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ABSTRACT Methionine abundance affects diverse cellular functions, including cell division, 
redox homeostasis, survival under starvation, and oxidative stress response. Regulation of 
the methionine biosynthetic pathway involves three DNA-binding proteins—Met31p, 
Met32p, and Cbf1p. We hypothesized that there exists a “division of labor” among these 
proteins that facilitates coordination of methionine biosynthesis with diverse biological pro-
cesses. To explore combinatorial control in this regulatory circuit, we deleted CBF1, MET31, 
and MET32 individually and in combination in a strain lacking methionine synthase. We fol-
lowed genome-wide gene expression as these strains were starved for methionine. Using a 
combination of bioinformatic methods, we found that these regulators control genes in-
volved in biological processes downstream of sulfur assimilation; many of these processes 
had not previously been documented as methionine dependent. We also found that the dif-
ferent factors have overlapping but distinct functions. In particular, Met31p and Met32p are 
important in regulating methionine metabolism, whereas p functions as a “generalist” tran-
scription factor that is not specific to methionine metabolism. In addition, Met31p and 
Met32p appear to regulate iron–sulfur cluster biogenesis through direct and indirect mecha-
nisms and have distinguishable target specificities. Finally, CBF1 deletion sometimes has the 
opposite effect on gene expression from MET31 and MET32 deletion.

INTRODUCTION
Cells must adapt to a great variety of internal and external signals. 
One way they accomplish this is by using condition-specific, 
sequence-specific transcription factors (TFs) to make compensatory 

changes in gene expression. Instead of using a distinct TF for every 
possible combination of environmental perturbations, the cell uses 
a parsimonious strategy of transcriptional control in which TFs can 
be used in combinations that elicit distinct, stimulus-specific, tran-
scriptional responses from their target genes.

The existence of genome-wide expression and TF-binding data 
in Saccharomyces cerevisiae and other organisms has enabled re-
searchers to systematically catalogue many such combinations, in-
cluding pairwise combinations (Pilpel et al., 2001), higher-order 
combinations such as the “multi-input motif,” and more complex TF 
circuits such as the “regulator chain,” “multicomponent loop,” 
“feedforward loop,” and “dense-overlapping regulon” (Lee et al., 
2002; Milo et al., 2002; Shen-Orr et al., 2002). However, compara-
tively few examples of combinatorial control have been studied in 
detail experimentally. In yeast, well-studied examples of combinato-
rial control include the response to fatty acids by Oaf1p, Oaf3p, 
Pip2p, and Adr1p (Smith et al., 2007); combinatorial use of Hog1p 
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The more widespread physiological influence of the Met path-
way was first observed when Unger and Hartwell (1976) found that 
methionine starvation causes cell cycle arrest. According to an early 
microarray-based cell cycle analysis, the Met biosynthetic genes—
but not the biosynthetic genes of any other amino acid—are ex-
pressed periodically throughout the cell cycle (Spellman et al., 
1998). It was subsequently shown that constitutive activation of 
Met4p (such as by deletion of MET30) causes cell cycle arrest at the 
G1/S transition and that this arrest depends on the transcriptional 
activation domain of Met4p (Patton et al., 2000). Methionine starva-
tion, unlike starvation for other amino acids, results in cell cycle ar-
rest and survival; survival during methionine starvation is abolished 
by double deletion of MET31 and MET32 and is correlated with the 
ability of cells to mount an effective oxidative stress response (Petti 
et al., 2011). It is notable in this context that activity of the Met tran-
scription factors is more tightly correlated with the yeast metabolic 
cycle than any other TF (Tu et al., 2005; Murray et al., 2007). Finally, 
a detailed study of the slow-growth phenotype of MET4 deletion 
mutants showed a direct regulatory connection between the sulfur 
assimilation pathway and the phosphatidylcholine biosynthetic 
pathway (Hickman et al., 2011), in which the SAM2 gene (encoding 
one of two SAM synthetases) is regulated by both MET4 and OPI1, 
which regulates lipid metabolism.

Two recent articles examined in detail the binding of Cbf1p and 
Met31p/Met32p to promoters in the Met biosynthetic pathway (Lee 
et al., 2010; Siggers et al., 2011). Nevertheless, neither study looked 
in depth beyond the sulfur assimilation pathway, and the biological 
rationale for the complexity of this transcriptional regulatory net-
work remains unclear. We hypothesized that there is some division 
of labor among these TFs that facilitates the coordination of methi-
onine metabolism with the great variety of cellular processes that 
depend on sulfur metabolism. We reasoned that by comparing phe-
notype and gene expression across a panel of isogenic TF-deletion 
mutants undergoing methionine starvation, we could understand 
this division of labor and learn how the multiplicity of factors coordi-
nates the many biological functions that depend, directly or indi-
rectly, upon the sulfur assimilation pathway.

We began by surveying the genome-wide effects of methionine 
starvation in methionine auxotrophs lacking MET6 (which encodes 
methionine synthase) or MET13 (which encodes methylenetetrahy-
drofolate reductase). In a preliminary bioinformatic analysis of this 
data, we found evidence that the Met TFs Met31p/Met32p and 
Cbf1p are not redundant, lending support to our “division of labor” 
hypothesis. We also used these data to systematically identify cel-
lular processes that depend on methionine and to generate TF-
binding matrices for Met31p/Met32p and Cbf1p, which we use in 
most subsequent analyses.

To expand upon the “division of labor” result, we designed a set 
of follow-up experiments and computational analyses to investigate 
distinctions between these TFs and the potential role of combinato-
rial regulation in coordinating methionine-dependent processes 
with methionine abundance. In these experiments, we deleted the 
genes encoding the three DNA-binding proteins in this system—
CBF1, MET31, and MET32—individually and in pairwise combina-
tions. To assure that all the mutants were starving equally for methi-
onine, we made these deletions in the met6Δ background. We 
measured and compared the gene expression patterns and cell cy-
cle progression of these strains during methionine starvation to 
those of their met6Δ parent. (We also deleted MET4, but not in the 
met6Δ background, because met4Δ is growth impaired even when 
supplemented with excess methionine [Hickman et al., 2011]; we 
used results with this strain for qualitative comparisons only.)

and Msn2p/Msn4p (Capaldi et al., 2008); and, on a smaller scale, 
signal integration at the FLO11 promoter through the use of multi-
ple TF-binding sites (TFBS; Rupp et al., 1999).

We developed an integrated experimental and computational 
framework to systematically investigate combinatorial transcrip-
tional regulation in response to methionine abundance in S. cerevi-
siae. Many previous studies of combinatorial regulation focused on 
the use of combinatorial control to integrate multiple environmental 
signals. Methionine provides an example of special interest because 
a single signal (methionine abundance) controls a wide variety of 
intracellular responses in a way that has not been studied. Here we 
investigate the mechanisms of this control.

Methionine is synthesized by the sulfur assimilation pathway, also 
known as the methionine (Met) pathway, which occupies a central 
role in metabolism and growth control in yeast. The pathway synthe-
sizes cysteine, methionine, and S-adenosyl methionine (SAM) from 
inorganic sulfate and leads to a host of other essential metabolites. 
Some of these contain sulfur atoms (e.g., glutathione and acetyl-
CoA), but others are connected to the pathway because they con-
tain methyl groups derived from SAM (e.g., phosphatidyl choline) or 
aminopropyl groups from the SAM derivative S-adenosyl methioni-
namine (e.g., polyamines). Essential macromolecular products of 
the sulfur assimilation pathway include proteins in general; mem-
branes, which contain phospholipids whose biosynthesis depends 
on methyl groups derived from SAM; and many specific proteins, 
notably the diverse iron–sulfur proteins that carry out electron trans-
fer reactions. Methionine and SAM are well situated to be control 
points for protein synthesis (every polypeptide chain is initiated with 
methionyl-tRNA), membrane biosynthesis (SAM is required at sev-
eral steps of the pathways leading not only to phospholipids but 
also sterols), redox balance (via glutathione), and methylation of his-
tones and DNA itself (although yeast DNA is not known to be 
methylated).

Much of what is known about the biological connections among 
methionine biosynthesis, central metabolism, and growth control 
has been learned through studies of mutants (mostly obtained as 
methionine auxotrophs) that either abrogate or deregulate the Met 
pathway. These studies have revealed a complex transcriptional 
regulatory network (Figure 1A; reviewed in Thomas and Surdin-Ker-
jan, 1997). At the metabolic level, this circuit is governed by SAM 
(Kuras and Thomas, 1995a), which acts through an ensemble of TFs. 
In response to high SAM levels, the SCFMet30 ubiquitin ligase ubiquit-
inylates the transcriptional activator Met4p, resulting in Met4p inac-
tivation, but not degradation (Cai and Davis, 1990; Blaiseau et al., 
1997; Rouillon et al., 2000; Kaiser et al., 2006). Met4p binds DNA 
with the assistance of three DNA-binding proteins (Met31p, Met32p, 
and Cbf1p) and one protein (Met28p) that facilitates the interaction 
between Met4p and the DNA-binding proteins. Met31p and 
Met32p, which are largely overlapping in function, bind to the DNA 
sequence motif AAACTGTGG, whereas Cbf1p binds to the motif 
CACGTG (Cai and Davis, 1990; Blaiseau et al., 1997; Blaiseau and 
Thomas, 1998). Cbf1p, variously known as CP1, CEP1, and CPF1, 
also binds centromeres through the same CACGTG sequence and is 
required for proper chromosome segregation (Bram and Kornberg, 
1987; Baker et al., 1989; Baker and Masison, 1990; Thomas and 
Surdin-Kerjan, 1997). Met4p acts with different DNA-binding pro-
teins to regulate different Met pathway biosynthetic genes (reviewed 
in Thomas and Surdin-Kerjan, 1997), and Cbf1p was shown early on 
to be “partly dispensable” for the expression of most of the Met 
pathway genes (Kuras and Thomas, 1995b). Evidence in the litera-
ture, although sparse, suggests that MET31 and MET32 might not 
be perfectly redundant (Su et al., 2008; Cormier et al., 2010).
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FIGURE 1: Overview of the background and the computational methods. (A) The transcriptional circuit governing sulfur 
assimilation and methionine biosynthesis. (B) Overview of the preliminary bioinformatic analysis using met6Δ expression data 
to identify TFBMs for Met31p/Met32p and Cbf1p and to distinguish the functional roles of these TFs using a Web-based 
tool called Gene Ontology Term Finder (GOTF). (C) Overview of the use of TF-dependency analysis to compare TF-deletion 
mutants in order to identify and characterize genes that depend specifically on Met31p/Met32p, Cbf1p, or both. 
(D) Overview of the use of multiple regression and Student’s t-test to identify differences between MET31 and MET32.
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Before choosing met6Δ as the background and control strain for 
the regulatory studies described later, we compared the met6Δ and 
met13Δ data in order to verify that most gene expression is ex-
tremely similar in both strains. This allowed us to conclude that the 
effects we see are indeed the result of methionine depletion and are 
not specific to the loss of methionine synthase.

Multiple regression was used to identify 466 genes whose ex-
pression depends significantly on time, differs significantly between 
met6Δ and met13Δ, and changes by twofold or more (see Materials 
and Methods). Minor differences were found in the expression kinet-
ics or amplitude of genes involved in sulfur metabolism (more highly 
induced in met6Δ), cell cycle and nucleotide metabolism (repressed 
earlier in met13Δ), and regulation of translation (repressed earlier in 
met6Δ).

We then characterized the general transcriptional response to 
Met depletion using the remaining 2669 genes that change by two-
fold or more, depend significantly on time, and behave similarly in 
met6Δ and met13Δ (Supplemental Figure S1). We clustered these 
genes using the k-means algorithm, identified clusters with distinc-
tive expression profiles, and analyzed their Gene Ontology (GO) 
term enrichment using an online tool called the Generic Gene On-
tology Term Finder (GOTF; Supplemental Data Set 1; see Materials 
and Methods). The most rapidly and highly induced cluster (122 
genes, cluster 9 in Supplemental Figure S1) is enriched for pro-
cesses related to metabolism of sulfur, methionine, and metaboli-
cally related amino acids; oxidative stress response; response to 
heavy metals; and targets of the Met transcription factors Met4p, 
Cbf1p, Met31p, and Met32p. However, we also observed rapid, 
highly coordinated induction of genes involved in nonglycolytic en-
ergy generation, including storage compound metabolism (cluster 
16) and electron transport (cluster 11), implying increased reliance 
on mitochondrial energy generation during Met starvation. Consis-
tent with the progressive cell cycle arrest observed during methion-
ine starvation (Unger and Hartwell, 1976; Petti et al., 2011), all gene 
clusters enriched for biological processes related to cell division, 
the chromosome cycle, and DNA replication are gradually repressed 
during the starvation (clusters 3, 4, 10, and 19). A small set of mark-
edly coregulated genes with a distinctive expression profile (cluster 
4) is enriched for a variety of seemingly disparate functions, includ-
ing DNA packaging (e.g., the key histone-encoding genes HTA1, 
HTA2, HTB1, HHF1, HHF2, HHT1 HHT2), purine metabolism, sin-
gle-carbon metabolism, and amino acid biosynthesis. This is in-
triguing, given the putative role of methionine in regulating the cell 
cycle. Both HHF2 and HHT2 contain binding sites for Met4p, sug-
gesting that the transcriptional regulation of these histone-encod-
ing genes may depend directly on Met abundance (MacIsaac et al., 
2006). All of the clusters enriched for ribosomal biogenesis genes 
are repressed, consistent with numerous previous findings that en-
vironmental stress represses ribosome biogenesis.

Using gene expression patterns in mutants to dissect the 
complex combinatorial regulation of the pathway
To understand how the Met pathway TFs might regulate Met-
influenced processes that go beyond the sulfur assimilation path-
ways per se, we first undertook a simple bioinformatic analysis of 
transcriptional regulation, as outlined in Figure 1B. Here we used 
the gene expression data we collected for the met6Δ strain to 
derive key transcription factor–binding motifs (TFBMs), and char-
acterized the biological function of motif-containing genes that 
change substantially during methionine starvation (Figure 2). We 
hierarchically clustered genes that change by twofold or more in 
the met6Δ time course and identified a set of 45 genes that 

We designed these experiments with particular computational 
methods in mind. Using these methods, we analyzed the expression 
data to identify differences in specificity among the TFs. The analyti-
cal pipeline for several key methods is summarized in Figure 1, B–D; 
another method, transcription factor activity analysis, is summarized 
in Lee and Bussemaker (2010). Our analysis focused on two main 
questions: first, whether the different TFs regulate different genes; 
second, whether there are functional differences between the genes 
regulated by each TF, which we would take as evidence that there 
exists a division of labor that enables different TFs to coordinate 
Met metabolism with different cellular processes. We focused on 
differences between the two major TF classes—Cbf1p and Met31p/
Met32p—but also examined differences between Met31p and 
Met32p in two genetic backgrounds (with and without CBF1).

We found abundant evidence that the Met TFs regulate genes 
involved in biological processes that lie downstream of sulfur as-
similation. Some of these were previously known to depend on 
sulfur or methionine, but many (e.g., copper transport, iron assimi-
lation, iron–sulfur cluster biogenesis, maltose metabolism, and 
microautophagy) were not. Met4p is involved in virtually all of 
these; there is a striking similarity between the patterns of gene 
expression in the met4Δ strain and the double met31Δmet32Δ 
strains. Consistent with a regulatory circuit that serves to coordi-
nate multiple cellular processes, we found that the different fac-
tors regulate overlapping but distinct groups of genes character-
ized by overlapping but distinct biological functions. We find that 
Met31p and Met32p have distinguishable target specificities, with 
significant gene expression differences among the mutant pheno-
types under methionine starvation. It appears from our results 
that, depending on circumstances, all three of the DNA-binding 
proteins can act as repressors and activators through the same 
(or very similar) sequence motifs. In many cases, we found that a 
given target gene is regulated differently by different TFs. Finally, 
we note that the regulatory consequences of CBF1 deletion some-
times oppose those of MET31 and MET32 deletion, suggesting 
that Cbf1p and Met31p/Met32p can influence gene expression in 
opposing ways and that the influence of one is unaffected by dele-
tion of the other.

The experiments in this study are designed to perturb the Met 
pathway by starving auxotrophic TF-deletion mutants. By compar-
ing phenotype and gene expression across a variety of deletion mu-
tants, one can detect functional distinctions among different TFs 
(and TF combinations). An alternative approach, based on sepa-
rately inducing each TF-encoding gene and measuring the effects 
on gene expression, provides both support and additional informa-
tion. Those results are presented in an accompanying article (McIsaac 
et al., 2012).

RESULTS
Methionine starvation influences many diverse 
cellular processes
To gain a preliminary overview of the cellular response to methion-
ine starvation, we used gene expression data previously collected 
during starvation of strains that cannot make methionine because 
they lack a biosynthetic enzyme, as opposed to strains that have a 
regulatory defect. We had studied two such Met biosynthetic aux-
otrophs, met6Δ and met13Δ (Petti et al., 2011). Here we used this 
data in several ways. First, we used it to gain an overview of methi-
onine-dependent genes and processes. Second, we used met6Δ as 
a control against which to compare the transcription factor–deletion 
mutants. Third, we used the met6Δ data to identify transcription 
factor–binding motifs for Met31p/Met32p and Cbf1p.
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the metabolism of related amino acids and 
oxidation–reduction processes. In contrast, 
targets of only Cbf1p or only Met31p/
Met32p are involved in a wider variety of 
processes including, but not limited to, 
methionine and sulfur metabolism.

Met31p/Met32p and Cbf1p regulate 
overlapping but distinct gene sets 
enriched for different functions
To investigate experimentally the special-
ization between Met31p/Met32p and 
Cbf1p, we deleted MET31, MET32, and 
CBF1 individually and in all pairwise combi-
nations in a met6Δ background. We mea-
sured gene expression during the early ex-
ponential phase of growth and during 
methionine depletion in these strains and 
selected genes that a) depend significantly 
on time and change by twofold or more 
in at least one strain, or b) are constitutively 
expressed ± twofold relative to met6Δ in 
at least one strain (see Materials and 
Methods). Based on the met4Δ expression 
data, this panel of single- and double-TF 
deletions captures the full range of expres-
sion profiles available to Met TF-deletion 
mutants: compared with the other TF-dele-
tion mutants, we found expression profiles 
unique to met4Δ in only 14 of 6256 genes 
assayed (notable examples include HXT1, 
SNQ2, CAT8, ESF1, SSA2, SPE2, DDI2, and 
DDI3).

We first examined the specialization between Cbf1p and 
Met31p/Met32p without distinguishing between Met31p and 
Met32p. In an initial, coarse-grained analysis, we surveyed all GO 
categories with at least 10 members to identify those in which 
met31Δmet32Δmet6Δ and cbf1Δmet6Δ differ most. Specifically, 
for each GO category i, we computed a distance defined as 
d n c m

i
i

t j t j tj

ni

=
=∑1

1
max( )

, ,
− . Here ni is the number of genes in category 

i, cj,t is the expression level of gene j at time point t in cbf1Δmet6Δ, 
and mj,t is the expression level of gene j at time point t in 
met31Δmet32Δmet6Δ. As shown in Figure 3, the differences be-
tween the strains are roughly normally distributed across the GO 
categories. Gene sets that are differently affected by deletion of 
MET31/MET32 and CBF1 are located in the tails of the distribu-
tion. The right tail of the distribution, where expression is higher 
in cbf1Δmet6Δ than in met31Δmet32Δmet6Δ, is dominated by 
cysteine and methionine biosynthesis, sulfur metabolism, and 
growth-related terms such as ribosome biogenesis and assem-
bly, rRNA processing, and translation. In the left tail, we find 
terms that are mainly related to redox homeostasis, including 
iron transport and homeostasis, copper transport, metal ion 
transport, fatty acid metabolism, and glutathione metabolism. 
This means that Met31p/Met32p and Cbf1p differentially regu-
late genes related to methionine metabolism, as well as genes 
related to growth and cellular redox. We infer, as indicated in 
Figure 3, that the categories on the left are induced by Cbf1p 
and/or repressed by Met31p/Met32p, whereas the categories on 
the right are induced by Met31p/Met32p and/or repressed by 
Cbf1p. Independent evidence for this view can be found in 
McIsaac et al. (2012).

respond early and dramatically to methionine starvation. Most (43 
of 45) of these genes are induced within 10 min of methionine 
removal (Figure 2A), and most change by a factor of 20 or more; 
a similar result was found by Lee et al. (2010). Primarily located in 
cluster 9 discussed earlier, these genes function in methionine, 
cysteine, and S-adenosyl methionine biosynthesis, sulfur metabo-
lism, single-carbon metabolism (CHA1), DNA repair (RAD59), and 
biosynthesis of the antioxidants glutathione (GTO1) and NADPH 
(BNA3). Using the motif identification algorithm MEME (see 
Materials and Methods), we identified two sequence motifs in the 
promoters of these 45 genes (Figure 2B). The motifs match previ-
ously derived motifs for Met31p and Met32p, which are believed 
to bind the same motif, and Cbf1p (Blaiseau et al., 1997; Lee 
et al., 2010; Siggers et al., 2011).

These sequence motifs have been well studied in the context of 
methionine metabolism, but the wide variety of methionine-influ-
enced processes suggests that they also influence non-Met pathway 
genes. We used MAST to search the genome for additional in-
stances of each motif (MAST score <500, as in Lee et al., 2010; see 
Materials and Methods) and filtered the results for genes that 
change twofold or more in the met6Δ control data. We classified 
each MAST hit as a putative direct “target” of Met31p/Met32p, 
Cbf1p, or both, and calculated the functional enrichment of each 
class of target genes (Figure 2C). In what follows, we distinguish 
these probable “direct” targets from probable “indirect” targets, 
which exhibit expression changes but do not have motifs for Cbf1 or 
Met31/Met32.

“Joint targets” of both TFs are involved primarily in sulfur/
methionine metabolism and closely related processes, such as 

FIGURE 2: Functional specificity of promoter motifs derived from methionine-responsive genes. 
(A) Expression levels of genes that are induced early during Met starvation of met6Δ. (B) DNA 
sequence motifs derived from the promoters of the genes in A. (C) GO term enrichment of 
genes containing the Cbf1p motif only, the Met31p/Met32p motif only, or both motifs.
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synthetic enzymes. The others (e.g., MHT1, 
MMP1, MET2, MUP3, CYS3, MUP1, SAM1, 
SAM2, SAM3) are involved in ancillary func-
tions such as methionine transport and the 
SAM cycle. This supports and refines our 
previous result: many Met pathway genes, 
particularly methionine and sulfur transport-
ers, depend on Met31p/Met32p but not on 
Cbf1p. The second striking subset of genes 
appears, surprisingly, to be repressed spe-
cifically by Met31p/Met32p. These genes 
are strongly enriched for iron assimilation 
and iron transport (e.g., SIT1, ENB1, FIT3, 
ARN2, ISU2) and are dramatically induced in 
the met31Δmet32Δmet6Δ strain. We also 
found one Met31p/Met32p target, ISU2, 
which, by virtue of its role in the synthesis of 
iron–sulfur (Fe-S) proteins, suggests a com-
pelling connection between sulfur assimila-
tion and iron homeostasis.

These results are further supported by 
the additional, nondirect target genes in-
volved in the homeostasis of iron (e.g., 
FET3, TIS11, FTR1, FRE1, FRE2, FRE3, FIT2, 
AFT1, SCS3, VHT1) and other metals, such 
as copper (CUP1-1, CUP1-2, ARN1; Figure 

4B). We noticed in previous work that deletion of MET31 and MET32 
(Petti et al., 2011) or depletion of MET4 (Hickman et al., 2011) in-
duces iron-related genes, but the TF binding site (TFBS) data used 
in those analyses (MacIsaac et al., 2006) indicated that these genes 
are not direct targets of any of the Met TFs. In those studies, there-
fore, we concluded there that these genes are indirectly induced by 
methionine depletion. In the target genes listed in the preceding 
paragraph, however, we have evidence that Met31p/Met32p di-
rectly regulate iron assimilation.

The influence of MET31 and MET32 is not limited to the overrep-
resented processes discussed earlier. Key regulatory genes for pro-
cesses such as carbohydrate metabolism (HXT1, RIM1) and phos-
phate metabolism (PHO11, PHO12, PHO81, PHO84, PHO86, PHO89) 
are dramatically affected by MET31/MET32 deletion. The glucose 
transporter gene HXT1 appears to be strongly repressed in 
met31Δmet32Δmet6Δ and more weakly repressed in cbf1Δmet6Δ.

Cbf1 regulates glutamate, meiotic, and carbohydrate genes
Fewer genes are affected by CBF1 deletion than by MET31/MET32 
deletion, but they span at least as wide a variety of processes, 
among which methionine metabolism is weakly represented. An 

Transcription factor-dependency analysis differentiates 
between the Met31p/Met32p and Cbf1p regulons
Our analysis so far paints a broad picture of functional specialization 
among the Met pathway TFs. However, we wanted a more detailed 
understanding of the combinatorial regulation among these TFs 
and of how each TF affected the response to Met starvation relative 
to the control strain, met6Δ. To answer these questions, we devel-
oped a nonparametric statistical method, which we refer to as 
“TF-dependency analysis,” to identify genes whose expression de-
pends on Cbf1p, Met31p/Met32p, or both. As outlined in Figure 
1C, we defined expression signatures corresponding to each sce-
nario and found genes whose expression profiles were significantly 
correlated with these signatures (see Materials and Methods). At a 
false discovery rate (FDR) of 5%, we identified 89 genes that de-
pend on both Cbf1p and Met31p/Met32p, 455 that depend primar-
ily on Met31p/Met32p alone, and 88 that depend primarily on 
Cbf1p alone. Only 15% of the classified genes contain a motif 
for either TF, but motif prevalence accurately reflects expression de-
pendence within each class (Table 1).

Met31p/Met32p induces Met transporters and represses 
iron homeostasis genes
In the Supplement, we provide an overview of the 455 genes that 
depend more strongly on Met31p/Met32p than on Cbf1p, which 
are enriched for a variety of processes ranging from sulfur and me-
thionine metabolism to carbohydrate metabolism and iron homeo-
stasis (Supplemental Figure S2 and Supplemental Data Set 1). Here 
we focus on the 13% that contain a motif for Cbf1p and/or Met31p/
Met32p (the “target” genes in Figure 4A), and the “nontarget” 
genes that lack a motif but show particularly strong, specific depen-
dence on Met31p/Met32p (Figure 4B). There are two striking sub-
sets of target genes. One requires Met31p/Met32p for induction 
and is enriched for a small number of processes—sulfur assimilation 
and methionine, aspartate, cysteine, and glutathione metabolism. 
Of note, only three of the genes involved in the sulfur and methion-
ine pathway—MET3, MET13, and MET17—encode methionine bio-

FIGURE 3: Transcription factor specificity among biological processes. Histogram of GO 
biological processes, showing the average maximum expression difference between 
cbf1Δmet6Δ and met31Δmet32Δmet6Δ for each GO category with at least 10 members.

Percent containing motif(s)

Met31p/
Met32p 

motif only
Cbf1p 

motif only
Both 

motifs
Any 

motif

Genes dependent 
on Met31p/Met32p 
only

7.3 3.5 1.8 13

Genes dependent 
on Cbf1p only

1.1 14 2.3 14

Genes dependent 
on both

6.7 9 14 29

TABLE 1. Motifs found in each TF-dependency class.
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2007; http://avis.princeton.edu/pixie/index 
.php), a program that analyzes the func-
tional enrichment of genes that interact 
physically or genetically with a query gene. 
bioPIXIE indicates that additional Cbf1p-
dependent genes interact with carbohy-
drate metabolism genes, including YPR1 
(pentose metabolism), JID1 (respiration), 
and APA2 (regulation of gluconeogenesis). 
Most of these lack a motif for either Cbf1p 
or Met31p/Met32p, raising the possibility 
that Cbf1p affects these genes indirectly 
or that they represent a general stress 
response. However, the cbf1Δmet6Δ 
strain grows to a higher cell density dur-
ing methionine starvation than the 
met31Δmet32Δmet6Δ strain, and these car-
bohydrate genes are not perturbed in the 
latter strain. This suggests that the effect of 
CBF1 deletion on these genes is specific, 
not a general stress or slow-growth re-
sponse. The influence of Cbf1p on TYE7 
could be particularly consequential because 
TYE7 is a transcriptional activator that binds 
the E-boxes of glycolytic genes.

The dearth of Cbf1p-dependent methi-
onine biosynthetic genes is striking and 
supports previous evidence here and else-
where (Lee et al., 2010) that Cbf1p is not 
the primary regulator of sulfur assimilation 
and Met metabolism. MET4 and MET22 are 
the only specifically Cbf1p-dependent 
genes with Met-related annotations. How-
ever, we found one gene that potentially 
connects Met abundance with the cell cycle: 
RMD6, which is required for meiosis, re-
quires CBF1 for induction, contains the 
Cbf1p TFBM, and interacts physically and/
or genetically with 20 genes involved in the 
metabolism, transport, and utilization of sul-
fur and Met (bioPIXIE; see Materials and 

Methods). Given that a number of other genes involved in sporula-
tion or cell division are Cbf1p dependent (RME1, BNS1, SPR6, KEL2, 
SCM4, GSC2, SPO22, MCM6, YKL053W [bioPIXIE], YLR042C 
[bioPIXIE], and YLR463C [bioPIXIE]), these data suggest that Cbf1p 
may help couple methionine abundance with cell division through 
the regulation of these genes.

Met31p/Met32p and Cbf1p coregulate most methionine 
biosynthetic genes
Deleting either CBF1 or MET31/MET32 perturbs the expression of 89 
genes. These “jointly regulated” genes are enriched for sulfur assimi-
lation and the metabolism of Met and related amino acids, as well as 
for cell wall organization and lipid metabolism (notable examples in-
clude OYE2, IZH4, and YEH1; Supplemental Figure S4). Twenty-nine 
percent of the genes in this class contain motifs for Cbf1p and/
or Met31p/Met32p, and 14% contain motifs for both (Table 1 and 
Figure 6). This group, which contains most of the enzyme-encoding 
genes in the Met pathway, is also enriched for siroheme and heme 
metabolism, oxidation–reduction, cofactor metabolism, and the me-
tabolism of related amino acids (serine, cysteine, aspartate). Other 
jointly regulated target genes represent a variety of other processes: 

overview of Cbf1p-dependent genes (Supplemental Figure S3) 
shows weak enrichment for deoxyribonucleotide biosynthesis 
(RNR2, RNR4) and several genes associated with meiosis (RME1, 
BNS1, SPR6, RMD6, SPO22). In the more focused view of putatively 
direct Cbf1p targets (Figure 5), it is notable that Cbf1p-dependent 
genes—even those containing TFBMs— are very weakly enriched 
for Met metabolism (Figure 5A), although they include MET4, the 
master transcriptional activator of the Met pathway. Instead, Cbf1-
dependent target genes are enriched for glutamate and glutamine 
metabolism and for nitrogen compound metabolism, and contain 
diverse metabolic genes such as isocitrate dehydrogenase (IDH1), 
NADP-dependent glutamate dehydrogenase (GDH3), the ATPase 
ATP7, and LPP1, which controls levels of the phospholipid-regulator 
phosphatidic acid.

Consistent with the coarse-grained GO term analysis in Figure 3, 
we found a number of Cbf1p-dependent carbohydrate metabolism 
genes, including TYE7, RIM15, SOK2, RIP1, VAN1, IDH1, ATP7, 
and GDH3, most of which appear to be repressed by Cbf1p (Figure 
5). Because there are comparatively few Cbf1p-dependent genes 
and many of them are poorly annotated, we obtained more informa-
tion about these genes using bioPIXIE (Myers and Troyanskaya, 

FIGURE 4: Genes whose expression depends on MET31/MET32. (A) Genes that depend 
statistically significantly on MET31/MET32 (but not CBF1) and contain a TFBM for Cbf1p (gray 
dot under column C) and/or Met31p/Met32p (green dot under column M). Strain order for both 
panels is met6Δ, cbf1Δmet6Δ, met31Δmet32Δmet6Δ, met4Δ. The colored triangles are color 
coded for each strain and represent the decrease in methionine over each time course. 
(B) Selected genes that depend statistically significantly on MET31/MET32 and lack a TFBM.
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miss many synergistic interactions by ignoring the quadruple mu-
tant met31Δmet32Δcbf1Δmet6Δ.) We used linear regression to 
compare each TF mutant to met6Δ (see Materials and Methods) and 
chose genes whose expression in cbf1Δmet31Δmet6Δ and 
cbf1Δmet32Δmet6Δ is significantly different from that in met6Δ 
(F statistic q ≤ 0.05, fold-change difference ≥1.5). We also required 
that the significance of this difference be at least 10 times greater 
than that for the difference between met6Δ and either cbf1Δmet6Δ 
or met31Δmet32Δmet6Δ.

Based on these criteria, 114 genes exhibit subtle synergy be-
tween the two TF classes (Supplemental Data Set 1). The vast major-
ity of these genes show diminished response to methionine starva-
tion, although several (PHO5, HHF1, HHT2) show more extreme 
induction. Most are involved in ribosome biogenesis and transla-
tion, with a few notable exceptions such as the carbon metabolism 
genes TKL1, ALD6, PDC1, ADH1, GDH1, GPM1, and TDH1, the 
glutathione S-transferase GTT2, the transcription factor YAP5, and 
the phosphatase PHO5, which is the most differentially regulated 
gene in met31Δcbf1Δmet6Δ and met32Δcbf1Δmet6Δ. Of note, 
PHO5, HHT2, and HHF1 interact, according to bioPIXIE.

Very few of these genes have binding sites for either Cbf1p 
(GAR1, ASP3-1, GTT2, MBF1, UTP21, PIR1, RPP2B, BNS1, GUA1) or 
Met31p/Met32p (RPL4B, ATG29, RPS7A, NMD3, ECM33), and only 

FIGURE 5: Genes whose expression depends on CBF1. (A) Genes 
that depend statistically significantly on CBF1 (but not MET31/
MET32) and contain a TFBM for Cbf1p (gray dot under column C) 
and/or Met31p/Met32p (green dot under column M). Strain order for 
both panels is met6Δ, cbf1Δmet6Δ, met31Δmet32Δmet6Δ, met4Δ. 
(B) Selected genes that depend statistically significantly on CBF1 and 
lack a TFBM.

FIGURE 6: Genes whose expression depends on MET31/MET32 and 
CBF1. (A) Genes that depend statistically significantly on both CBF1 
and MET31/MET32 and contain a TFBM for Cbf1p (gray dot under 
column C) and/or Met31p/Met32p (green dot under column M). Strain 
order for both panels is met6Δ, cbf1Δmet6Δ, met31Δmet32Δmet6Δ, 
met4Δ. (B) Selected genes that depend statistically significantly on 
CBF1 and MET31/MET32 and lack a TFBM.

ADH3 (mitochondrial alcohol dehydrogenase), GIT1 (uptake of 
glycerol and choline), MNN4 (glycosylation of oligosaccharides), 
BNA3 (biosynthesis of NADH and cell cycle [bioPIXIE]), ATM1 (Fe-S 
cluster biosynthesis and respiration [bioPIXIE]), RAD59 (DNA repair, 
also found in other studies), VHS3 (G1/S cell cycle transition [bioPIXIE] 
and ion homeostasis), and JIP5 (ribosome biogenesis). These results 
suggest that Cbf1p and Met31p/Met32p must both be present for 
full induction of methionine biosynthesis genes and additional genes 
that may be particularly important in Met metabolism.

Synergy between Met31p/Met32p and Cbf1p
Thus far, we have shown that Cbf1p and Met31p/Met32p regulate 
overlapping but distinct gene sets. In particular, genes that are co-
regulated by Cbf1p and Met31p/Met32p deviate from wild-type 
expression roughly equally if either CBF1 or MET31/MET32 is de-
leted. We next looked for additive effects of CBF1 and MET31/
MET32 by asking whether there are genes whose expression is al-
tered more substantially in mutants where both TF classes (CBF1 
and either MET31 or MET32) are deleted. To answer this, we searched 
for genes whose expression is perturbed relative to the control strain 
(met6Δ) in cbf1Δmet31Δmet6Δ and cbf1Δmet32Δmet6Δ, but not in 
cbf1Δmet6Δ and met31Δmet32Δmet6Δ. (As discussed earlier, few 
genes are uniquely expressed in met4Δ, suggesting that we did not 
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genes involved in other metabolic pathways, including NAD (POS5), 
NADPH (ZWF1), phospholipid biosynthesis (CHO2), and fatty acid 
metabolism (LEE1, based on bioPIXIE). The second cluster is very 
strongly enriched for genes involved in pheromone response, includ-
ing, for example, STE2, FAR1, FUS2, BAR1, MFA1, MFA2, and so on.

Variants of the canonical Met31p/Met32p DNA-binding 
motif are associated with different functional responses
As described, we found that many genes depend on Met31p/Met32p, 
including some that require Met31p and Met32p for full induction 
and some that are only induced in the absence of Met31p and 
Met32p. Furthermore, we identified some genes that are regulated 
differently by Met31p and Met32p. Reasoning that there might be 
variants of the Met31p/Met32p TFBM that account for this wide vari-
ety of expression profiles, we looked for motif variants that distinguish 
between induced or repressed genes in met31Δmet32Δmet6Δ. Using 
gene sets described earlier, we identified genes that depend on 
Met31p/Met32p but exhibit no significant differences between 

one gene, YAP5, has motifs for both TFs. On one hand, the low 
incidence of TFBMs and the prevalence of ribosomal genes in this 
list suggest that most of these genes are responding to an indirect, 
additive effect of methionine starvation in the TF mutants, such as 
low growth rate due to depletion of sulfur-containing compounds 
and insufficient methylation. On the other hand, many ribosomal 
genes display minor expression defects in cbf1Δmet6Δ, suggesting 
that cbf1Δ may indeed regulate ribosomal genes. This is consistent 
with our initial, coarse analysis, which showed that numerous ribo-
some biogenesis GO categories are less repressed in cbf1Δmet6Δ 
than in met31Δmet32Δmet6Δ.

Distinguishing between MET31 and MET32
To pursue possible differences between the functions of MET31 and 
MET32 (Su et al., 2008; Cormier et al., 2010), we used multiple re-
gression as outlined in Figure 1D to compare met31Δmet6Δ to 
met32Δmet6Δ (see Materials and Methods). Briefly, we required 
that the strain pairs differ significantly according to multiple regres-
sion (F-test, q ≤ 0.1) or average expression level (Student’s t-test, 
q ≤ 0.1). To remove results that are statistically significant but still 
modest in magnitude, we also required that the two strains differ by 
at least 1.5-fold in at least one time point.

By these criteria, 35 genes differ in expression between 
met31Δmet6Δ and met32Δmet6Δ. The 15 most striking examples 
are shown in Figure 7A. (Three additional genes, MXR1, VHT1, and 
SAM1, also appear to depend differently on Met31p and Met32p 
but did not meet our strict selection criteria.) For many of these 
genes, deleting MET31 appears to have the opposite effect of de-
leting MET32: the genes are constitutively overexpressed in 
met31Δmet6Δ (note the strong expression at time zero) compared 
with met6Δ, but underexpressed in met32Δmet6Δ relative to met6Δ. 
This subset is heavily enriched for genes involved in transport (VBA2, 
YCT1, YIL166C, AGP3, YOL162W, YOL163W). Although YOL162W 
and YOL163W are officially unannotated, bioPIXIE indicates that 
they interact physically and genetically with a group of genes that is 
heavily enriched for Met biosynthesis (and associated functions) and 
thiamine metabolism. CRF1 is a TOR-activated transcriptional re-
pressor of the ribosomal genes. Two genes, GRX8 and PDC6, are 
highly induced (8- and 64-fold, respectively) in met31Δmet6Δ but 
virtually uninduced in met32Δmet6Δ. GRX8 is one of several glu-
taredoxins whose expression is regulated by Met abundance. PDC6 
is an isoform of pyruvate decarboxylase whose induction during sul-
fur limitation has also been observed by others (Boer et al., 2003). 
More recently, PDC6 was shown to be regulated by Met32p through 
a noncanonical binding motif (Cormier et al., 2010).

We next examined the Met31p/Met32p-dependent genes de-
scribed earlier (including genes that also depend on Cbf1p) to de-
termine the extent to which Met31p and Met32p can substitute for 
each other. With the exception of the genes mentioned previously, 
Met31p and Met32p appear to be able to substitute for each other 
in all Met31p/Met32p-dependent genes.

We suspected, on the basis of preliminary data, that the differ-
ences between met31Δ and met32Δ might be more pronounced in a 
cbf1Δ background. To narrow the long list of genes that differ be-
tween cbf1Δmet31Δmet6Δ and cbf1Δmet32Δmet6Δ, we increased 
the FDR stringency to 1%. Even then, 166 genes pass our criteria, the 
strongest of which are shown in Figure 7B. The top cluster is strongly 
enriched for Met and sulfur metabolism, again indicating that Met31 
and Met32 play different roles even in the standard pathways with 
which they are associated. However, only two of the Met/sulfur-asso-
ciated genes (MET2 and MET17) encode enzymes of the sulfur as-
similation pathway. Five regulate glutathione abundance and metab-
olism (GRX8, DUG2, DUG3, GLO4, OPT1). This cluster also contains 

FIGURE 7: Genes that are regulated differently by Met31p and 
Met32p. (A) Select genes that differ significantly between 
met31Δmet6Δ and met32Δmet6Δ. Strain order is met6Δ, 
met31Δmet6Δ, met32Δmet6Δ, met4Δ. (B) Selected genes that differ 
significantly between cbf1Δmet31Δmet6Δ and cbf1Δmet32Δmet6Δ. 
Strain order is met6Δ, cbf1Δmet31Δmet6Δ, cbf1Δmet32Δmet6Δ, 
met4Δ.
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characterize the three motif variants, we used MAST to search the 
genome for additional examples of each variant (using a more strin-
gent MAST score of 50), filtered the MAST results for genes that 
change at least twofold in our data, and measured the functional 
enrichment of the resulting genes. Based on this analysis, the posi-
tive variant is found preferentially in genes involved in Met and sul-
fur metabolism, chromatin silencing, mitochondrial degradation 
glutathione metabolism, and spindle pole separation, whereas the 
core variant is more specific to Met and sulfur metabolism genes. 
(One complicating factor is that the core motif is a fragment of the 
positive variant, so some promoters match both the positive and the 
core motifs. However, the functional enrichment results hold even 
when such promoters are eliminated from the functional enrichment 
analysis.) The negative variant is found almost exclusively in genes 
involved in iron and ion homeostasis and transport, consistent with 
its close match to Aft1p, a major transcriptional regulator of iron 
metabolism (Yamaguchi-Iwai et al., 1995). As discussed later, this 
suggests that Met31p and Met32p regulate iron metabolism 
through direct and indirect mechanisms.

Transcription factor activity analysis
The previous analyses were designed to be stringent and restrictive. 
To obtain a broader overview of the physiological differences be-
tween the Met pathway regulatory mutants we studied, we calcu-
lated the transcription factor activity of each of 124 non–Met-path-
way TFs (see Materials and Methods). Briefly, this metric quantifies 
the activity of each TF at each time point by performing linear 
regression of the genome-wide mRNA expression levels on the af-
finity with which the TF is predicted to bind to each gene’s promoter 
region (Lee and Bussemaker, 2010). It provides information about 
how each of our deletions affects each regulon in early log phase 
(the initial time point), as well as during Met depletion. This ap-
proach is particularly useful because the biological roles of many 
yeast regulons have already been fairly well described. Thus we can 
summarize the functional effects of the TF deletions in terms of pre-
viously characterized regulons.

This approach is complementary to the analyses given earlier 
and differs from them in several key ways. First, a given regulon can 
span multiple cellular processes. Second, this approach does not 
tell us whether a Met pathway TF directly or indirectly influences 
each regulon. Third, this method captures more subtle interstrain 
differences because we do not impose any thresholds on the extent 
to which a regulon must differ among strains. Moreover, the analysis 
was performed on all genes in the genome, including those with 
subtle changes in gene expression.

The activity of all 124 non-Met TFs is represented as a hierarchi-
cally clustered heatmap in Supplemental Figure S5. The figure illus-
trates the number and diversity of cellular processes influenced by 
the Met pathway TFs, including Met biosynthesis and sulfur metabo-
lism (MET4, MET31, MET32, MET28, CBF1; cluster 1), carbohydrate 
metabolism (TYE7 [cluster 1], MIG1), response to metals and metal 
ion homeostasis (RCS1, AFT2, YAP1, CAD1, YAP7; cluster 2), pH reg-
ulation (RIM101), phosphate metabolism (PHO4), ribosome biogen-
esis (RAP1, FHL1, SFP1; cluster 3), mitochondrial respiration (HAP2, 
HAP3, HAP5; cluster 4), and the cell cycle (STB1, SWI4, SWI6, MBP1; 
cluster 5). Importantly, this analysis does not indicate whether the 
regulation is direct or which genes are perturbed by TF deletion—this 
information is better supplied by the preceding analyses.

This analysis reveals marked differences among the Met path-
way TFs, with striking examples highlighted in Figure 9. We see 
substantial differences between Cbf1p and Met31p/Met32p, 
Met31p and Met32p, and Cbf1p/Met31p and Cbf1p/Met32p. 

FIGURE 8: Met31p/Met32p motif variants. (A) Expression levels of 
genes that are induced early during Met starvation of met6Δ, shown 
for all strains (left), and the canonical Met31p/Met32p TFBM derived 
from the promoters of these genes (right). Strain order for all panels is 
met6Δ, met31Δmet32Δmet6Δ, met31Δmet6Δ, met32Δmet6Δ, 
cbf1Δmet31Δmet6Δ, cbf1Δmet32Δmet6Δ, met4Δ. (B) Genes induced 
by Met31p/Met32p (top) and the “positive” motif variant derived 
from their promoters (bottom). (C) Genes repressed by Met31p/
Met32p (top) and the “negative” motif variant derived from their 
promoters (bottom). (D) Genes that differ between met31Δmet6Δ and 
met32Δmet6Δ (top) and the “core” motif variant derived from their 
promoters (bottom).

met31Δmet6Δ and met32Δmet6Δ (in either the CBF1 or the cbf1Δ 
background). We divided the most convincing genes in this list (Figure 
8A) into two groups, based on whether they are positively regulated 
(i.e., repressed in the deletion mutant; Figure 8B) or negatively regu-
lated (i.e. induced in the deletion mutant; Figure 8C) by Met31p/
Met32p. Using MEME, we derived different versions of the Met31p/
Met32p TFBM from the promoters of each group, which we call the 
“positive variant” (Figure 8B) and the “negative variant” (Figure 8C). 
The positive variant is almost identical to the canonical motif shown in 
Figure 8A, with the exception that its upstream adenine residues are 
much more highly conserved. In contrast, the negative variant is sub-
stantially different from the canonical motif and contains an exact 
match to the Aft1p motif (Zhu et al., 2009).

To search for motifs in genes that respond differently in 
met31Δmet6Δ and met32Δmet6Δ, we applied MEME to the promot-
ers of the genes in Figure 8D. The result was a third variant, the “core 
variant,” consisting of the central, conserved TGTGG of the canonical 
motif. We also searched the promoters of the genes in Figure 7B and 
derived a motif very similar to the canonical Met31/Met32 motif.

One measure of the validity of a computationally derived TFBM 
is the functional specificity of the genes in which it occurs. To further 
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FIGURE 9: Transcription factor activities. Calculated activity profiles for selected TFs across all strains. Each panel shows 
TF activity (vertical axis) for the indicated TFs throughout the time courses for all eight strains. The strains are 
represented in the following order along the horizontal axis: met6Δ, cbf1Δmet6Δ, met31Δmet32Δmet6Δ, 
cbf1Δmet31Δmet6Δ, cbf1Δmet32Δmet6Δ, met31Δmet6Δ, met32Δmet6Δ, met4Δ. The triangles are color coded for each 
strain and represent the decrease in methionine over each time course. “TF activity” corresponds to the “t score” in Lee 
and Bussemaker (2010), which is the regression coefficient obtained from regression of the expression data on the 
position-specific affinity matrix for the given TF (see Materials and Methods).
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Cbf1p and Met31p/Met32p might regulate carbohydrate metabo-
lism differently. We used a 96-well plate-reader to measure in tripli-
cate the growth of cbf1Δmet6Δ and met31Δmet32Δmet6Δ in rich 
media containing 16 different carbon sources (see Materials and 
Methods). We found small but highly reproducible differences in 
growth rate and/or steady-state cell density between the two strains. 
In particular, cbf1Δmet6Δ was growth impaired relative to 
met31Δmet32Δmet6Δ in glucose, inositol, fructose, and mannose 
but grew better than met31Δmet32Δmet6Δ in maltose and galac-
tose (Supplemental Figure S6A). In additional experiments using the 
same panel of TF mutants in a MET6 background, we found that 
cbf1Δ, cbf1Δmet31Δ, and cbf1Δmet32Δ cells survive far longer than 
met6Δ and met31Δmet32Δ during Met starvation when the carbon 
source is galactose (unpublished data).

Cbf1p may cooperate with Met31p and Met32p to regulate 
cell cycle progression
The literature is rich in evidence that methionine abundance regu-
lates cell cycle progression. Unlike other auxotrophs, methionine 
auxotrophs arrest in the G0/G1 phase of the cell cycle during methi-
onine starvation. To understand whether any particular Met TF or TF 
combination is required for arrest, we measured bud index (the per-
centage of cells lacking a bud due to arrest in G0/G1) and cell den-
sity concurrently with mRNA expression in each of the methionine-
depletion experiments described earlier. Bud index differs among 
strains across the length of the time course, even though each time 
course was started at the same cell density (an early exponential-phase 
Klett of ∼22). Consistent with previous findings (Unger and Hartwell, 
1976; Petti et al., 2011), met6Δ cells arrest efficiently by 6 h (average 
6-h bud index is 96%), whereas met4Δ cells do not (6-h bud index, 
82%; Supplemental Figure S6B). Note that the 6-h bud index for 
met6Δ is comparable to the final, steady-state bud index for met6Δ 
measured over 27 h in (Petti et al., 2011). The consistently lower bud 
index of met4Δ was recapitulated in cbf1Δmet31Δmet6Δ and 
cbf1Δmet32Δmet6Δ, whose 6-h bud index is significantly lower that 
of met6Δ (p = 2.5 × 10−5, Student’s t-test) but not in cbf1Δmet6Δ, 
met31Δmet6Δ, met32Δmet6Δ, or met31Δmet32Δmet6Δ. Thus cell 
cycle arrest is impaired at all methionine concentrations when mem-
bers of both classes of TF—Cbf1p and Met31p/Met32p—are 
deleted.

This result is consistent with the TF activity analysis, which 
shows that Cbf1p cooperates with Met31p and Met32p to regu-
late cell cycle genes (Figure 9, N and O). To understand in greater 
detail which cell cycle genes are regulated by Cbf1p/Met31p/
Met32p, we examined the expression of genes associated with 
the “cell cycle” GO term, paying particular attention to those that 
are repressed during methionine starvation of met6Δ (Supple-
mental Figure S1, clusters 3, 4, and 19). Consistent with the 
TF activity analysis, many cell cycle genes repressed in met6Δ 
are somewhat less repressed in cbf1Δmet31Δmet6Δ and 
cbf1Δmet32Δmet6Δ. However, it was difficult to identify particular 
genes that might contribute to the arrest defect, so we undertook 
a broader search for genes that are 1) potentially involved in cell 
cycle regulation and 2) expressed differently in cbf1Δmet31Δmet6Δ 
and cbf1Δmet32Δmet6Δ than in the other strains. We found 17 
genes that meet these criteria (Supplemental Figure S6C), includ-
ing nine that are less repressed (or more activated) and 8 that are 
less activated (or more repressed) in cbf1Δmet31Δmet6Δ and 
cbf1Δmet32Δmet6Δ. The former includes HHT1, HTA2, HTB1, 
HTB2, HHF2, YOX1, SCW10, GIC1, and PCL1, and the latter in-
cludes YLR112W, FAR1, PRM1, GIP1, BMH1, GLC8, CDC53, and 
MBF1. Two genes—BMH1 and MBF1—contain Cbf1p-binding 

Consistent with the TF-dependency classifications given earlier, TF 
activity reveals that Cbf1p is negligible compared with Met31p/
Met32p in methionine and sulfur metabolism: whereas deletion of 
CBF1 barely affects the methionine regulon, represented by the 
TFs Met4p, Met31p, Met32p, Cbf1p, and Met28p in Figure 9A, 
double deletion of MET31 and MET32 nearly obliterates the regu-
lon’s response to methionine depletion. met31Δ and met32Δ also 
differ in their effects on this regulon: met31Δ appears to increase 
and met32Δ to decrease the steady-state expression level of this 
regulon, consistent with the differences between Met31p and 
Met32p identified earlier using regression. In contrast, the activity 
of the ribosomal regulon TFs appears to depend almost entirely 
on CBF1 (Figure 9I and Supplemental Figure S5, cluster 3). Al-
though these activities are all negative during the starvation, de-
leting CBF1 eliminates the time dependence seen in a CBF1 back-
ground. Striking differences between Met31p and Met32p can 
also be seen in the regulons controlled by Cbf1p, Tye7p, Mig1p, 
and Pho4p. Subtler differences in the respiration regulons (Hap2p, 
Hap3p, and Hap5p), and the Ino2p and Ino4p regulons are also 
seen (Figure 9, J and M).

Consistent with Figure 3, a striking number of regulons depend 
in opposite ways on Cbf1p and Met31p/Met32p (Figure 9, B, D, E, 
H, and M). Another unexpected result is the frequency with which 
Met31p/Met32p behaves as a transcriptional repressor, as indicated 
by high time-zero expression levels in met31Δmet32Δmet6Δ. Based 
on exponential-phase TF activities (time 0), Met31p/Met32p 
represses, and Cbf1p activates, the iron regulons represented by 
Rcs1p (Aft1p) and Aft2p, the copper regulon represented by Mac1p, 
the carbohydrate metabolism regulons represented by Tye7p and 
Mig1p, the Pho4p regulon, and the phospholipid biosynthesis regu-
lons represented by Ino2p and Ino4p. Although our detailed analy-
ses identified individual Cbf1p-dependent and Met31p/Met32p-
dependent genes associated with these processes, few genes were 
regulated by both Cbf1p and Met31p/Met32p. This suggests that 
Cbf1p and Met31p/Met32p exert opposing effects on different 
genes that participate in these processes.

Synergy between Cbf1p and either Met31p or Met32p is re-
flected in regulons that are perturbed (relative to met6Δ) only in 
cbf1Δmet31Δmet6Δ and cbf1Δmet32Δmet6Δ. Specifically, Met31p/
Met32p and Cbf1p cooperate to regulate respiratory gene expres-
sion (Hap2p, Hap3p, and Hap5p), response to oxidative stress 
(Stb5p), and the cell cycle (Stb1p, Swi4p, Swi6p, and Mbp1p), as 
well as Dig1p, Ste12p, and Mcm1p (Figure 9, J, K, N, and O).

The TF activity profiles highlight two interesting aspects of TF-
binding specificity. First, the Cbf1p motif is almost identical to the 
Tye7p motif, as indicated by the strong correlation of Cbf1p and 
Tye7p activity in Figure 9B. This could be a biologically irrelevant 
coincidence, or, as discussed later, it could support the previously 
observed connections between sulfur/methionine metabolism and 
carbohydrate metabolism. Second, the activity profiles in Figure 
9A show that the binding profiles of Met31p and Met32p differ 
slightly. The motif source used in this analysis (MacIsaac et al., 
2006) reports the Met31p and Met32p motifs as GTGTGG and 
AACTGTGGC, respectively. As discussed later, the Met31p motif 
in (MacIsaac et al., 2006) is similar to the “core variant” that we 
derived from genes that differ in expression between met31Δmet6Δ 
and met32Δmet6Δ.

Cbf1 and Met31/Met32 have distinct roles in carbohydrate 
metabolism
Multiple lines of evidence, as described earlier, suggest that Met 
abundance regulates carbohydrate metabolism and, moreover, that 
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motifs and none contains the Met31p/Met32p motif. However, 
given that cbf1Δmet31Δmet6Δ and cbf1Δmet32Δmet6Δ strains 
differ from met6Δ strains in their failure to arrest the cell cycle, we 
cannot rule out the possibility that the differences we detect may 
be the effect, rather than the cause, of the arrest.

DISCUSSION
The motivation for this study was to understand whether and how 
combinatorial transcriptional regulation enables the coordination of 
diverse cellular processes with the sulfur assimilation pathway, which 
synthesizes methionine. Methionine abundance influences many 
biological processes and is regulated by a relatively complex circuit 
involving three DNA-binding proteins—Met31p, Met32p, and 
Cbf1p. We hypothesized that there exists among these TFs a divi-
sion of labor that facilitates the coordination of diverse processes. 
We collected a large set of data in which we measured genome-
wide gene expression profiles under conditions that perturb the 
Met pathway: namely, starvation of a methionine auxotroph. We 
used a MET6 (methionine synthetase) deletion mutant as our con-
trol strain and compared this to a series of double- and triple-dele-
tion mutants in which MET31, MET32, and/or CBF1 were also de-
leted. Data were obtained over a time series beginning in exponential 
growth phase and continuing beyond the cessation of growth 
caused by methionine starvation. We used a variety of new and es-
tablished computational methods to investigate whether and how 
the TFs differ from each other, including two main complementary 
approaches. One, TF-dependency analysis, quantifies the 
dependence of each gene on each TF and characterizes the result-
ing gene classes according to biological function and DNA-binding 
motifs; the second, TF activity analysis, measures the aggregate be-
havior of genes in known regulons. As described, both approaches 
yield similar general conclusions.

First, we identified biological processes that were not previously 
known to be regulated by the Met TFs and are not typically associ-
ated with sulfur or Met metabolism. Second, we found clear func-
tional distinctions between Met31p/Met32p and Cbf1p that sup-
port our hypothesis that there exists a division of labor among these 
TFs, including a clear biological distinction between the numerous 
processes activated by Met31p/Met32p and/or repressed by Cbf1p, 
on one hand, and activated by Cbf1p and/or repressed by Met31p/
Met32p, on the other (Figure 2). Third, we found strong evidence for 
both positive (activator) and negative (repressor) activities for the 
Met TFs. Finally, we were able to distinguish the activities of MET31 
and MET32 from one another and identified a variant of the Met31p/
Met32p TFBM that appears to be specific to Met32p. The arrange-
ment we observed—in which different transcription factors regulate 
overlapping but distinct genes and processes—is analogous to the 
“dense overlapping regulon” (DOR) described in Shen-Orr et al. 
(2002). The DOR has been hypothesized to function in the coordina-
tion of diverse cellular processes.

How is combinatorial regulation accomplished?
Our results suggest that methionine biosynthesis is coordinated 
with other biological processes through the use of two compara-
tively methionine-specific transcription factors—Met31p and 
Met32p—and a “generalist” transcription factor—Cbf1p. Although 
all three TFs regulate a wide variety of cellular processes, Met31p 
and Met32p are more important in methionine metabolism than 
Cbf1p, whose regulatory roles appear to be more evenly distributed 
across cellular metabolism and other processes such as sporulation 
and translation. The metabolism-related regulation we found is 
summarized in Figure 10, in which direct and indirect TF targets are 

superimposed on a skeletal backbone of metabolism. Clearly, 
Met31p and Met32p regulate every gene in the methionine biosyn-
thetic pathway, whereas Cbf1 only regulates—jointly with Met31p/
Met32p—the sulfate importers, MET14, and the two steps that de-
pend on NADPH (MET16, MET10, and ECM17).

This diagram also highlights the broad influence of the Met reg-
ulators over central metabolism, including phosphatidylcholine 
biosynthesis (PSD1, CHO1); cardiolipin biosynthesis (PGS), pyrimi-
dine biosynthesis (URA5); tryptophan (TRP3) and NAD biosynthesis 
(BNA2,3,4, 5, and 6); central metabolism (PDC6, ADH3, PYK2, 
IDH1, SDH1, SDH2, DAL7); fatty acid biosynthesis (FAS2, MCT1, 
HFA1); glutathione metabolism (GDH3); lipid metabolism leading 
to phosphatidyl choline (SER33); nitrogen metabolism (IDP1, GDH3, 
GLT1); allantoin degradation (DAL1, DAL2, DAL3); purine biosyn-
thesis (IMD2); and the production of deoxyribonucleotides (RNR2, 
RNR4).

Different ways of implementing combinatorial regulation are evi-
dent from Figure 10. Many metabolic pathways are jointly regulated 
by Cbf1p and Met31p/Met32p. Sometimes this is accomplished by 
a joint target (BNA3, SER33, PDC6, and many genes in methionine 
biosynthesis itself) and sometimes by two different targets in the 
same pathway (PSD1 and CHO1; BNA2 and BNA4, BNA5, BNA6). 
Clearly, there must be other ways to accomplish joint regulation that 
were missed by our experimental design. For instance, SAM2 is 
jointly regulated by Opi1p and Met4p, and its promoter contains 
binding sites for Met31p/Met32p, Cbf1p, and Opi1p (Hickman 
et al., 2011). However, we found no dependence of SAM2 on Cbf1p. 
An article by McIsaac et al. (2011) explores an independent ap-
proach to regulation by inducing the Met pathway TFs one at a time 
These experiments show that CBF1 induction causes SAM2 repres-
sion, suggesting that many (if not all) of the regulatory effects we 
may have missed in the starvation experiments can be found with an 
alternative approach.

Methionine-dependent processes reflect the role of sulfur in 
diverse electron transfer reactions
Redox reactions are central to the mitochondrial electron transfer 
chain, which contains proteins rich in Fe-S clusters (Voet and Voet, 
2010). Our results show that Met31p/Met32p represses genes in-
volved in iron homeostasis (particularly iron transport) and Fe-S clus-
ter biogenesis through both direct and indirect mechanisms. In sup-
port of direct repression, several iron-homeostasis genes and one 
gene involved in Fe-S biogenesis depend on MET/MET32 and con-
tain the Met31p/Met32p TFBM. In support of indirect repression, 
we derived the Aft1p TFBM from genes that are significantly in-
duced in met31Δmet32Δmet6Δ. Aft1p induces iron-related gene 
expression specifically in response to defects in Fe-S cluster biogen-
esis (Chen et al., 2004). Thus, deletion of MET31 and MET32 ap-
pears to cause defects in Fe-S biogenesis that ultimately activate 
Aft1p and the iron-homeostasis genes under its control. Taken to-
gether, these results suggest that methionine (or sulfur) deprivation, 
which activates Met31p and Met32p (via Met4p), may concomi-
tantly repress iron import in order to reflect the lack of sulfur atoms 
available for Fe-S biogenesis. The electron transport chain also con-
tains two copper atoms in complex IV. Consistent with this, Met31p/
Met32p-dependent genes are enriched for copper ion homeostasis, 
suggesting that Met31p/Met32p more generally regulates the 
abundance of electron transport chain metals in response to sulfur 
availability.

Sulfur is also critical to the redox reactions central to the activity 
of antioxidants such as glutathione and glutaredoxin (Supplemental 
Figure S7). We found that many antioxidant biosynthetic genes are 
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MATERIALS AND METHODS
PCR-mediated gene replacement was used to delete MET6, CBF1, 
MET31, MET32, and MET4 in the S288C derivatives FY4 (MATa) and 
FY5 (MATα). Single-deletion mutants were crossed using standard 
methods to create the double and triple mutants listed in Table 2. 
Methionine-starvation filter-switching time courses were performed 
as described in detail in Petti et al. (2011). Briefly, for each strain, a 
single colony was grown to stationary phase in minimal medium 
containing limiting methionine (7.5 mg/l), set back in fresh methion-
ine-limited medium, grown to early exponential phase, filtered in 
5-ml aliquots onto nylon filters that were placed on methionine-lim-
ited Petri dishes, and grown to mid-exponential phase. Filters were 
transferred to Petri dishes lacking methionine and collected at 0, 
10, 30, 60, 90, 120, 150, 180, 210, 240, and 360 min posttransfer for 
the MET6-background strains, and at 0, 30, 60, 90, 120, 180, and 
360 min posttransfer for the met6Δ-background strains.

At each time point, one filter was used to measure cell density 
(by Klett and Coulter count) and bud index (by manual scoring of 
sonicated culture). A second filter was flash-frozen in liquid nitrogen 
and later used for genome-wide mRNA abundance measurements. 
As described further in Petti et al. (2011), RNA was isolated from the 

induced jointly by Met31p/Met32p and Cbf1p (GRX1, GLO4, 
FMO1, OYE2) or by Met31p/Met32p alone (GRX8, OPT1, GTO3, 
GLO2, MXR1, OYE3, DUG2, DUG3, CCP1). In turn, glutathione syn-
thesis and function requires glutamate (found here to be regulated 
by Cbf1p), cysteine (regulated by Met31p/Met32p and Cbf1p), and 
NADPH generated by the pentose phosphate pathway (regulated 
by ZWF1 [also known as MET19]), which is in turn regulated by 
Cbf1p and Met31p/Met32p). We previously showed that 
met31Δmet32Δ is highly sensitive to oxidative stress resulting from 
hydrogen peroxide (Petti et al., 2011).

The connection between methionine and growth
The connection between methionine and translation is well known: 
the “start” codon AUG codes for methionyl-tRNA, ensuring that 
methionine is the first amino acid in the vast majority of proteins. 
Our data suggest that Cbf1p, with some help from Met31p and 
Met32p, contributes to the transcription of ribosomal genes. Cbf1p 
regulates ribosomal genes in Candida albicans (Lavoie et al., 2010). 
Thus S. cerevisiae may have retained some of this ancestral tran-
scriptional coordination between Met metabolism and translational 
control.

FIGURE 10: Overview of metabolic genes regulated by the Met TFs. Key metabolic genes whose expression depends 
on Met31p/Met32p (green), Cbf1p (blue), or both (red) are highlighted in color. Putatively direct targets (which contain a 
TBFM and are expressed significantly differently from the met6Δ control) are surrounded by a black border, whereas 
indirect targets (no TFBM) are surrounded by a yellow border.
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For analysis of the met6Δ data in isolation, we used the 2669 genes 
that change by twofold or more in the met6Δ time course, depend 
significantly on time (q < 0.01, F-test), and behave similarly in met6Δ 
and met13Δ. For analysis of the total data set, we used the 3671 
genes that change by twofold or more in at least one strain and either 
1) depend significantly on time (p ≤ 0.05, F-test) or 2) are constitutively 
expressed ± twofold relative to met6Δ (p ≤ 0.05, t-test). All regression, 
correlation, and randomization analyses used in this work were coded 
in Matlab, version R2011a (The MathWorks, Natick, MA).

We developed a correlation-based method that we refer to as TF-
dependency analysis to identify genes whose “wild-type” expression, 
as measured in met6Δ, depends on Cbf1 only (case 1), Met31/Met32 
only (case 2), or both (case 3). First, an artificial gene expression tem-
plate was constructed to match each case. For instance, the template 
for case 1 reflects that, for a gene that depends on Cbf1 but not 
Met31/Met32, expression levels in cbf1Δ differ from those in met6Δ 
and met31Δmet32Δmet6Δ. The three templates are as follows:

Case 1: met6Δ = 0 (at all time points), cbf1Δmet6Δ = 1, 
met31Δmet32Δmet6Δ = 0.

Case 2: met6Δ = 0 (at all time points), cbf1Δmet6Δ = 0, 
met31Δmet32Δmet6Δ = 1.

Case 3: met6Δ = 0 (at all time points), cbf1Δmet6Δ = 1, 
met31Δmet32Δmet6Δ = 1.

Second, the Pearson correlation between each gene and each 
template was calculated. A bootstrapped p-value for each correla-
tion coefficient was calculated by repeating the correlation calcula-
tion on 1 × 104 randomly permuted sets of expression data and 
determining the fraction of “random” correlation coefficients that 
exceeded the “real” r in absolute value. Q-VALUE software was 
used to calculate q-values from the p-values (Storey and Tibshirani, 
2003). Finally, a gene was assigned to a particular TF-dependency 
class if the q-value for the correlation between the gene and the 
template was at most 0.05 (corresponding to p ≤ 0.007).

Pairwise comparison of strains (comparison of met31Δmet6Δ to 
met32Δmet6Δ and comparison of cbf1Δmet31Δmet6Δ to 
cbf1Δmet32Δmet6Δ) was performed using the regression model 
specified in Eqs. 1 and 2, as well as a two-tailed Student’s t-test. In 
the full regression model (Eq. 1, D classifies the genotype with re-
spect to met31Δ and met32Δ (or cbf1Δmet31Δ and cbf1Δmet32Δ), 
such that D = 1 for met32Δ (or cbf1Δmet32Δ) and D = 0 for met31Δ 
(or cbf1Δmet31Δ). Regression significance was calculated from the F 
statistic comparing the fit of the full model (Eq. 1) with the fit of the 
reduced model (Eq. 2). Pairwise comparison of strains for the syn-
ergy analysis was performed analogously, using a regression model 
that allowed for simultaneous pairwise comparisons between more 
than two strains. Nonparametric p-values were calculated for the F 
statistic and the t statistic by randomly permuting the expression 
data 1 × 105 times. Q-VALUE software was used to calculate q-values 
from the p-values (Storey and Tibshirani, 2003). A gene was consid-
ered to differ between two strains if the q-value for the F statistic or 
the t statistic was <0.1 and the maximum expression difference be-
tween the strains was at least 1.5-fold. In some cases, as noted in the 
text, the stringency of the q-value cutoff was increased in order to 
limit the results to the strongest, most plausible, candidate genes. 
Regardless of the q-value threshold, the maximum p-value used in 
any filtering step was 0.002.

Hierarchical and k-means clustering were performed using the 
Multiple Experiment Viewer (Saeed et al., 2006). For both types of 
clustering, the Pearson correlation coefficient was used as the dis-
tance metric. The k-means clustering was performed using a range 

filters using phenol-chloroform extraction, labeled cRNA was synthe-
sized using the Agilent Low-Input Linear Amplification Kit (Agilent 
Technologies, Santa Clara, CA), and the labeled cRNA was hybrid-
ized to 4 × 44k or 8 × 15k Agilent Yeast Oligo V2 microarrays 
together with reference cRNA from FY4 grown in a phosphate-lim-
ited chemostat.

Raw mRNA abundance measurements were processed using 
Perl, as described further in Petti et al. (2011). Briefly, for each gene 
in each time course, the final processed signal intensity of nonoutlier 
probes was floored to 350. Then the log base 2 of the ratio of red 
intensity to green intensity was computed and averaged across rep-
licate probes, and every measurement in every strain was normal-
ized (by subtraction) to the zero time point of met6Δ. As described 
further in Petti et al. (2011) and Hickman et al. (2011), a regression 
model with quadratic terms was used to identify differentially ex-
pressed genes and to estimate the maximum fold change for each 
gene. The statistical significance of differential expression was de-
termined using an F-test to assess the fit of the expression profile to 
the regression model. An F-test p-value < 0.05 was taken to indicate 
time-dependence.

Comparison of met6Δ and met13Δ was accomplished using the 
regression model specified in the following equations. In the full 
regression model (Eq. 1), D classifies the genotype, such that D = 1 
for met13Δ and D = 0 for met6Δ. Regression significance was calcu-
lated from the F statistic comparing the fit of the full model (Eq. 1) 
with the fit of the reduced model (Eq. 2). Q-VALUE software was 
used to calculate q-values from the p-values (Storey and Tibshirani, 
2003). A gene was considered to differ between met6Δ and met13Δ 
if the q-value for the F statistic was <0.01.

Full regression model:

Y t t t D Dt Dt( ) = + + + + +β β β β β β0 1 2
2

3 4 5
2

 (1)

Reduced regression model:

Y t t t( ) = + +β β β0 1 2
2

 (2)

Strain Description

DBY11152 met6::KanMX MATa

DBY11173 met13::KanMX MATa

Spore from freshly 
dissected DBY11388

met4::NatMX, freshly dissected from 
met4::NatMX/MET4

11197 cbf1::KanMX MATa

11242 met31::KanMX;met32::KanMX MATα

11243 cbf1::KanMX;met31::KanMX MATa

11244 cbf1::KanMX;met32::KanMX MATa

11396 cbf1::KanMX;met6::KanMX MATa

11398 met31::NatMX;met6::KanMX MATa

11385 met32::NatMX;met6::KanMX MATa

11409 met31::NatMX;met32::KanMX;met6::Ka
nMX MATα

11412 cbf1::KanMX;met31::NatMX;met6::Kan
MX MATa

11413 cbf1::KanMX;met32::NatMX;met6::Kan
MX MATa

TABLE 2: Strains used.
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desired carbon source in a flat-bottomed, polystyrene 96-well plate 
covered with a Breathe-Easy membrane (Sigma-Aldrich, St. Louis, 
MO). Carbon sources were supplied at a final concentration of 2%. 
Each strain was grown in triplicate in each carbon source with con-
tinuous shaking at 30°C, and the OD600 was recorded every 30 min 
for 70 h.

of values for k. The value giving the largest fraction of functionally 
enriched clusters and best discrimination between distinct expres-
sion profiles was used in subsequent analyses.

Functional enrichment of gene clusters was measured with respect 
to the “Biological Process” classifications specified in the GO 
(Ashburner et al., 2000). Enrichment for GO terms was measured us-
ing the GOTF (Boyle et al., 2004; available at http://go.princeton.edu/
cgi-bin/GOTermFinder), using the FDR option for multiple hypothesis 
correction. Here we report enrichments with FDR at most 0.1.

DNA sequence motifs were identified using the Web-based mo-
tif-detection algorithm MEME (http://meme.sdsc.edu/meme/intro 
.html; Bailey et al., 2009). Before using MEME, Regulatory Sequence 
Analysis Tools (http://rsat.ulb.ac.be) were used to obtain the pro-
moter sequence, ranging from positions −800 to −1 and excluding 
overlapping open reading frames, upstream of every gene (Thomas-
Chollier et al., 2011). This genome-wide set of promoter sequences 
was used to generate the nucleotide-frequency background model 
used by MEME. In MEME, motif width was allowed to range from 6 
to 12 nucleotides. All other MEME parameters were set to default 
values. To identify additional instances of each motif throughout the 
genome, the motifs identified by MEME were used as input for the 
companion program MAST (http://meme.sdsc.edu/meme/cgi-bin/
mast.cgi). MAST takes as input a list of motifs represented as 
position-specific scoring matrices (such as those produced by 
MEME) and searches a user-specified sequence database (here the 
S. cerevisiae upstream sequence database supplied with the MEME 
suite) for instances of those motifs. MAST assigns each input se-
quence an “E value,” which reflects the expected number of se-
quences in a random sequence database that match the input mo-
tifs at least as well as the actual sequence. Although the E value is 
not a p-value, it is calculated from the p-values of the motif matches 
in the input sequence. We applied two different E value cutoffs, 
depending on the nature of the analysis: for MAST hits that were 
subsequently filtered using additional criteria (e.g., those in Figure 
1), we used hits with an E value of <500, as in the analysis of Met TFs 
by Lee et al. (2010). For more stringent motif identification, we used 
MAST hits with an E value of <50. An E value of 500 corresponds 
roughly to a p-value of 0.08 in our analysis, and an E value of 50 
roughly corresponds to a p-value of 0.008.

Transcription factor activities were calculated using R and the 
REDUCE software suite (http://bussemakerlab.org/REDUCE), follow-
ing the approach presented in Lee and Bussemaker (2010). These 
calculations are based on the assumption that the activity of a tran-
scription factor in a given condition can be inferred from the tran-
scriptional response of its target genes. The method takes as input 1) 
a genome-wide promoter sequence, 2) a position-specific affinity 
matrix for each TF derived from the data in MacIsaac et al. (2006), and 
3) a matrix of expression levels whose rows correspond to genes and 
whose columns, in our case, represent the different time points in our 
time course. The first two inputs were combined to construct a pro-
moter affinity matrix that records the affinity of each TF (column) for 
each promoter (row). Next, for each time point, multivariate linear 
regression of the expression level on the promoter affinity was per-
formed, and the regression coefficient corresponding to the slope 
was taken to represent the TF activity. “TF activity” is the same as the 
“t score” in Lee and Bussemaker (2010).

Growth curves in assorted carbon sources were performed using 
a BioTek plate reader (BioTek, Winooski, VT). For a given strain, a 
single colony was grown to saturation (15–19 h with shaking at 30°C) 
in 5 ml of rich medium made with 2% sucrose (instead of glucose). 
The cells were then washed in phosphate-buffered saline and di-
luted to 5 × 105 cells/ml in 200 μl of rich medium containing the 
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