ducted using the same data characteristics, shown in Figure 1, 
revealed the relationship between environmental factors and 
the transmission of SARS-CoV-2.28 For empirical investiga-
tions, Spearman’s non-parametric correlation is used to look at 
the intensity and direction of the meteorological variables and 
COVID-19.
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The formula for calculating the Spearman correlation coef-
ficient is as follows:
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d

n ns
i i

= −
−( )

∑
1

6

1

2

2
 (1)

Where, n is the total number of observations; di  = rank of 
Xi  − rank of Yi .

NARDL model. We used a nonlinear autoregressive distribu-
tion lag (NARDL) model to study the long- and short-run 
nonlinear relations between the COVID-19 and climate vari-
ables, as described by Shin et al.29 Based on the prior work of 
Ibrahim30 and Lacheheb and Sirag31 and considering the non-
linear relationship between temperature, humidity, PM2.5, car-
bon emission, and wind speed in COVID-19 cases, our model 
will be as follows:

Table 1. Definition and sources of the variables.

VARIABlES INDICATORS DESCRIPTION DATA SOURCES

COVID-19 confirmed cases COVID Daily confirmed cases Directorate General of Health Services (DGHS)

Temperature TEM Average temperature (in degrees Celsius) Bangladesh Meteorological Department (BMD)

Humidity HUM Average humidity (Measured in 
percentages)

Bangladesh Meteorological Department (BMD)

PM2.5 PM Average PM2.5 (Proxy of air quality) US Consulate in Dhaka

Carbon emissions CE Average carbon emissions (Metric tons per 
capita)

Bangladesh Meteorological Department (BMD) 
and World Development Indicators (WDI)

Wind speed WS Measured in kilometers per hour Bangladesh Meteorological Department (BMD)

Population density PD per km2 Worldometer.info and BBS

Human development index HUMAN Development index Globaldatalab .org

COVID-19 confirmed cases, humidity, wind speed, temperature, and PM2.5 are all expressed as logarithms.

Figure 1. Environmental factors and transmission of SARS-CoV-2.28
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Figure 2. COVID-19 daily-confirmed cases versus climatic factors.

Equation 2 can be included in the NARDL equation with an 
unrestricted error correction representation. COVID defines 
COVID-19 daily cases, TEM defines temperature, and PM 
stands for PM2.5, CE stands for carbon emissions, Wind speed 
is denoted by WS, while humidity is represented by HUM.

Natural logarithms are abbreviated as “LN.” Where q and p  
indicate the lag order and β θ θ1 2 1= / ,  β θ θ β θ θ2 3 1 13 4= =/ , /  
and β θ θ β θ θ β θ θ β θ θ4 5 5 61 1 6 7 1 7 8 1= = = =/ , / , / , / ,
β θ θ8 9 1= / ,  β θ θ9 10 1= / , β θ θ10 11 1= / ,  are long-run asym-

metric effects of temperature, humidity, PM2.5, carbon emission, 

and wind speed on COVID-19 cases. Accordingly, 
i

i s
=
∑ ′

1

8

γ   

are measure the short run asymmetric effects of temperature, 
humidity, PM2.5, carbon emission, and wind speed on COVID-
19 cases.

Where, the long-term variables are related to βi . Positive 
changes TEM + , HUM + , PM CE+ +,  and WS+  as well as 
negative changes TEM − ,  HUM − ,  PM CE− −, ,  and WS+  
respectively, incorporating the nonlinear impact of our study’s 
variables. The decomposition of the NARDL model into a 
partial sum of positive and negative changes is shown by the xt  
in the following equation:

 x x x xt o t t= + ++ −  (3)
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We first looked at the order of integration of the chosen 
variables using the well-known Augmented Dickey-Fuller 
(ADF) and Phillips-Perron (PP) tests. Second, we evaluated 
the existence of a long-run link between variables using a 
bound testing methodology devised by Pesaran et  al32 and 
Shin et al.29 Using the F-test, we checked the null hypoth-
esis θ θ θ θ θ θ θ θ θ θ θ1 2 3 4 5 6 7 8 9 10 11 0= = = = = = = = = = = .  
Third, we demonstrate both long run and short-run asym-
metric correlations among the variables using the Wald test. 
Finally, we show how a 1% difference in the positive and 

negative lag values of independent variables can cause asym-
metric cumulative dynamic multiplier (CDM) effects. 
Obtaining the CDM of a unit change allows us to assess the 
asymmetric effect as well in xt−

+
1  and xt−

−
1  on y.
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Findings and Discussion
Supplemental Appendix 1 shows the descriptive statistics, 
where each variable is normally distributed and has 5% signifi-
cant levels using the Jarque-Bera test statistic. Figure 2 plots 
daily confirmed cases against meteorological conditions to 
highlight each study variable’s unique contribution to COVID-
19 verified cases. COVID-19 prevalence is intricately tied to 
climate conditions, as seen in Figure 2.

Table 2 contains the results of the Spearman correlation 
test. The COVID-19 instances and temperature have a 
favorable and substantial relationship, according to our study. 
Temperature and the COVID-19 pandemic have a moder-
ate, an advantageous, and important connection (r = .599) at 
the 1% level of significance, which is consistent with the pre-
vious studies in Bangladesh.2,24,27,33 Some previous studies 
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revealed that COVID-19 transmission is decreased at low 
ambient temperatures2,12 and that there is a positive and sig-
nificant connection between temperature and the COVID-
19 pandemic.10,34-36

COVID-19 has a mild, negative, and significant association 
with humidity (r = −.087) and a strong, positive, and significant 
relationship with wind speed (r = .781), according to our data. 
Hridoy,26 Pal and Masum,27 and Pavel33 discovered a signifi-
cant relationship between PM2.5 and COVID-19. Some other 
studies8,10,37,38 have shown that COVID-19 and PM2.5 have a 
negative, weak, and significant relationship at 1% level of sig-
nificance. Consistent with these studies, we found in Dhaka, 
Bangladesh, that PM2.5 and the COVID-19 outbreak have a 
significant relationship. According to the study, COVID-19 
and carbon emissions had a positive, weak relationship 
(r = .309). Air pollution and climate variables such as tempera-
ture, humidity, carbon emissions, wind speed, and PM2.5 have 
been connected to the increasing number of COVID-19 daily 
cases in Dhaka, Bangladesh.

The ADF, PP, and KPSS tests were employed for stationary 
tests in our empirical study, and the findings are summarized in 
Table 3. The Schwarz information criteria (SIC) were used to 
find the optimal lag structure. According to the ADF tests, 
daily COVID-19 confirmed cases are stationary at level, sug-
gesting I (0) according to ADF test, and PM2.5 is stationary at 
level, indicating I (0), whereas all study variables are stationary 
at the first difference, indicating variables are I (1), according to 
both tests. We can use the bound testing methods for co-inte-
gration to evaluate equation (2) when the I (2) variables. The 
KPSS test, which is favorable to stationarity for all at first dif-
ference series, supports the findings.

By using the traditional VAR model, we optimized the lag, 
and based on the AIC criterion, we chose lag “1” as the best lag, 
as shown in Supplemental Appendix 2. Table 4 shows the 
bound test results of model estimation for the existence of lin-
ear and nonlinear co-integration. Because the F-statistic result 
of 3.258530 is bigger than the necessary lower limit of 2.62, it 
reveals that there is an inconclusive decision in a linear form 

and smaller than the necessary upper limit of 3.79 at 5%. At 
5%, the t-statistic result of −3.649323 is higher than the 
required lower limit of −2.86 and is lower than the required 
upper limit of −4.19. In a linear approach, the bound test dem-
onstrates that there is an inconclusive decision. On the other 
hand, the results of the non-linear ARDL specification indi-
cate the long-run existence of cointegration, as the value of the 
F-statistic, which is 9.763696, exceeds the upper critical con-
straint of 3.04 at 5%, while the t-statistic value of −9.655781 
exceeds the upper critical constraint of −5.03 at 5%.

Table 2. Test results of Spearman’s correlation.

SPEARMAN’S CORRElATION

VARIABlES COVID TEM HUM WS PM CE

COVID 1  

TEM 0.599*** 1  

HUM −0.087*** 0.695*** 1  

WS 0.781*** 0.841*** 0.687*** 1  

PM −0.178*** −0.297*** −0.223*** −0.221*** 1  

CE 0.309*** 0.301*** 0.313*** −0.124*** 0.485*** 1

***refers correlation is significant at 1% level of significance (2-tailed).

Table 3. Unit root test results.

VARIABlES lEVEl FIRST DIFFERENCE

ADF PP ADF PP

lNCOVID −3.501** −2.523 −6.079** −30.817**

lNTEM −0.553 −0.033 −3.012** −20.467**

lNHUM −1.547 −2.412 −10.412** 28.943**

lNPM −2.987 −6.258** −10.250** −32.474**

CE −2.719 −2.369 −10.896** −7.231**

lNWS −0.375 −0.566 −22.122** −30.987**

KPSS test

Variables level First difference

lNCOVID 0.435040 0.162501**

lNTEM 1.017066 0.476468***

lNHUM 1.283610 0.148905**

lNPM 1.750468 0.138538**

CE 1.652322 0.156323**

lNWS 0.990824 0.231258**

**refer significant at 5% levels of significance. For optimal lag, order SIC is used, 
and constant and time intercept are included in level and first difference. The 1% 
level (0.7390), the 5% level (0.4630), and the 10% level (0.4630) are the KPSS 
asymptotic critical values (0.3470).
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Table 5 shows the NARDL asymmetric estimates. Control 
variables such as population density have positive and insignifi-
cant effects on COVID-19 instances, while another control 
variable, the human index, has negative and insignificant effects 
on COVID-19 cases. Table 6 shows the findings of NARDL’s 
short- and long-run estimates. COVID-19 instances are 
reduced by 1.14% in the short run and increase 1.13% in the 
long run by a 1% increase in humidity, according to the find-
ings. Reduced humidity, on the other hand, had no influence 
on COVID-19 instances in the short or long term. COVID-
19 is connected to relative humidity, according to other stud-
ies.11,12,26,38 PM2.5 has a favorable and positive long-term and 
short-term effect on COVID-19 daily cases, according to our 
study. According to the findings, a 1% rise in PM2.5 increased 
COVID-19 instances by 0.124785% in the short run and 
0.077525% in the long run, resulting in a 0.077525% increase 
in COVID-19 cases.

In the short run, there are no significant effects on COVID-
19 due to the positive change in carbon emissions, but a 1% 
increase in carbon emissions reduces the daily cases by 
0.489567% in long run. Temperature and wind speed, 2 other 
study variables, have the highest impact on COVID-19 daily 
cases. The study findings indicate that a 1% increase in tem-
perature raises COVID-19 incidences by 1.232585% in the 
short run and 1.525774% in the long run. Reduced 

temperatures, on the other hand, have no influence on daily 
cases in the short term but have a favorable and considerable 
effect on daily cases in the long term. Maximum temperature 
has a considerable effect on COVID-19 transmission, accord-
ing to recent studies by Hridoy,26 Shao et al,40 Pani et al,34 and 
Kumar.41 This discovery was made, unlike several recent stud-
ies that revealed a negative link between temperature and 
COVID-19 transmission ability.35,42,43

In the short run, a 1% increase in wind speed increases 
COVID-19 instances by 0.147853%, while in the long run; it 
increases COVID-19 instances by 0.880555%, according to 
the findings. Reduced wind speed, on the other hand, has no 
significant influence on everyday instances in the short term 
but has positive and significant effects in the long term. 
COVID-19 transmission was shown to be significantly 
affected by maximum wind speed, which is consistent with ear-
lier studies.2,26,44-46 According to Li et al,18 there is no correla-
tion between wind speed and the ability to transmit COVID-19, 
while Islam et al2 found a negative correlation. Air pollution 
and climate variables such as temperature, humidity, carbon 
emissions, wind speed, and PM2.5 are asymmetrically associ-
ated with the spread of COVID-19 confirmed cases in Dhaka, 
Bangladesh, according to our findings.

The current study indicated that temperature and wind 
speed had a beneficial effect on COVID-19 transmission in 

Table 4. Bounds test results for co-integration.

lINEAR FASHION VAlUE SIGNIF. (%) lOWER BOUND, I(0) UPPER BOUND, I (1) DECISION

F-statistic 3.258530 10 2.26 3.35 Inconclusive

5 2.62 3.79

2.5 2.96 4.18

1 3.41 4.68

t-statistic −3.649323 10 −2.57 −3.86 Inconclusive

5 −2.86 −4.19

2.5 −3.13 −4.46

1 −3.43 −4.79

Nonlinear fashion  

F-statistic 9.763696 10 1.83 2.94 Co integration

5 2.06 3.24

2.5 2.28 3.5

1 2.54 3.86

t-statistic −9.655781 10 −2.57 −4.69 Co integration

5 −2.86 −5.03

2.5 −3.13 −5.34

1 −3.43 −5.68

The critical values are from the Narayan.39
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Dhaka, Bangladesh; this conclusion is consistent with prior 
research and backs up the findings of Bashir et  al47 and 

Tosepu.23 Research from the past supports the positive impact 
of humidity on COVID-19 transmission in Dhaka.2,38,48,49 

Table 5. NARDl estimate results.

VARIABlE COEFFICIENT STD. ERROR t-STATISTIC PROB.*

C 6.550195** 3.403025 1.924815 0.0051

LNCOVID −( )1 0.546961** 0.066357 8.242647 0.0000

LNHUM+ −0.231516** 0.481593 −0.480731 0.0310

LNHUM+ −( )1 0.744191 0.466428 1.595510 0.1116

LNHUM− −0.060150 0.053389 −1.126632 0.2607

LNPM+ 0.035122** 0.052463 0.669449 0.0037

LNPM− 0.007586 0.052373 0.144854 0.8849

LNTEM+ 0.691235** 0.132999 5.197307 0.0000

LNTEM− 0.293354 0.419602 0.699125 0.0850

LNTEM− −( )1 0.974435** 0.471869 2.065057 0.0397

LNWS+ 0.398926** 0.115926 3.441214 0.0007

LNWS− 0.422686** 0.123913 3.411148 0.0007

CE+ −0.221793 0.179287 −1.237085 0.2169

CE− −0.183127 0.207632 −0.881978 0.3784

LNPD 0.611073 0.486947 −1.254906 0.2104

HUMAN INDEX− −0.014455 0.317816 −0.045483 0.9637

R-squared 0.899123 Mean dependent var 6.421258

F-statistic 196.0052 Durbin–Watson stat 2.300554

** refer significant at 5% levels of significance.

Table 6. NARDl short run and long run estimates.

SHORT RUN ESTIMATES lONG RUN ESTIMATES

VARIABlE COEFFICIENT STD. ERROR t-STATISTIC VARIABlE COEFFICIENT STD. ERROR t-STATISTIC

∆LNHUM+ −1.145121** 0.198547 −0.610733 LNHUM+ 1.131635** 0.332591 3.402483

∆LNHUM− 0.451254 0.205747 0.707115 LNHUM− −0.132770 0.112587 −1.179264

∆LNPM+ 0.124785** 0.062527 2.593579 LNPM+ 0.077525** 0.111697 0.694058

∆LNPM− −0.189563 0.055992 −0.567869 LNPM− 0.016746 0.114610 0.146110

∆LNTEM+ 1.232589** 0.267766 1.487674 LNTEM+ 1.525774** 0.182204 8.373991

∆LNTEM− 0.552147 0.270999 1.670669 LNTEM− 2.798413** 0.245814 11.38425

∆LNWS+ 0.147853** 0.233053 1.206260 LNWS+ 0.880555** 0.236518 3.722987

∆LNWS− −0.174859 0.263144 −0.704058 LNWS− 0.933002** 0.236349 3.947555

∆CE+ 0.223856 0.278539 0.912895 CE+ −0.489567** 0.430669 −1.136759

∆CE− −0.295471** 0.147430 −2.156243 CE− −0.404219 0.472058 −0.856289

**refers significant at 5% levels of significance.
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This study supports prior research in that wind speed has a 
positive impact on COVID-19 transmission.2,50 This could let 
virus particles last longer in dirty air, allowing SARS-CoV-2 to 
spread through a more indirect route.

The NARDL co-integration test validates the presence or 
absence of asymmetric co-integration among the variables in 
the model but does not identify causation direction. As a result, 
we applied positive and negative TEM, HUM, PM, CE, and 
WS changes to COVID-19 cases to test for Granger causality, 
and the results are presented in Table 7. The findings demon-
strated that COVID-19 instances are caused by positive shocks 
to the TEM, HUM, CE, and WS in the short run. The nega-
tive shock of TEM, HUM, CE, and WS, on the other hand, 
was found to be the underlying cause of COVID-19 instances 
in the short term. However, the findings demonstrated that the 
negative shock of all variables is the fundamental cause of 
COVID-19 instances in the long term.

The positive change curve will show asymmetric adjust-
ments in COVID-19 cases due to positive TEM changes, 
whereas the negative change curve has shown negative 
adjustments in COVID-19 cases due to negative TEM 
changes. HUM, PM, CE, and WS are all explained in the 
same way. Negative TEM shocks, positive PM2.5 shocks, 
negative wind speed, and negative HUM shocks had the 
highest influence on COVID-19 cases, according to all the 
dynamic multiplier values. According to Figure 3, positive 
and negative shocks of CE, on the other hand, had the same 
influence on COVID-19 cases.

Some diagnostic tests were also performed to support the 
NARDL model’s dependability, as shown in Table 8. The 
NARDL model is reliable because all diagnostic tests demon-
strate its accuracy. The adjustment speed, according to our sta-
tistics, is −0.45321, indicating a 45% rise in significance in the 
previous period to attain equilibrium. To confirm the nonline-
arities between the variables under examination, the Wald test 
was performed. Table 8’s findings, which show asymmetries 
between variables at a 5% level of significance, are presented. 
We performed the CUSUM and CUSUM Square tests to 
check the model’s stability. Figure 4 depicts the outcomes of 
these tests and demonstrates the stability of the model.

Public health agencies depend on traditional ways to control 
and monitor the expansion of infectious diseases.51 
Interventions and practices related to water, sanitation, and 
hygiene are essential for COVID-19 prevention.52 The ongo-
ing pandemic significantly interacts with the social determi-
nants of environmental health, as evidenced by the significant 
spread in low-income areas not only in Latin America and Asia 
but also in the developed world. These factors include low 
income, inadequate housing, lack of access to safe drinking 
water and food, unsanitary living conditions, and inadequate 
infrastructure.53 This study advises the following key COVID-
19 preventative behaviors, despite the introduction of vaccina-
tions as a tool for prevention against COVID-19 and the 
appropriate use of masks: avoiding crowded or poorly venti-
lated spaces or wearing a mask in these spaces; practicing 
proper hand hygiene; maintaining hygiene; cleaning and disin-
fecting frequently touched objects and surfaces; and maintain-
ing your overall health. In their study, Rao et al,54 found that 
instead of getting themselves checked out right away and only 
getting tested and treated by a doctor when their health dete-
riorates, people who develop COVID-19 symptoms turn to 
Google for confirmation and treatment. At that point, hospi-
talization is the only choice due to the patients’ critical condi-
tions. Due to capacity issues and elevated mortality rates, this 
puts an unsustainable burden on hospitals. In order to forecast 
COVID-19 waves, mobilize the healthcare system, save lives, 
and promote frictionless growth, they advise using Google 
Trends data.

This study has some limitations because COVID-19 
transmission can be complicated by factors like the quantity 
of tests that have been successfully completed, public opposi-
tion, internal migration, human behavior, and cultural and 
economic factors. We were also limited to only looking at 
Dhaka, Bangladesh. Furthermore, another limitation in this 
study is that we considered daily COVID-19 cases nationally 
and considered the climate variables in some specific stations 
around Dhaka. In future studies, we will consider confound-
ing factors linked to COVID-19′s spread in Bangladesh as a 
whole. Further research will be needed to generalize the rela-
tionship between COVID-19 cases and climate variables.

Table 7. NARDl long run and short Granger Causality results.

VARIABlES H0 0:∑ + =γ  (F-TEST) P-VAlUE H0 0:∑ − =γ
 
(F-TEST) P-VAlUE ECM (t TEST) P-VAlUE

lNHUM 4.16396 .0421 16.5677 .0521 0.52611 .0012

lNPM 7.25351 .0974 1.25688 .1030 1.57340 .0341

lNWS 0.50327 .0085 0.03334 .0052 5.62704 .0001

CE 7.76077 .0056 0.22055 .0089 3.25802 .0412

lNTEM 12.9529 .0004 18.6675 .0005 2.07991 .0145
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Figure 3. Cumulative dynamic multipliers (CDM) effects on COVID-19 daily cases by climatic parameters.
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Conclusion and Policy Suggestions
The importance of meteorological and non-meteorological 
factors in COVID-19′s rapid spread in Dhaka, Bangladesh is 
highlighted in this paper. Local COVID-19 transmission is 
closely linked to climate conditions in Dhaka, according to 
the findings. This study explores the link between tempera-
ture, carbon dioxide, humidity, PM2.5, wind speed, and 
COVID-19 in Dhaka, Bangladesh, and offers both intrigu-
ing and conflicting results. Two non-climatic factors, such as 
population density and the Human Development Index, are 
utilized as control variables. Furthermore, the NARDL find-
ings show that all our study factors had significant asymmet-
ric effects on COVID-19 in Dhaka, Bangladesh, both 

short- and long term. Increases in temperature are associated 
with a lower risk of COVID, but humidity has the opposite 
effect. Increases in wind speed and PM2.5 have a favorable 
effect on COVID instances, according to NARDL studies, 
whereas a reduction in carbon emissions has a negative effect 
on COVID instances both in the short and long term. 
Moreover, decreasing COVID-19 cases can be attributed to 
increasing wind speed. The spread of COVID-19, however, 
has been significantly increased with increasing PM2.5 levels. 
New COVID-19 cases have a significant negative relation-
ship with carbon emissions both in the short- and long-term 
lag non-linear relationship. The Wald test and dynamic mul-
tiplier graphs reveal that COVID-19 and climatic factors 
have an asymmetric connection.

This study suggests that for a sustainable ecosystem, gov-
ernments, lawmakers, and businesses should reduce harmful 
gas emissions. The key findings of this study will aid decision-
makers in determining the weather and economic factors that 
influence future pandemic risks. In order to come up with prac-
tical solutions to the problems of air pollution and global 
warming, policymakers and other management authorities will 
find the study’s findings to be very helpful. The results may aid 
in determining how COVID-19 transmission in Bangladesh is 
affected by seasonality.

The findings of this study may also be relevant for future 
research in other nations. More factors relating to COVID-19 
incidence should be considered in future studies to further 
improve accuracy. In our subsequent study, we forecasted 
COVID-19 waves using Google Trends data to mobilize the 
healthcare system, save lives, and encourage frictionless growth 
in the context of Bangladesh. Virus resistance, the number of 
individuals infected, the size of the city, mobility, cleanliness, 
the usage of masks and sanitizers, and other COVID-19-
related factors must be explored.

Table 8. Diagnostic test and Wald test results.

CointEq(-1) −0.45321

J-B [prob] 0.1121

R-R [prob] 0.4571

lM (1) [prob] 0.1978

lM (2) [prob] 0.4685

ARCH (1) [prob] 0.6214

ARCH (2) [prob] 0.7142

TEM XW [ , ]2 prob [12.2585, 0.0000]

HUM XW [ , ]2 prob [10.1425, 0.0001]

PM XW2 5 2. [ , ]prob [3.2145, 0.0005]

WS XW [ , ]2 prob [7.2145, 0.0001]

CE XW [ , ]2 prob  

TEM HUM PM WIND CEW W W W W, , . , &2 5  indicates the Wald test result for each 
variable.
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Figure 4. Cumulative sum (CSUM) and cumulative sum square (CSUM squares) test for model stability test.
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