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Abstract: In this work, unmodified screen-printed electrode (bare SPE) and Sb-film modified SPE
(SbFSPE) sensors were employed for the analysis of trace amounts of Pb(II) in non-deaerated water
solutions. The modified electrode was performed in situ in 0.5 mg/L Sb(III) and 0.01 M HCl.
The methodology was validated for an accumulation potential of –1.1 V vs. Ag/AgCl and an
accumulation time of 60 s. A comparative analysis of bare SPE and SbFSPE showed that the detection
and quantification limits decrease for the bare SPE. The method with the bare SPE showed a linear
response in the 69.8–368.4 µg/L concentration range, whereas linearity for the SbFSPE was in
the 24.0–319.1 µg/L concentration range. This work also reports the reason why the multiple
standard addition method instead of a linear calibration curve for Pb(II) analysis should be employed.
Furthermore, the analytical method employing SbFSPE was found to be more accurate and precise
compared to the use of bare SPE when sensors were employed for the first time, however this
performance changed significantly when these sensors were reused in the same manner. Furthermore,
electrochemical impedance spectroscopy was used for the first time to analyse the electrochemical
response of sensors after being used for multiple successive analyses. Surface characterisation before
and after multiple successive uses of bare SPE and SbFSPE sensors, with atomic force microscopy and
field emission scanning electron microscopy, showed sensor degradation. The interference effect of
Cd(II), Zn(II), As(III), Fe(II), Na(I), K(I), Ca(II), Mg(II), NO3

–, Bi(III), Cu(II), Sn(II), and Hg(II) on the
Pb(II) stripping signal was also studied. Finally, the application of SbFSPE was tested on a real water
sample (from a local river), which showed high precision (RSD = 8.1%, n = 5) and accurate results.
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1. Introduction

The natural environment and the environment polluted by humans contain different types of heavy
metals. Monitoring of trace heavy metals is extremely important in order to prevent their bioaccumulation
and other health-related problems. Such analyses are usually carried out using spectroscopic techniques,
such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical
emission spectrometry (ICP-OES), and atomic absorption spectrometry (AAS). An alternative is
electroanalytical analysis, which is advantageous, not only due to its low instrumentation and analysis
costs, but also because it enables on-site analysis, directly after the sampling is carried out (e.g., from a
lake, river, etc.). Among the electroanalytical techniques, anodic stripping voltammetry (ASV) is among
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the most effective due to a pre-concentration step enabling trace or ultra-trace analysis of different heavy
metals with high sensitivity, accuracy, and precision [1].

This work is focused on the detection of Pb(II), a heavy metal with proven toxicity to
humans. The usual consequences of Pb uptake can be observed in gastrointestinal, neuromuscular,
and neuropathological symptoms. These are most severe after longer exposure times and are especially
serious in children below six years of age, whose mental and physical development can consequently
decrease. Pb poisoning can also be fatal [2]. Considering everything mentioned above, it is clear that a
disposable, low cost, and portable sensor for Pb(II) detection could be highly beneficial for human health.

Modified electrodes, especially glassy carbon electrodes (GCE), have recently been replacing
classic polarography, which uses Hg-based electrodes. In such a manner, mercury waste,
following analysis, is avoided—in accordance with the Minamata Convention on Mercury, which has
been signed by 128 countries in order to protect human health [3]. Another advantage of some modified
electrodes is that they eliminate the need for oxygen removal, which is a necessary and time-consuming
step in polarography. Various modified electrodes have been reported, whereas the bismuth-film
glassy carbon electrode (BiFE) seems to be one of the best substitutes for the Hg electrode in the
electroanalytical determination of traces of heavy metals [4–6]. On the other hand, other substitutes are
currently being sought [7]. Among them, antimony-film GCE (SbFE) is another attractive substitute for
polarography and even for BiFE [8–16]). Antimony is significantly less toxic than mercury and therefore
much more acceptable for the environment [17,18]. For example, according to the German Water
Hazard Class (WGK), the Sb(III) standard solution employed herein corresponds to the WGK1 that
classifies this chemical as being relatively harmless and close to non-hazardous. Despite the relatively
low number of studies in the last decade, this research area is still very attractive due to the advantages
compared to classic polarography-based methods and as such is currently being extensively explored.
For example, the advantage of using SbFE over BiFE lies in the analysis of Cu(II) traces [19], its wider
potential window, the low stripping signal for Sb, the low background contribution, and the possibility
of working in more acidic solution with pH ≤ 2 [8,10,12]. The above-mentioned electrodes are usually
employed in combination with the ASV technique.

Another field in electroanalytical research that is currently expanding is the use of screen-printed
electrodes (SPE). The advantages of using SPEs over a conventional three-electrode configuration
(working, reference, and counter electrodes) are the more convenient setup and the miniaturisation
of the system, which facilitates portability. SPE electrodes are widely available from different
producers. These electrodes can also be manufactured in an ordinary research laboratory on
site by using inexpensive screen-printing equipment, a platform (e.g., ceramic of plastic), and a
special ink. Compared to GCE, no polishing step is carried out before the analysis with the
SPE [20,21], which makes these electrodes far more convenient. By combining the above-mentioned
technologies, a new system can be developed, i.e., the antimony-film screen-printed electrode (SbFSPE).
Currently, the most used working electrode platform material for SPE is carbon [8]. Sb-film can be
electrodeposited on the working electrode in situ during the pre-concentration step or ex situ before the
pre-concentration step [8,12,13,19,22–24]. SPE technology using different working electrodes for Pb(II)
determination was employed previously [8]. Table 1 shows how the working electrode material affects
the performance for some differently modified SPEs compared with the present work. Furthermore,
not only inorganic modified electrodes perform well for heavy metal determination, but also some
organic-based modified electrodes were developed for this purpose [25,26].

Despite being disposable, many SPE manufacturers claim that these sensors can be employed
many times before being discarded. Moreover, Perez-Rafols et al. [13] and Sosa et al. [12] concluded
that applications of these types of electrodes can be used for a large set of measurements without sign of
degradation or loss of sensitivity. Hitherto, to the best of our knowledge, none of the available reports
performed a systematic study of disposable SbFSPE sensor electrode degradation and performance
after reuse. Evaluation of the possible reusability of such electrodes is one of the main focuses of
the present study. Moreover, the evaluation of SbFSPE sensors has never before been evaluated
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using electrochemical impedance spectroscopy (EIS). In this work, square-wave anodic stripping
voltammetry (SWASV) was used to analyse Pb(II) using bare SPE or SbFSPE. These sensors were also
microscopically investigated before and after the analytical work. Finally, the interference effect of
various ions was checked and the applicability of SbFSPE to real water samples was checked.

Table 1. Comparison of different SPEs performances for Pb(II) determination.

Working Electrode Eacc [V] Method Linear Concentration Range (µg/L) LOD
(µg/L) Reference

SbSPCE −1.2
−0.7 DPASV 16.8–62.6

16.1–55.5
5.0
4.8 [12]

SbSPCE
SbSPCE-CNF

SbSPCE-MWCNT
SbSPCE-GPH

−1.5 DPASV

17.5–100.9
6.9–100.9

14.7–100.9
28.8–100.9

5.3
2.1
4.4
8.6

[13]

Bi-SbSPE −1.3 SWASV 0.1–90 0.07 [24]

SbSPE
Sb2O3-SPE

SbIII(C2O4)OH-SPE
SnO2/Sb2O5-SPE

−1.4 (vs. SCE)
−1.4 (vs. SCE)
−1.4 (vs. SCE)
−1.5 (vs. SCE)

DPASV 5–45

1.0
0.9
1.1
1.1

[22]

SbF-GO-SPCE −1.4 SWASV 0.1–1.3 (µM) 0.026 (µM) [27]

Ex situ-SbSPCE-CNF −1.4 DPASV 13.2–200.8 4.0 [28]

SbFSPE
Bare SPE −1.1 SWASV 24.0–319.1

69.8–368.4
1.50
0.50 this work

SbSPCE: antimony screen-printed carbon electrode, SbSPCE-CNF: antimony film electrode prepared from
carbon nanofibers modified screen-printed electrodes, SbSPCE-MWCNT: antimony film electrode prepared
from multi-walled carbon nanotubes modified screen-printed electrode, SbSPCE-GPH: antimony film electrode
prepared from graphene modified screen-printed electrode, Bi-SbSPE: bismuth and antimony screen-printed
electrode, SbSPE: antimony screen-printed electrode, Sb2O3-SPE: screen-printed electrode bulk-modified with Sb2O3,
SbIII(C2O4)OH-SPE: screen-printed electrode bulk-modified with SbIII(C2O4)OH, SnO2/Sb2O5-SPE: screen-printed
electrode bulk-modified with SnO2/Sb2O5, SbF-GO-SPCE: antimony-graphene oxide modified screen-printed
carbon electrode, DPASV: differential pulse anodic stripping voltammetry.

2. Materials and Methods

All of the electrochemical experiments were performed with a PGSTAT204 potentiostat/
galvanostat controlled by Nova 2.1.3 software (Metrohm Autolab B.V., Utrecht, The Netherlands)
under laboratory conditions (23 ◦C ± 2 ◦C). Where applicable, outliers were checked with both Dixon’s
and Grubbs’ statistical tests with 95% confidence [29], but none were detected, and, where applicable,
the average values are reported.

2.1. Electrodes

For partial method optimisation and the determination of the optimum accumulation potential
(Eaccu), a glassy carbon electrode (GCE) with a diameter of 3 mm (Cat. No. 6.1204.300) and a Pt wire
counter electrode was used. All the potentials in this work refer to an Ag/AgCl electrode filled with
saturated KCl (the potential of this reference electrode is 0.197 V vs. standard hydrogen electrode,
SHE, at 25 ◦C). GCE, Ag/AgCl, and Pt electrodes were supplied by Metrohm (Herisau, Switzerland).
Polishing of the GCE was performed with 0.05 µm Al2O3 (Buehler, IL, USA), followed by washing in
ultra-pure water, cleaning for 5 min in an ultrasound bath containing ultra-pure water, and drying
(with a paper towel without touching the active surface).

SPE sensors (DRP-110) were supplied by DropSens (Llanera, Spain). These sensors were
constructed of carbon-based working (4 mm in diameter) and counter electrodes, and an Ag pseudo
reference electrode. In all experiments using SPE sensors an external Ag/AgCl electrode was employed
instead of an Ag pseudo reference electrode to better control the reference potential. The reversibility
of the SPE sensor was checked with a cyclic voltammetry (CV) test for the potassium hexacyanoferrate
system (results are given in the Supporting Information—Figure S1).
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2.2. Solutions and Reagents

All of the analytical work was performed in a 0.01 M HCl supporting electrolyte. HCl and
KCl were supplied by Carlo Erba Reagents (Val de Reuil, France). Atomic absorption standard stock
solutions (1000 mg L–1) of Pb(II), Sb(III), Cd(II), Zn(II), Sn(II), Bi(III), Cu(II), and As(III) were purchased
from Merck (Darmstadt, Germany). (NH4)2Fe(SO4)2·6H2O, NaCl, and KNO3 were purchased from
Sigma Aldrich (St. Louis, MO, USA), while CaCl2 and MgCl2 were supplied by Acros Organics
(Morris, NJ, USA). All chemicals were of analytical grade purity. Ultra-pure water with a resistivity of
18.2 MΩ cm was employed to prepare all solutions (prepared using the Milli-Q water purification system,
Millipore Corporation, Burlington, MA, USA).

Real Sample Analysis

A river water sample was collected in the middle of a riverbed of the Drava River, which passes
through Maribor (Slovenia) at the Lent site. A mixture of river and ultrapure water in a 1:5 ratio was
prepared. This mixture was then used to prepare a 0.01 M HCl solution containing 0.5 mg/L Sb(III).
The concentration of the unknown Pb(II) was determined using the multiple standard addition method
(6 additions). By using Whattman glass fibre filters (0.45 µm pore size), the water sample was filtered
after preparation and before analysis [13].

2.3. SWASV Experiment

The Eaccu was set at −1.1 V for 60 s (pre-concentration step), followed by 15 s equilibration
time, before starting the SWASV experiment. The SWASV measurements were performed using a
positive-going square-wave potential scan in the potential region from −1.1 V to 0.3 V, with a potential
step of 4 mV, an amplitude of 25 mV, and a frequency of 25 Hz [4]. After each SWASV experiment,
a cleaning cycle was performed by applying a potential of 0.3 V for a period of 30 s. During the
accumulation and cleaning steps, the solution was stirred, whereas during the equilibration and
measurement steps no stirring was employed. All the CV and SWASV experiments were performed
without deaeration of the solutions.

2.4. Electrochemical Impedance Spectroscopy

EIS measurements were performed in the 106–5 × 10–2 Hz frequency range using an excitation
signal with an amplitude (peak-to-peak) of 10 mV. Five points were measured in each frequency
decade. A pre-concentration step (the same as for the Pb(II) analysis, as described in Section 2.3)
was performed before EIS analysis was carried out. EIS measurements were performed at −1.1 V.
This procedure was performed for both bare SPE and SbFSPE sensors.

2.5. ICP-OES

An ICP-OES instrument, i.e., Agilent 5110 VDV (Santa Clara, CA, USA), was used for the
determination of Pb(II) in the real water sample. The gas employed was argon with 99.9999% purity
(Messer, Maribor, Slovenia). The calibration curves were performed in the presence of yttrium as
an internal standard.

2.6. Surface Analysis

The surface morphology of the working electrode surfaces were analysed by field emission
scanning electron microscopy (FE-SEM). Prior to imaging, the sensors were pressed on double-sided
adhesive carbon tapes (SPI 116 Supplies, West Chester, PA, USA). Micrographs were taken using
FE-SEM (Supra 35 VP, Carl Zeiss, Oberkochen, Germany) operated at 1 keV at room temperature [30].

The surface topography and roughness parameters of the sensors were measured using an atomic
force microscope (AFM) in tapping mode (7500 AFM model, Keysight, Santa Barbara, CA, USA).
Silicon cantilevers (ATEC-NC-20, Nanosensors, Neuchâtel, Switzerland) with a resonance frequency
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of 210–490 kHz and a force constant of 12–110 N m–1 were used for all measurements, which were
performed at room temperature. All surfaces were scanned with spot sizes of 10 × 10 µm2, recorded with
a resolution of at least 512 × 512 lines [31]. PicoImage software (Keysight) was used to process all images
and to calculate the corresponding roughness parameters [32].

3. Results and Discussion

Hereinafter, the term SbFSPE shall be used for the Sb-film SPE electrode formed in situ using an
SPE sensor immersed in 0.01 M HCl containing 0.5 mg/L Sb(III). Thus, in situ Sb-film along with Pb is
accumulated on the working electrode during the accumulation step (pre-concentration). The term bare
SPE shall hereinafter stand for the system, where the Pb(II) analysis was performed in 0.01 M HCl without
Sb(III) in the solution. The 0.01 M HCl supporting electrolyte was chosen in accordance with the first
report on the use of an in situ Sb-film formed GCE electrode (SbFE) in that medium [10]. Furthermore,
it has been reported that HCl stabilises antimony film [19]. For both SbFSPE and bare SPE, all Pb(II)
measurements were performed at Eaccu = −1.1 V and taccu = 60 s (as shown below this accumulation time
provided relatively wide linear concentration ranges, which would became narrower in case of using
longer accumulation times [33]).

3.1. Method Validation

Figure 1 shows SW voltammograms measured in 0.01 M HCl by employing SbFSPE and bare
SPE sensors. The terms γ and ∆I stand for the mass concentration and the square-wave current signal,
respectively. Hydrogen evolution starts at potentials more negative than −1.1 V (whereas it is not yet
intensive at −1.1 V for the measurements with Pb(II) present). In the absence of Pb(II), hydrogen evolution
is significantly more intensive for the bare SPE compared with SbFSPE (Figure 1). The background signal
is low for both sensors in the potential range around the Pb(II) peak potential. There is a well-defined
stripping signal for Pb(II) around −0.5 V for both the SbFSPE and bare SPE sensors. The advantage
of using the Sb-film electrode compared to, e.g., the Bi-film electrode lies in its low oxidation stripping
signal for Sb(III), as seen at a potential of approx. −0.15 V (for Bi(III) it would be significantly more
intensive) [10,18,23]. Moreover, a similar Pb(II) stripping signal (peak height) was measured for both
substrates indicating a similar sensitivity for the bare SPE and SbFSPE (also seen from the calibration plot
slopes presented below). Similar was previously reported for Pb(II) using GCE [16], when 0.5 mg/L Sb(III)
was employed to modify the surface. Interestingly, the influence of a relatively high Pb(II) concentration (in
the case shown in Figure 1) on the reduced hydrogen evolution for the bare SPE is also present. In this case
the intensity of hydrogen evolution is comparable to the SbFSPE, when Pb(II) was present in the solution.
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Figure 1. Blank measurements, stripping signals of Pb(II) and Sb(III) using SbFSPE, and stripping
signals of Pb(II) for bare SPE in 0.01 M HCl; γPb(II) = 164.8 µg/L (for SbFSPE and SPE measurements),
γSb(III) = 0.5 mg/L (in the case of SbFSPE), Eacc = −1.1 V, and tacc = 60 s were employed.
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The relatively low intensity peak, which is clearly expressed for bare SPE and SbFSPE at 0.15 V
(as seen from the insert in Figure 1, for blank SbFSPE it develops at about 0.20 V), is most likely related to
the oxidation of silver to form silver chloride (residue of silver that remained on the working electrode as
reported in Ref. [34]). This peak was shown to always be present in such stripping analyses (see Figure S2
in the Supporting Information).

3.1.1. LOD and LOQ Determination

The limit of detection (LOD) and limit of quantification (LOQ) were determined experimentally
based on the signal-to-noise ratio (S/N) obtained by performing a SWASV measurement by
successively injecting trace amounts of Pb(II) and measuring the current response in voltammograms.
LOD and LOQ were determined based on the S/N ratio at a certain Pb(II) concentration, for which
S/N ≥ 3 and S/N ≥ 10, respectively [35]. Signal S is the Pb(II) stripping peak height and the noise
is the background noise (determined as the difference between the highest and the lowest point in
the background contribution [29], evaluated in the potential region more positive and more negative
around the developed Pb(II) stripping peak).

For SbFSPE, the determined LOD was 1.5 µg/L (at S/N = 4.6) and the LOQ was 3.0 µg/L
(at S/N = 12.3). For bare SPE, the LOD and LOQ were determined to be 0.5 µg/L (at S/N = 3.5)
and 1.5 (at S/N = 11.5), respectively. Considering the above results, it can be concluded that the formation
of the in situ SbFSPE increases the LOD and LOQ values.

3.1.2. Linearity

Figure 2 shows the concentration range for Pb(II) determination, regarding which the response (∆I)
was fitted with the linear calibration plot using the linear least squares regression method. Linearity
was confirmed if a correlation coefficient of R2 > 0.99 was obtained. Moreover, to accept the linear
concentration range, y-residuals (ymeasured − ymodel, i.e., ∆Imeasured − ∆Imodel) needed to be randomly
distributed with increasing Pb(II) concentration. Finally, to accept linearity in a certain concentration
range, the data also needed to pass the quality coefficient test with a QC < 5.0%. The normal distribution
was also checked by the quantile-quantile or Q-Q plot [36].

The method showed a Pb(II) concentration linearity in the 24.0–319.1 µg/L range when using
SbFSPE (Figure 2a), and in the 69.8–368.4 µg/L range when using bare SPE (Figure 2b). For bare SPE,
the 5.0–69.8 µg/L concentration range was also checked to determine if a second linearity existed,
but the presence of such was not determined (the same was also checked for SbFSPE for concentrations
lower than 24.0 µg/L and such linearity was not determined). Measurements were performed in
triplicates; each point shown is an average signal and the corresponding error bars represent the
standard deviation at each concentration point measured. The determined standard deviations are not
large for the measurements with bare SPE, whereas they are relatively large for a single response at
a certain concentration point for SbFSPE (the standard deviations also increase with increasing Pb(II)
concentration). This could indicate a heteroscedastic data distribution and the need for the weighted
regression. However, in the performed analyses three new sensors were employed, which could
potentially mean that the sensors exhibit minor differences (e.g., a minor composition difference,
slightly different measurement areas [34], etc.). As the slope and the intercept change when successive
linear calibration plots are performed with new SbFSPE sensors (also seen in Figure 4a), it is rather
recommended to employ the multiple standard addition method for the determination of an unknown
Pb(II) concentration instead of using the calibration plot method.. However, by using new sensors the
linear range is preserved (Figure S3 in the Supporting information). Moreover, compared to the results
reported in Refs. [12,13], it can be concluded that by employing shorter taccu the linear range substantially
increases, but the sensitivity decreases (evaluated from the slope of the calibration curve).

The peak potential for Pb(II) is in a potential range from –0.575 V to −0.449 V for SbFSPE, and in
a potential range from −0.493 to −0.414 V for bare SPE by increasing the Pb(II) concentration from 5.0
to 555.6 µg/L. In general, the peak potential shifts to more positive potentials with increasing Pb(II)
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concentration for both bare SPE and SbFSPE systems (Figure 3), apart from one break in the case of bare
SPE when the Pb(II) concentration increases from 47.6 µg/L to 69.8 µg/L (Figure 3b). The reason for
such a feature lies in the formation of two peaks (as seen in Figure 3c). At Pb(II) concentrations higher
than 69.8 µg/L, the peak at more negative potentials prevails, which is then used as a representative
signal and for this reason the method linearity starts at that concentration point [13].
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Figure 2. The linear Pb(II) concentration range measured in 0.01 M HCl for (a) SbFSPE (0.5 mg/L
Sb(III)) and (b) bare SPE sensors; the error bars represent the standard deviation. Corresponding
voltammograms with increasing Pb(II) concentrations (one out of three measurements) are shown in
the insets. Eacc of –1.1 V and tacc of 60 s were employed.
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Figure 3. (a) The change in peak potential vs. Pb(II) concentration for (a) SbFSPE and (b) bare SPE.
(c) the corresponding voltammograms for bare SPE; the error bars represent the standard deviation.
The same experimental conditions were employed as in Figure 2.

3.1.3. Accuracy and Precision

The accuracy was evaluated by spiking 169.1 µg/L Pb(II) in 0.01 M HCl solution using both SbFSPE
and bare SPE electrodes (both sensors were shown to have a linear response at this concentration). Figure 4
shows the results obtained by employing the multiple standard addition method using 12 completely
new sensor electrodes (6 for analyses with SbFSPE and 6 for bare SPE). The measured (determined)
value of the Pb(II) concentration should be considered as the value where the curve crosses the x-axis
in Figure 4. The analytical method using SbFSPE for Pb(II) determination seems to be more accurate
(the difference between the average measured value and the true value is lower) compared with that for
bare SPE (Figure 4a vs. Figure 4b) when using single sensors for the first time. The average recovery
for SbFSPE was 97.0%, whereas the average recovery for bare SPE was 77.4%. The accuracy was also
evaluated using a Student’s two-tailed t-test at 95% confidence. According to that test, the t values
were 0.87 and 3.14 for SbFSPE and bare SPE, respectively. Therefore, according to the desired texp < ttab
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(0.05; 5) = 2.57, SbFSPE reported accurate results, whereas bare SPE did not (as texp = 3.14 > ttab = 2.57)
for the first use of the respective sensor.

Higher precision was also determined in the case of SbFSPE compared with bare SPE when
performing the first analysis with six new sensors. This can also be seen in Figure 4b, where the
measured values were more intensively scattered around the average value compared with that in
Figure 4a. The RSD values for SbFSPE and bare SPE were 8.7 % (n = 6) and 22.7% (n = 6), respectively.

Based on these results, we can conclude that the method where the in situ Sb-film is formed (SbFSPE)
alongside the Pb pre-concentration is more accurate and precise when compared to the method using
bare SPE. It is important to note once more that this is true for the first-time use of the sensor. After reuse,
different performances of the electrodes were determined, which will be further explained below.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 16 

< ttab (0.05; 5) = 2.57, SbFSPE reported accurate results, whereas bare SPE did not (as texp = 3.14 > ttab = 
2.57) for the first use of the respective sensor. 

Higher precision was also determined in the case of SbFSPE compared with bare SPE when 
performing the first analysis with six new sensors. This can also be seen in Figure 4b, where the 
measured values were more intensively scattered around the average value compared with that in 
Figure 4a. The RSD values for SbFSPE and bare SPE were 8.7 % (n = 6) and 22.7% (n = 6), respectively. 

Based on these results, we can conclude that the method where the in situ Sb-film is formed 
(SbFSPE) alongside the Pb pre-concentration is more accurate and precise when compared to the 
method using bare SPE. It is important to note once more that this is true for the first-time use of the 
sensor. After reuse, different performances of the electrodes were determined, which will be further 
explained below. 

 
Figure 4. Representation of the accuracy and precision by employing the multiple standard addition 
method for six new electrodes used for the first time in 0.01 M HCl solution spiked with 169.1 µg/L Pb(II): 
(a) SbFSPE and (b) bare SPE. The same experimental conditions were employed as in Figure 2. 

3.1.4. Reusability of SbFSPE and Bare SPE Sensors 

One of the most important (and yet to be answered) questions with regard to SPE sensor use is 
how many consecutive analyses can be conducted using one electrode (reusability). SPE electrodes are 
in general meant to be disposable, but this does not mean that they can only be used to conduct one 
analysis. As already mentioned in the introductory section, this is the first study to determine the 
number of successive (and reliable) measurements using these sensors before discarding them. 

To answer this question, the same analyses as employed for evaluating accuracy and precision in 
Section 3.1.3 were performed in sequence by using the same (already used) sensor. This analysis (the 
multiple standard addition method) was repeated five times with six sensors for both SbFSPE and bare 
SPE (the results are presented in Figure S4 in the Supporting information). 

Figure 5 shows how the performance of SbFSPE and bare SPE sensors change in terms of recovery 
values when using the same sensor for five successive determinations of Pb(II) by the multiple standard 
addition method. The 0.01 M HCl solution was spiked with a 169.1 µg/L Pb(II) concentration. As 
reported above, SbFSPE produced accurate and precise results when a completely new sensor was 
employed (i.e., it was used for the first time). When the same SbFSPE sensors were used for the second 
time, four of six SbFSPE sensors showed results that were outside the 80–120% recovery values, and 
thus produced inaccurate results (Figure 5a). With further use (from the third to fifth instance of use), 
the SbFSPE sensors mainly produced inaccurate results outside the 80–120% recovery range (the 
method was deemed to be accurate when the recovery was between 80–120% [37]). 

In contrast to the SbFSPE sensor, the first use of the bare SPE sensor in general produced inaccurate 
results (three out of six sensors reported recovery values outside the 80–120% recovery range and the 
determined average values of the six sensors used did not pass the t-test, as reported above), further 

Figure 4. Representation of the accuracy and precision by employing the multiple standard addition
method for six new electrodes used for the first time in 0.01 M HCl solution spiked with 169.1 µg/L
Pb(II): (a) SbFSPE and (b) bare SPE. The same experimental conditions were employed as in Figure 2.

3.1.4. Reusability of SbFSPE and Bare SPE Sensors

One of the most important (and yet to be answered) questions with regard to SPE sensor use is
how many consecutive analyses can be conducted using one electrode (reusability). SPE electrodes
are in general meant to be disposable, but this does not mean that they can only be used to conduct
one analysis. As already mentioned in the introductory section, this is the first study to determine the
number of successive (and reliable) measurements using these sensors before discarding them.

To answer this question, the same analyses as employed for evaluating accuracy and precision
in Section 3.1.3 were performed in sequence by using the same (already used) sensor. This analysis
(the multiple standard addition method) was repeated five times with six sensors for both SbFSPE and
bare SPE (the results are presented in Figure S4 in the Supporting information).

Figure 5 shows how the performance of SbFSPE and bare SPE sensors change in terms of recovery
values when using the same sensor for five successive determinations of Pb(II) by the multiple
standard addition method. The 0.01 M HCl solution was spiked with a 169.1 µg/L Pb(II) concentration.
As reported above, SbFSPE produced accurate and precise results when a completely new sensor
was employed (i.e., it was used for the first time). When the same SbFSPE sensors were used for the
second time, four of six SbFSPE sensors showed results that were outside the 80–120% recovery values,
and thus produced inaccurate results (Figure 5a). With further use (from the third to fifth instance
of use), the SbFSPE sensors mainly produced inaccurate results outside the 80–120% recovery range
(the method was deemed to be accurate when the recovery was between 80–120% [37]).

In contrast to the SbFSPE sensor, the first use of the bare SPE sensor in general produced inaccurate
results (three out of six sensors reported recovery values outside the 80–120% recovery range and
the determined average values of the six sensors used did not pass the t-test, as reported above),
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further use of the same sensors resulted in recovery ranges inside the 80–120% recovery range limits.
It seems that the bare SPE sensor in this medium needs some pre-activation to provide accurate results.
The change in electrochemical performance with successive use is also demonstrated (and further
discussed) below in Section 3.2 using the EIS technique.
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Figure 5. Recovery vs. the number of successive multiple standard addition analyses using the same
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were employed as in Figure 2.

3.2. Electrochemical Impedance Spectroscopy Measurements

Figure 6 shows the Nyquist spectra measured after the accumulation step (repeated five times;
at Eaccu = −1.1 V, taccu = 60 s) and cleaning step. Using such an approach, electrochemical evaluation of
the change in sensor performance after reuse can be reported. The shape (a semicircle) of the spectra
for SbFSPE indicates a charge-transfer-controlled reaction (a kinetic-controlled reaction). On the other
hand, the Nyquist spectra for the bare SPE sensor show that the system is also under diffusion control
(besides kinetic control), as the measured curve deviates from a semicircle in the low frequency region
(at high Zreal) in a manner typical of a diffusion-controlled reaction [38,39].

Figure 6a shows that the electrochemical performance of the SbFSPE sensor changes with successive
use, with a decrease in the resistance of the system after each use (Zreal decreases with successive use).
However, this change with successive use is even more significant for bare SPE (Figure 6b vs. Figure 6a).
The latter could explain the fact that the bare SPE sensor became more useful after its first use (the recovery
values became acceptable, Figure 5). Moreover, the decrease in the interfacial electron transfer resistance
has previously been explained as an increase in the sensitivity of the method [39,40].
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Figure 6. Successive EIS measurements for (a) SbFSPE and (b) bare SPE. EIS measurements were
performed at −1.1 V after a pre-concentration step (Eacc = −1.1 V, tacc = 60 s) in 0.01 M HCl containing
169.1 µg/L Pb(II). In the case of SbFSPE a 0.5 mg/L Sb(III) was employed.
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3.3. Surface Morphology And Topography Characterisation

Figure 7 shows representative surface morphologies of the working electrode before and after
five-time use (bare SPE and SbFSPE sensors). The micrographs shown are only for those electrodes
that produced results, which are reported in Figure 4 (measurements for three out of six sensors are
presented). The surface morphology of all samples was evaluated at various magnifications to observe
potential features and their distribution on representative scales. The surface morphologies of the
bare SPE sensor before use and the SbFSPE sensor after five-time use, are similar regardless of the
respective micrographs’ magnification. Both exhibit some minor cracks in the surface, which seem
to be evenly distributed over the surface. On the other hand, the bare SPE sensor after five-time use
shows a different morphology, which is the most evident at higher magnifications (2500× and higher).
This electrode exhibits a higher surface roughness compared to the other two samples and partially
exposed bigger materials pieces, which are not visible on neither the SPE sensor before use not the
SbFSPE sensor after five-time use. Furthermore, it seems that at certain places on the working electrode
surface, the carbon-based working material starts to peel off. This effect is more expressed for the bare
SPE sensor. Based on these findings, we conducted AFM measurements to get further insight into
potential differences on an even smaller scale (compared to the magnification of 10,000×).
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Figure 7. SEM images measured on the surface of three different sensors: top row: SPE sensors before
use, middle row: SbFSPE sensors after being used five times, and bottom row: bare SPE after being
used five times by employing the multiple standard addition method. In the case of used samples,
the same experimental conditions were employed as in Figure 2.

Figure 8 shows the sample topographies in 2D and 3D, and the corresponding extracted profiles for
the SPE sensor before use, as well as the bare SPE sensors and the SbFSPE sensors after five successive
uses. The analyses were performed on the same samples as used for the SEM analyses. For Figure 8,
the most representative AFM images were chosen (measured with dimensions of 10 µm × 10 µm),
which were further used to calculate (on the basis of 12 measurements at different places and on
3 sensors) the most commonly evaluated roughness parameters based on the ISO 25178 standard,
(i.e., arithmetical mean height of the surface—Sa, and the root mean square height of the surface—Sq).
Sa is based on general surface roughness; the higher the Sa value, the rougher the surface is [41],
whereas Sq presents the most commonly used height parameter, which involves only the statistical
distribution of height values along the z axis.

Based on the obtained topography images, and even more on the calculated roughness parameters
(last column in Figure 8), the SPE sensor before use and the SbFSPE sensor after five-time use, have a
different topography compared with the bare SPE sensor after five-time use. For example, the obtained
images reveal a small crack in the case of the bare SPE sensor after five-time use. Similar features were
found at various parts of the same sample (only one is shown herein). This result is also in agreement
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with the above discussed results from the SEM measurements, where similar (more pronounced in
the case of bare SPE sensor after five-time use compared to the SbFSPE sensor after five-time use
and the SPE sensor before use) cracks were observed over the whole surface. Furthermore, the AFM
images show a higher frequency of “valleys and mountains” for the bare SPE sensor after five-time
use, which contributes to the higher roughness parameters calculated for this sample. Furthermore,
Figure 8 also shows another typical defect formed on the working electrode surface of bare SPE sensor
after five successive uses—a hole approx. 0.6 µm deep.

In conclusion, both methods used for evaluation of the sample topographies before and after
five-time use (SEM and AFM), confirm that the reusability of bare SPE induces more significant changes
in the working electrode surface compared to SbFSPE after the same number of uses.
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use, (second row) the SbFSPE sensor after five successive uses, and (bottom two rows) a bare SPE after
five successive uses, employing the multiple standard addition method. In the case of used samples,
the same experimental conditions were employed as in Figure 2.

3.4. Interference Study

The interference effect of different compounds (probable interferents) on the Pb(II) stripping
signal, which could possibly be present in real water samples, was checked by preparing solutions with
a Pb(II):interferent mass concentration ratios of 1:1, 1:10, and 1:100 [15]. The analysis was performed
for SbFSPE as it showed accurate and precise results when used for the first time in 0.01 M HCl solution
(see Section 3.1.3). The calculated influence as to how much the interferents increase or decrease the
Pb(II) stripping signal is summarised in Table 2. By means of this approach it was possible to clearly
show which interferent has an influence on the Pb(II) stripping signal (if any influence is present,
the ratio deviates from 1). The influence can be observed by either an increase in the Pb(II) peak
(a positive effect) or a decrease in the Pb(II) peak (a negative effect).

In the case of equal amounts of Cd(II) and Pb(II), i.e., a 1:1 ratio, a more intensive Pb(II) signal was
obtained. On the other hand, at higher Cd(II) concentrations the Pb(II) signal decreased. At a 1:100
Pb(II):Cd(II) ratio, the Pb(II) and Cd(II) stripping peaks overlapped, and therefore Pb(II) cannot be
detected (Figure S5 in the Supporting information).
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Zn(II), Fe(II), Na(I), As(III), K(I), Ca(II), and Mg(II), and NO3
− have a minor influence on the

Pb(II). As expected, Bi(III), Cu(II), Sn(II), and Hg(II) significantly influence the Pb(II) stripping signal
when they are employed at high concentrations, as these ions are used to form the in situ electrode.

Table 2. The influence of different compounds on the Pb(II) peak height: the values are calculated as

the change in % =
(

Iinterferent−IPb(II)
IPb(II)

)
·100%, where Iinterferent and IPb(II) are the stripping signals for Pb(II)

at 200.0 µg/L, with and without the presence of interferent, respectively, in 0.01 M HCl solution [15].
Measurements were performed using the same experimental conditions as for Figure 2.

Interferent
Mass Concentration Ratio Pb(II):Interferent

1:1 1:10 1:100

Cd(II) 13.4 −31.1 ND
Zn(II) 3.5 9.1 10.6
Fe(II) 0.8 1.5 −5.6

As(III) 0.6 1.1 6.0
Na(I) −0.1 −1.0 −2.8
K(I) −0.1 −0.5 −2.9

Ca(II) −0.6 −0.9 −2.9
Mg(II) −1.2 −1.4 −3.4
Bi(III) 43.2 28.9 19.5
Cu(II) −78.8 −45.2 43.3
Sn(II) 1.8 −0.7 77.5
Hg(II) 12.6 59.7 115.8
NO3

– 0.4 −0.4 −3.0

ND—the Pb(II) peak was not detected.

3.5. Analytical Application of Real Water Samples

The applicability of the SbFSPE sensor was also checked with regard to a real water sample
(as it showed accurate and precise results when used for the first time in the model 0.01 M HCl solution
(see Section 3.1.4)). As shown above, the standard addition method had to be employed when using
the SbFSPE sensor. Moreover, by using this procedure the matrix effects in the analysis of the real water
sample are minimised. The applicability of the SbFSPE sensor was tested regarding a real river water
sample in order to check for possible interference effects. Five replicate measurements using the multiple
standard addition method were performed, each time using a new sensor and freshly prepared solutions.

No stripping Pb(II) signal was detected for the river water sample (the results are not shown herein),
therefore the Pb(II) concentration in this sample was below the LOD of the method. The same was
confirmed by the ICP-OES referential technique. Next, this water sample was spiked with 169.1 µg/L
Pb(II), and the multiple standard addition method was employed to determine the Pb(II) concentration
to check for any possible interference effect. A well-defined Pb(II) stripping peaks were developed
(Figure 9). The interference effect was assessed based on a two-sample t-test (two-tailed and small
sample populations) for equal means. The river water sample and the model solution (prepared with
ultra-pure water, as was done for the method validation study presented above) had statistically
equal variances (assessed on the basis of a two-tailed F-test at 95% confidence). Moreover, based
on the calculated experimental t-value for the two sample means with statistically equal variances
at 95% confidence, which was lower than the critical t-value (as texp = 0.68 < ttab = 2.30), it can be
concluded that the SbFSPE sensor does not suffer from an interference effect from the river water sample.
Moreover, replicate measurements reported precision in terms of RSD as 8.1% (n = 5). Furthermore,
no significant statistical difference was identified when comparing the results of this spiked river
water sample with the referential ICP-OES method (using the t-test) at 95% confidence, thus providing
statistically equal results. These results demonstrate the suitability of the SbFSPE sensor for real water
sample analysis.
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4. Conclusions

Screen-printed electrode (SPE) sensors are, in general, meant to be disposable. However, possible
reuse—for at least a few times before being discarded—is frequently not, if at all, reported. In this work,
SPE with a carbon-based working electrode was employed for Pb(II) trace analysis. The method’s
analytical performance in 0.01 M HCl solution with an accumulation potential of −1.1 V vs. Ag/AgCl
and an accumulation time of 60 s was validated. The carbon-based surface of the working electrode
was employed in either an unmodified (bare SPE sensor) or Sb-film modified (formed in situ, SbFSPE
sensor) form. It was found that the detection and quantification limits were lower when employing the
bare SPE sensor. Linear concentration ranges were 69.8–368.4 µg/L and 24.0–319.1 µg/L, for the bare
SPE and SbFSPE sensors, respectively. The accuracy and precision were significantly better for SbFSPE
compared with SPE when these sensors were employed for the first time. However, with successive use
of the same sensors, the accuracy and precision became worse for SbFSPE, whereas bare SPE produced
even more accurate results when used for the second time (even up to the fifth use). This implies
that bare SPE in such medium needs pre-activation, which was ascertained by the first analysis.
Electrochemical impedance spectroscopy measurements showed that successive use of SbFSPE and
bare SPE sensors change their electrochemical properties. It was also shown that the system was under
kinetic-control in the case of SbFSPE, whereas bare SPE followed a kinetic- and diffusion-controlled
process. AFM and SEM showed that successive use degrades the surface of both sensors (SbFSPE and
bare SPE) after multiple use. In the interference study for SbFSPE, the presence of Cd(II) increased the
Pb(II) signal when present at equal concentrations, whereas at a 10-time higher Cd(II) concentration
compared to Pb(II), the Pb(II) signal decreased. When Zn(II), As(III), and Fe(II), Na(I), K(I), Ca(II),
and Mg(II), and NO3

− ions were present individually, along with Pb(II), no significant change in the
Pb(II) signal was found. On the other hand, Bi(III), Cu(II), Sn(II), and Hg(II) significantly influenced
the Pb(II) stripping signal. The applicability of the SbFSPE sensor was also proven for the real sample
analysis, i.e. river water, which provided accurate and precise results. This work, therefore, reports an
analytical method that is inexpensive, produces a relatively fast analysis, and enables use on-site.
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