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Background: Several studies have confirmed associations between 
air pollution and overall mortality, but it is unclear to what extent 
these associations reflect causal relationships. Moreover, few studies 
to our knowledge have accounted for complex mixtures of air pollu-
tion. In this study, we evaluate the causal effects of a mixture of air 
pollutants on overall mortality in a large, prospective cohort of Dutch 
individuals.
Methods: We evaluated 86,882 individuals from the LIFEWORK 
study, assessing overall mortality between 2013 and 2017 through 
national registry linkage. We predicted outdoor concentration of 
five air pollutants (PM2.5, PM10, NO2, PM2.5 absorbance, and oxida-
tive potential) with land-use regression. We used logistic regression 
and mixture modeling (weighted quantile sum and boosted regres-
sion tree models) to identify potential confounders, assess pollut-
ants' relevance in the mixture–outcome association, and investigate 

interactions and nonlinearities. Based on these results, we built a 
multivariate generalized propensity score model to estimate the 
causal effects of pollutant mixtures.
Results: Regression model results were influenced by multicollinear-
ity. Weighted quantile sum and boosted regression tree models indi-
cated that all components contributed to a positive linear association 
with the outcome, with PM2.5 being the most relevant contributor. In 
the multivariate propensity score model, PM2.5 (OR=1.18, 95% CI: 
1.08–1.29) and PM10 (OR=1.02, 95% CI: 0.91–1.14) were associated 
with increased odds of mortality per interquartile range increase.
Conclusion: Using novel methods for causal inference and mixture 
modeling in a large prospective cohort, this study strengthened the 
causal interpretation of air pollution effects on overall mortality, 
emphasizing the primary role of PM2.5 within the pollutant mixture.

Keywords: Air pollution; Mortality; Mixture; Interaction; Machine 
learning; Causal methods; Propensity score

(Epidemiology 2022;33: 514–522)

Exposure to air pollution has been found to be associated 
with higher mortality rates in several studies over the last 

decades,1–3 and associations have been reported even at low 
levels of exposure.2,4–7 However, to improve our understand-
ing of these associations and to facilitate the development of 
better targeted public health regulations and interventions, it 
is important to determine to which extent these associations 
reflect causal relationships.8

When evaluating the health effects of environmental 
exposures such as air pollutants, it is important to account 
for the co-occurrence of multiple environmental constituents, 
present in the real world as a complex mixture.9 To evaluate 
the causal effects of air pollution on health, it is thus criti-
cal that studies account for this complex nature of exposure. 
This approach would allow identifying relevant contribu-
tors within the mixture as well as detecting potential inter-
actions between pollutants. Several analytical methods have 
been proposed to deal with statistical challenges inherent to 
mixtures, such as co-exposure confounding, high correla-
tion, and interaction between components of the mixture.10–12 
Furthermore, regulatory policies are still mostly designed to 
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regulate one pollutant or one source at a time, whereas more 
complex evaluations regarding causality may possibly lead to 
a more targeted regulatory policy.8 As such, there is a need to 
improve our understanding of the causal effects of environ-
mental mixtures evaluated as a complex exposure situation of 
high-dimensional data.13,14

In this study, we investigated the effects of a mixture of 
five pollutants on overall mortality in a large population-based 
cohort of Dutch individuals where air pollution exposure has 
been assessed through state-of-the-art methodologies. We 
adopted a pluralistic approach exploring the pollutant mix-
ture with targeted methods for high-dimensional exposures, 
including boosted regression tree and weighted quantile sum 
models and investigated the causal relationships between mul-
tiple pollutants and mortality with novel extensions of propen-
sity score approaches.

MATERIAL AND METHODS

Study Participants and Outcome Definition
We used data from the LIFEWORK study, a large pro-

spective cohort consortium comprising nearly 90,000 par-
ticipants aged 18+ living in the Netherlands. LIFEWORK was 
designed as a federated study resulting from the integration of 
three existing Dutch cohorts: the Nightingale study, initiated 
in 2011 and the largest contributor to the LIFEWORK study 
(68%), the Occupational and Environmental Health Cohort 
Study (AMIGO) (17%) started in 2011, and the European 
Prospective Investigation into Cancer and Nutrition in the 
Netherlands (EPIC-NL) (15%), established between 1993 and 
1997. Data were collected from each cohort between 2011 and 
2012 (baseline questionnaires for AMIGO and Nightingale, 
follow-up questionnaire for EPIC-NL) and pooled to set up the 
LIFEWORK cohort, setting the baseline at January 1, 2013. 
The rationale, study design, and participant recruitment in 
LIFEWORK were discussed in detail elsewhere.15–18 The con-
tributing subcohorts were approved by the local research ethics 
review committee or institutional review board (AMIGO and 
EPIC-NL Prospect by the committee at the University Medical 
Center Utrecht; EPIC-NL MORGEN by the committee at TNO 
Nutrition and Food Research; and Nightingale by the committee 
at the Netherlands Cancer Institute), and participants signed an 
informed consent form for each subcohort prior to enrolment.

From the original 88,466 LIFEWORK participants, we 
excluded 683 individuals with missing exposure information 
(their residential address either was incomplete; fell in the sea, 
river, or another watercourse; or at least one predictor for the 
land-use regression models was missing), 378 with reported 
emigration during the study, and 523 with no informed consent 
to link to the Municipal Personal Records Database (GBA). 
The GBA is a centralized automated population registration 
system that holds information on residence (home address) 
and date of death of people who reside in the Netherlands 
as well as personal data on migration. After exclusions, the 

total population evaluated in this study consisted of 86,882 
individuals.

The outcome of interest was all-cause mortality, 
assessed by ascertaining vital status from the Dutch Central 
Bureau of Statistics (CBS) and date of death over a 5-year 
follow-up period (1 January 2013 to 31 December 2017) via 
data linkage to the GBA.

Exposure Assessment
We evaluated air pollution as a mixture of five compo-

nents: particulate matter with aerodynamic diameter less than 
2.5 μm (PM2.5), particulate matter with aerodynamic diameter 
less than 10 μm (PM10), a marker of diesel exhaust particulate 
(PM2.5 absorbance), nitrogen dioxide (NO2), and the oxidative 
potential estimated in PM2.5 by dithiothreitol.

Land-use regression models were fitted to estimate 
outdoor concentrations of air pollutants at the home address 
for each participant, combining monitoring of air pollution 
at different locations and predictor variables obtained from 
spatial data.19 Model development has been described in 
detail elsewhere.6 Briefly, we developed land-use regression 
models based upon annual average concentrations of PM2.5, 
PM2.5 absorbance, PM10 and NO2 measured between October 
2008 and April 2011 during three 14-day periods to account 
for seasonal variation. We conducted measurements in 20 
European study areas at 20–40 sites for PM and at 40–80 
sites per area for NO2. The annual average ambient pollutant 
concentrations were estimated at addresses of study partici-
pants at baseline using as predictor variables data on traffic 
intensity, household density, land use, and other study-area 
variables such as altitude and distance to the sea. The median 
model explained variance (R2) ranged from 71% (PM2.5) 
to 89% (PM2.5 absorbance).5,20 Oxidative potential concen-
tration was estimated based on a sampling period of three 
2-week PM measurements carried out at 40 sites spread 
over the Netherlands and Belgium between February 2009 
and February 2010 taking into account temporal variability. 
Land-use regression models for oxidative potential were esti-
mated at participants’ addresses at baseline and achieved an 
R2 value of 60%.21

Covariates
We selected potential confounders of the associations 

between air pollution and overall mortality a priori based on 
results from preliminary studies.5,6,20 These potential con-
founders included age, sex, body mass index [BMI, weight 
(kg)/height (m)2], cardiovascular disease (CVD) diagnosis, 
chronic obstructive pulmonary disease (COPD) diagnosis, 
cancer diagnosis, smoking status (never, former, current), 
highest level of education attained (low, intermediate, high), 
the estimated monthly household income of the neighborhood 
based on income data provided by CBS in 2012 (www.cbs.nl), 
and the normalized difference vegetation index which quanti-
fies vegetation density around each participant’s address based 
on Landsat 8 satellite images taken in 2008.22

www.cbs.nl
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Statistical Analysis
Descriptive statistics of the study population were eval-

uated overall and by levels of air pollution exposure. As the 
interest of this analysis was in pollutant mixtures, we identi-
fied profiles of pollutant mixture exposure through K-means 
cluster analysis. We evaluated the correlation between pollu-
tion components by calculating Spearman’s rank correlation 
coefficients.

We first evaluated the association between air pollution 
constituents and overall mortality with classical regression 
models, both independently (one model for each mixture com-
ponent) as well as mutually adjusting pollutants in the same 
statistical model. In the primary analysis, mutual adjustment 
was performed by considering the full set of components avail-
able in the LIFEWORK cohort. Overall mortality was evalu-
ated as a binary outcome (dead/alive) with logistic regression, 
estimating ORs for mortality risk, as well as with Poisson 
and Cox models to account for the duration of follow-up and 
for possible changes in event rates over time. A sensitivity 
analysis was conducted using multiple imputation by chained 
equation (MICE) to impute missing values in the exposures.23 
Age, sex, BMI, smoking, and CVD diagnosis were specified 
as predictors in the algorithm for each incomplete exposure 
variable. An additional sensitivity analysis was performed by 
excluding individuals with baseline CVD diagnosis (angina, 
heart attack, transient ischemic attack, stroke, other heart con-
ditions, defined according to ICD-9 and ICD-10), COPD, and 
cancer diagnosis. Last, we conducted a secondary analysis on 
overall mortality and a subset of components (NO2, PM2.5, 
PM10) representing a group of already regulated pollutants 
based on existing legislation.1

We used multiple regression models to identify con-
founders of the association to be evaluated in causal mod-
els. Specifically, we first evaluated a fully adjusted multiple 
regression model by adjusting for all covariates presented in 
the previous section and then removed those confounders that 
did not change any exposure coefficient by more than 10%. To 
assess the impact of multicollinearity of multiple regression 
estimates, we calculated variance inflation factors (VIFs).

To address issues of multicollinearity and to iden-
tify pollution constituents from clusters of correlated expo-
sures that should be included in the causal analysis, we used 
weighted quantile sum and boosted regression tree models. In 
brief, these methods are techniques used in mixture modeling 
to identify the relative contribution of several exposures in the 
overall effect between the mixture and the outcome of interest, 
while accounting for high correlation structures.24,25 While 
both correlation analysis and multivariable regression can 
inform on the levels of correlation, neither of them can detect 
which covariates within the mixture are driving the associa-
tions, and to what extent. A weighted quantile sum summarizes 
the mixtures with a single index estimated as a weighted linear 
combination of the exposures and allows identifying the rela-
tive contribution of each mixture constituent. This technique 

makes the assumptions of linear associations on the quantile 
scale and of unidirectionality (all exposures-outcome associa-
tions are either positive or negative), but directly provides an 
estimate of the relative percent contribution of each exposure 
within the mixture.24 Boosted regression tree, on the other 
hand, is a machine learning technique based on tree modeling 
that does not provide any estimate of exposures contribution 
but allows ranking their relative importance while relaxing 
assumptions of unidirectionality and linearity, strengthening 
the interpretation of the results from the weighted quantile 
sum. In addition, boosted regression tree provides a qualita-
tive assessment of interactions' importance (through the use 
of the measure called H-statistics), which can be used as an 
exploratory tool to detect two-way or higher-order interac-
tions that should be incorporated in subsequent analyses.25,26

To estimate the causal effects of pollutant mixture on 
overall mortality we used propensity score methods, building 
the propensity scores from the set of confounders identified in 
the regression modeling.27 Propensity score methods achieve 
balance across a set of confounders thus reducing the con-
founding effect in the exposure–outcome relation. To evaluate 
pollutants as continuous exposures, we used the generalized 
propensity scores extension, which handles single continuous 
exposures given a set of confounders,28,29 under the assump-
tion that exposures follow a normal distribution. We first used 
generalized propensity scores to generate weights for each 
continuous exposure separately.30 Next, to account for the 
mixture nature of air pollution, we used the multivariate gen-
eralized propensity score, a novel extension of the generalized 
propensity score for multiple simultaneous continuous expo-
sures implemented in the R package mvGPS.31 Multivariate 
generalized propensity score has the advantage over general-
ized propensity score of simultaneously estimating weights 
for multivariate continuous exposures that are constructed as 
the ratio of the marginal density of the exposures to the con-
ditional density.31 Specifically, the multivariate generalized 
propensity score generates stabilized inverse probability of 
treatment weights (IPTWs) assuming a multivariate normal 
distribution for the simultaneous exposures. These weights 
have been shown to balance confounders and provide unbi-
ased exposure–response estimates.32 To optimize propen-
sity score weights and avoid possible effects due to extreme 
weights, the procedure allows trimming both the upper and 
lower bounds of the weights’ distribution.33 We conducted 
the main analysis using the recommended weights threshold 
at the 99th percentile,31 and evaluated other thresholds (0.97, 
0.95) in sensitivity analyses. All analyses were conducted 
with the R statistical software, version 4.0.4. Computing code 
related to all analyses presented is publicly available at https://
github.com/andreabellavia/causalpm, also presenting different 
approaches to deal with categorical confounders, option that 
is not automatized in the current version of the mvGPS pack-
age (1.2.1) and requires additional coding. All exposures were 
evaluated as continuous variables and results indicate changes 

https://github.com/andreabellavia/causalpm
https://github.com/andreabellavia/causalpm
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TABLE 1. Baseline Characteristics of the LIFEWORK Participants and Estimated Annual Pollutant Exposuresa at Subject Recruitment, 
Overall and by Levels of Pollution Exposureb

 

Low Exposure Moderate Exposure High Exposure Overall

(N=34,018) (N=37,853) (N=15,011) (N=86,882)

No. of participants (%)     
 Amigo 22 15 10 17
 EPIC 9 16 28 15
 Nightingale 69 69 62 68
Age (years)     
 Mean (SD) 48.8 (11.6) 50.5 (12.9) 52.2 (14.3) 50.2 (12.7)
Sex (%)     
 Male 12 9 9 11
 Female 88 91 91 89
Highest level of education attainedc (%)    
 Low 11 14 18 14
 Intermediate 48 43 35 44
 High 41 43 47 42
 Missing 0.2 0.2 0.3 0.2
Smoking status (%)     
 Never 48 47 44 46
 Former 40 40 40 40
 Current 11 12 14 13
 Missing 0.6 1.0 1.7 1.0
Body mass index (kg/m2)     
 Mean (SD) 25.2 (4.16) 25.3 (4.30) 25.2 (4.41) 25.3 (4.26)
 Missing (%) 0.4 0.6 0.9 0.6
CVD diagnosis at baseline (%)     
 Negative 93 93 90 92
 Positive 7 7 10 8
COPD diagnosis at baseline (%)     
 Negative 98 97 96 97
 Positive 2 3 4 3
Cancer diagnosis at baseline (%)     
 Negative 98 97 95 97
 Positive 2 3 5 3
Monthly income estimated     
 Mean (SD) 2,590 (764) 2,800 (890) 2,870 (1,000) 2,730 (873)
 Missing (%) 5.1 3.4 3.3 4.0
Normalized difference vegetation index    
 Mean (SD) 0.571 (0.0844) 0.503 (0.0796) 0.448 (0.0864) 0.520 (0.0943)
 Missing (%) 2.6 1.2 0.9 1.7
NO2 (μg/m3)     
 Mean (SD) 17.7 (2.55) 24.9 (2.25) 33.7 (4.30) 23.6 (6.34)
PM2.5 (μg/m3)     
 Mean (SD) 16.3 (0.721) 16.7 (0.559) 17.0 (0.707) 16.6 (0.704)
PM2.5 absorbance (10−5 m−1)     
 Mean (SD) 1.09 (0.132) 1.29 (0.125) 1.57 (0.227) 1.26 (0.225)
PM10 (μg/m3)     
 Mean (SD) 24.1 (0.381) 24.7 (0.643) 26.4 (1.42) 24.8 (1.12)
Oxidative potential (nmol DTT/min/m3)     

 Mean (SD) 1.06 (0.208) 1.22 (0.165) 1.32 (0.119) 1.17 (0.202)

aAir pollution levels were estimated at baseline based on annual average concentrations measured between October 2008 and April 2011 (NO2, PM2.5, PM2.5 absorbance, PM10) and 
between February 2009 and February 2010 (Oxidative Potential).

bLow, medium, and high levels of exposures derived with cluster analysis.
cLow: primary school, lower vocational training or lower secondary education; intermediate: intermediate vocational education or intermediate/higher secondary education; high: 

higher vocational education or university degree.
dHousehold income was estimated based on participants’ baseline postal code. Each postal code was linked to income data from Statistics Netherlands for December 2012.
CVD, cardiovascular disease; COPD, chronic obstructive pulmonary disease; SD, standard deviation.
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per interquartile range width (IQRw) increase in mean air pol-
lution exposure.

RESULTS
Baseline characteristics of the study population, over-

all and by levels of air pollution exposures, are presented in 
Table  1. K-means clustering identified three groups as the 
optimal characterization of the mixture, with the clusters 
summarizing levels of low, moderate, and high exposure to 
air pollution. Individuals with higher levels of exposure were 
on average older, lived in areas with lower normalized differ-
ence vegetation index, and were more likely to be smokers. 
Figure presents the correlation structure between air pollu-
tion constituents at baseline, while eTable 1; http://links.lww.
com/EDE/B920 provides the distribution of each pollutant at 
baseline. All mixture components were highly positively cor-
related with each other.

During 5 years of follow-up, we observed 1071 deaths 
(1.2%). Results from logistic regression models are reported 
in Table 2 and eTable 2; http://links.lww.com/EDE/B920. Out 
of all potential confounders evaluated in fully adjusted mod-
els, only age, sex, BMI, smoking, and baseline CVD diagnosis 
met the criteria for confounding to be selected for inclusion in 
the final model (referred to, in tables, as minimally adjusted 
model). When mutually adjusting the full set of air pollution 
constituents in the same statistical model, both PM2.5 and 

PM10 were associated with higher odds of mortality (respec-
tively, OR=1.17, 95% CI: 0.99–1.37; OR=1.21, 95% CI: 
1.03–1.42), even though VIFs for these coefficients were rela-
tively high (Table 2). PM2.5 absorbance was associated with a 
reduction in the odds of mortality, but the extremely high VIF 
associated with this coefficient suggests that this result might 
be due to (multi)collinearity. Results from the multivariable 
logistic regression model using MICE to impute the missing 
exposures showed no discrepancies from findings on com-
plete cases (eTable 3; http://links.lww.com/EDE/B920). When 
mutually adjusting the models for a subset of air pollution 
constituents represented by NO2, PM2.5, and PM10, both PM2.5 
(OR=1.03, 95% CI: 0.94–1.14) and PM10 (OR=1.06, 95% 
CI: 0.95–1.17) showed a positive, albeit much weaker, asso-
ciation with overall mortality (eTable 4; http://links.lww.com/
EDE/B920). We observed negligible differences when exclud-
ing individuals with baseline CVD, and when using Poisson 
(data not shown) or Cox models (eTable 5; http://links.lww.
com/EDE/B920). We, therefore, chose to only present results 
from logistic regression, as this allows a direct comparison 
with the statistical methods we used in our study to explore 
causal relationships, for which time-to-event models are not 
currently available.

To evaluate the mixture of pollutants while accounting 
for the strong correlations, we estimated the relative contri-
bution of each exposure in the mixture–outcome association 

FIGURE. Spearman rank correlation coefficients and correlation plot of air pollution constituents at baseline (2008–2011). Darker 
colors and larger circles indicate higher positive correlation levels.

http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
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with boosted regression tree and weighted quantile sum mod-
els. In the boosted regression tree model, which provides a 
nonparametric estimation that accounts for nonlinearities and 
interactions, all measures of H-statistics were consistently 
low, indicating a negligible impact of interactions in the mix-
ture–outcome association (eFigure 1; http://links.lww.com/
EDE/B920), and confirmed that exposure–response relation-
ships were mostly linear and positive or null for all mixture 
components (data not shown). As such, weighted quantile 
sum assumptions were met, and this method could be used 
to provide an accurate estimate of the relative importance 
of the mixture components. Estimates of weighted quantile 
sum weights, presented in eFigure 2; http://links.lww.com/
EDE/B920, show a prominent role of PM2.5 in the associa-
tion, greatly surpassing the contribution of PM10 and other 
components of the mixture. Moreover, the negligible weight 
associated with PM2.5 absorbance indicates that the negative 
association observed in multiple regression for that variable 
is likely due to (multi)collinearity. The association between 
the overall mixture and mortality, estimated by the weighted 
quantile sum index, was negligible in our population (β=0.01, 
95% CI: −0.03 to 0.04) (eFigure 3; http://links.lww.com/EDE/
B920).

Based on results from multiple regression and mixture 
modeling, we built propensity score models using the minimal 
set of confounders (age, sex, BMI, smoking, CVD diagnosis), 
and all exposures were included in the models as continuous 
covariates, thus evaluating their linear effect on the outcome. 
Furthermore, based on results from boosted regression tree 
and weighted quantile sum models, we excluded PM2.5 absor-
bance from the analysis to limit the impact of multicollinear-
ity on the results.

Table  3 presents results from the univariate and mul-
tivariate generalized propensity score models, with the rec-
ommended weights trimming at 0.99. All exposures met the 
normality distribution assumption required by these tech-
niques. PM2.5 was associated with increased odds of mortal-
ity (OR=1.18, 95% CI: 1.08–1.29). PM10 was also associated 

with increased odds of mortality, even though the coefficient 
was attenuated (OR=1.02, 95% CI: 0.91–1.14) as compared to 
those from the multiple regression model. Results that consid-
ered alternative trimming are shown in eTable 6 (http://links.
lww.com/EDE/B920) and indicate no discrepancies with the 
main finding.

DISCUSSION
In this study, conducted on a large sample of individu-

als from the Dutch general population, we observed positive 
associations between air pollution mixtures and all-cause 
mortality, with PM2.5 being the main driver of the associa-
tions. Through the application of causal modeling approaches 
for environmental mixtures, we strengthened the causal inter-
pretation of these findings, observing a strong effect of PM2.5 
and a moderate effect of PM10.

Our findings are in line with results from previous stud-
ies,7,34,35 with the Netherlands being characterized by homo-
geneous geographic conditions due to its relatively small land 
extension and high population density compared to other geo-
graphic areas around the globe. In this regard, a recent system-
atic review supporting the derivation of updated guidelines by 
the World Health Organization (WHO) on PM exposure and 
mortality, highlighted the importance of considering the het-
erogeneity of study location and population characteristics, 
as well as level and composition of PM, among others, when 
interpreting and comparing results from different studies.36

The potential harmful effects of air pollution on overall 
mortality have been the primary focus of extensive research 
over the last decades.1–4 Associations have been repeatedly 
observed all over the world, and recent studies have also 
suggested that associations might follow linear relation-
ships where even low levels of pollution might be harmful 
to health.2,7,37 Nevertheless, several research gaps in air pol-
lution epidemiology remain to be addressed. First, air pollu-
tion is a complex exposure that should be characterized as a 
mixture, with different components and constituents possibly 

TABLE 2. Odds Ratios of Overall Mortality Per Interquartile 
Range Width Increase in Mean Air Pollution Exposure, 
Evaluated With a Multivariable Logistic Regression Model

 Multivariable Model With Minimal Adjustmenta  

Constituent OR 95% CI VIF

NO2 0.98 (0.82–1.18) 5.11

PM2.5 1.17 (0.99–1.37) 4.03

PM2.5 absorbance 0.74 (0.55–0.98) 18.60

PM10 1.21 (1.03–1.42) 7.22

Oxidative potential 1.07 (0.96–1.19) 1.58

aAge, sex, BMI, smoking, CVD diagnosis.
BMI, body mass index; CVD, cardiovascular disease; OR, odds ratio; CI, confidence 

interval; VIF, variance inflation factor.

TABLE 3. Odds Ratios of Overall Mortality Per Interquartile 
Range Width Increase in Mean Air Pollution Exposure, 
Evaluated With Univariate and Multivariate Generalized 
Propensity Scorea Modelsb

 GPS mvGPS

Constituent OR 95% CI OR 95% CI

NO2 1.10 (1.01–1.19) 1.13 (0.97–1.31)

PM2.5 1.11 (1.03–1.20) 1.18 (1.08–1.29)

PM10 1.08 (1.02–1.15) 1.02 (0.91–1.14)

Oxidative potential 1.09 (1.00–1.19) 0.97 (0.89–1.06)

aTrimming 0.99.
bPS based on age, sex, BMI, smoking, CVD diagnosis.
BMI, body mass index; CVD, cardiovascular disease; OR, odds ratio; CI, confidence 

interval; GPS, generalized propensity score; mvGPS, multivariate generalized propen-
sity score.

http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
http://links.lww.com/EDE/B920
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operating through either similar or different biologic pathways 
in the human body.38–43 Extensive work has been devoted to 
the development of high-resolution concentration surfaces 
of the different components and constituents of the complex 
ambient air pollution exposure.24–31 Epidemiologic studies, 
however, are mostly evaluating air pollution components one 
by one and switching the focus to air pollution as an envi-
ronmental mixture has been advocated.44 Second, to improve 
our understanding of the mechanisms through which air pollu-
tion operates and to allow the development of more stringent 
public health regulations and interventions, it is important to 
determine to which extent these associations reflect causal 
relationships.8 Methods to address causality in observational 
studies are widely available,45,46 and several reports have dis-
cussed the application of these techniques in air pollution epi-
demiology.13,14 It is also desirable that such causal modeling 
approaches will account for the complex nature of air pollu-
tion as a mixture.13,14

To the best of our knowledge, this study was one of the 
first attempts to assess the causal effects of a mixture of air pol-
lutants in a large population-based study. Our results confirm 
previous findings observed in this and other cohorts, showing 
a positive linear association between pollution components 
such as PM2.5 and PM10 and overall mortality. In addition, by 
jointly evaluating several components in the same statistical 
framework, we observed that PM2.5 seems to be the strongest 
predictor of overall mortality and that interactive mechanisms 
were not influential in our cohort. The possible mechanisms 
through which PM2.5 operates are increased systemic inflam-
mation and oxidative stress, increased blood pressure, and 
reduced lung function, thus resulting in a greater risk of car-
diovascular and respiratory morbidity.37 Results are consistent 
across the different methods applied, with the largest effect 
on overall mortality obtained for PM2.5 using the multivariate 
generalized propensity score. This method possibly provides, 
on theoretical grounds, more robust estimates compared to 
both the univariable and multivariable logistic regression, and 
the univariate generalized propensity score. However, due to 
the lack of studies that have previously applied this exten-
sion of the propensity score in epidemiologic settings, and 
therefore the inability to directly compare our findings with 
those obtained in other cohorts, this result must be interpreted 
with caution. The 2019 Integrated Science Assessment (ISA) 
released by US Environmental Protection Agency (EPA) rated 
the association between PM2.5 and natural-cause mortality as 
suggestive,47 contrary to PM10 which was already fully recog-
nized as harmful to human health. Our results, by distinguish-
ing the roles of PM10 and PM2.5, and showing the prominent 
role of the latter in our study population, provide relevant 
results that can inform future public health policies.

This study has several strengths. First, it is one of the 
first studies to evaluate the causal effects of air pollution while 
jointly evaluating several pollutants components as an envi-
ronmental mixture. Specifically, we used a recent extension of 

the generalized propensity score, the multivariate generalized 
propensity score approach, that, to our knowledge, has never 
been used before in environmental epidemiology. While mak-
ing the assumption that all evaluated exposures are normally 
distributed, the multivariate score improves on several aspects 
as compared with other approaches. First, the propensity score 
is a balancing score, which means that conditioning on pro-
pensity score via regression adjustment implies that individu-
als within the same strata of the propensity score should be 
identical in terms of their observable characteristics, regard-
less of their level of treatment.28,29 Thanks to the balancing 
property, the propensity score thus removes sources of poten-
tial confounding and returns valid estimates by balancing 
covariates to predict the probability of exposure.27 Second, the 
multivariate generalized propensity score approach has the 
ability of simultaneously estimating propensity score weights 
for each exposure, thus achieving superior balance compared 
to univariate alternatives. In addition, through the multivari-
ate score, it is possible to specify multiple sets of confound-
ers for each exposure of interest reflecting many real-world 
settings in which the confounders may actually differ across 
exposure variables. Finally, the option to trim extreme weights 
at a particular percentile and the wide number of metrics that 
can be used to select and compare different propensity score 
approaches, make the multivariate generalized propensity 
score a method well suited to get more robust estimates on 
the joint effect of multiple continuous exposures on health 
outcomes, confirming and possibly strengthening results 
obtained with more traditional methods. We recommend that 
future studies validate our results in other cohorts with this 
or alternative causal modeling techniques. Second, we used 
a pluralistic approach integrating several statistical methods 
for causal inference and environmental mixtures.46 To identify 
relevant predictors within the air pollution mixture we used 
two statistical methods, namely weighted quantile sum and 
boosted regression tree, that allow ranking the importance of 
exposures in the overall mixture–outcome association, thus 
informing which regression results might be biased due to the 
high correlation. In this study, multiple regression results were 
influenced by (multi)collinearity due to the high correlation 
structure, particularly PM2.5 absorbance which was shown to 
be mostly irrelevant in the mixture–outcome association once 
the high correlation was accounted for. Third, we used data 
from a large population of Dutch individuals with a prospec-
tive design, and a high-resolution assessment of air pollution 
components, all elements that further enhance the robustness 
of our results and the causal interpretation of these findings.

A limitation of this study is the relatively short duration 
of follow-up that did not allow us to thoroughly evaluate how 
the effects of air pollution may change over time. Future studies 
with longer follow-up should replicate these analyses and eval-
uate overall mortality as a time-to-event outcome for those sta-
tistical techniques where this extension is available. Moreover, 
no information was available on air pollution levels other than 
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those modeled at the participants’ home addresses, thus pre-
cluding the possibility to quantify the exposure in places where 
participants could have spent some of their time during the day 
or when moving from one place to another. Furthermore, infor-
mation on emigration time was not available for the majority 
of participants who had emigrated during the follow-up. As 
such, these individuals had to be excluded from the analysis. 
In addition, despite several sociodemographic covariates that 
were available and could be investigated as potential confound-
ers of the associations, we cannot exclude the presence of 
residual confounding due to variables that were not available 
in this study. Exposures were derived using land-use regression 
models, which might introduce more complexity due to the 
use of shared predictors that may lead to stronger correlations 
between exposures than those existing in the real world.48 In 
large cohorts, such as the one we considered in our study, it is 
usually difficult or impossible to directly measure the different 
pollutants for each participant due to logistics complexity and 
the high costs associated, and therefore it is common to rely 
on exposure modeling. This is also suggested by WHO which 
indicates that exposure modeling is a logical or empirical con-
struct that allows the estimation of an individual or population 
exposure parameters from available input data.49 Finally, in this 
first attempt to evaluate the causal effects of air pollution mix-
ture we only focused on five major components of air pollu-
tion that had been assessed in this cohort. Future studies within 
LIFEWORK should consider finer pollution characterization, 
once this is available, by integrating additional components into 
the models, such as ultrafine particles, black carbon, as well 
as PM elemental constituents. Also, future studies could fur-
ther expand analyses to include additional environmental risk 
factors (water pollution, noise, electromagnetic fields) and rel-
evant conditions, such as lung cancer or respiratory diseases, 
making use of the statistical methods we proposed in our study 
to account for complex interrelations between risk factors in 
real-life settings. These results should also advise quantita-
tive researchers to study and develop novel methods that could 
improve our understanding of the causal effects of complex 
mixtures of environmental pollutants.

In conclusion, this study strengthened the causal inter-
pretation of air pollution effects on mortality while also 
accounting for the complex nature of the exposure as an envi-
ronmental mixture. We encourage air pollution researchers 
to further study the causal effects of air pollution mixtures to 
continue improving our scientific knowledge on the relation-
ship between air pollution and health outcomes, and to facili-
tate governmental bodies to better target regulations thanks 
to the identification of the strongest contributor(s) to overall 
mortality from a complex mixture.
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