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Abstract: Although the overall survival of patients with dilated cardiomyopathy (DCM) has im-
proved significantly in the last decades, a non-negligible proportion of DCM patients still shows
an unfavorable prognosis. DCM patients not only need imaging techniques that are effective in
diagnosis, but also suitable for long-term follow-up with frequent re-evaluations. The exponential
growth of echocardiography’s technology and performance in recent years has resulted in improved
diagnostic accuracy, stratification, management and follow-up of patients with DCM. This review
summarizes some new developments in echocardiography and their promising applications in DCM.
Although nowadays cardiac magnetic resonance (CMR) remains the gold standard technique in DCM,
the echocardiographic advances and novelties proposed in the manuscript, if properly integrated
into clinical practice, could bring echocardiography closer to CMR in terms of accuracy and may
certify ultrasound as the technique of choice in the follow-up of DCM patients. The application in
DCM patients of novel echocardiographic techniques represents an interesting emergent research
area for scholars in the near future.

Keywords: dilated cardiomyopathy; echocardiography; echocardiographic advances; global longitu-
dinal strain; artificial intelligence; heart failure; ejection fraction; left ventricular remodeling

1. Introduction

The current definition of dilated cardiomyopathy (DCM) could appear relatively
simple; namely, a heart muscle disease characterized by left ventricular (LV) or biventricular
dilation and systolic dysfunction in the absence of pressure or volume overloads or coronary
artery disease sufficient to explain the dysfunction [1,2]. Actually, DCM is being used
as an ‘umbrella’ term describing the common pathway of different diseases and gene—
environment interactions [3,4]. Despite the overall survival of patients with DCM has
improved significantly in the last decades [5], a non-negligible proportion of DCM patients
still shows an unfavorable prognosis [6].

Echocardiography is crucial in the diagnosis, stratification, management and follow-
up of patients with DCM [7,8]. Nearly 70 years have passed since Inge Edler and Hellmuth
Hertz began using M-mode echocardiography as a diagnostic tool for cardiovascular
disease in 1953 [9]. Ever since, echocardiography has evolved from a simple M-mode
imaging technique to an extensive array of advanced technologies [10]. Moore’s Law
predicts that every two years the performances of technology will double while their cost
will fall by half [11]. Several promising echocardiography techniques, including artificial
intelligence (AI) applications, are now available for clinicians [12]. Although the implemen-
tation of these echocardiographic advances in daily clinical practice can be of great help
in the diagnosis and management of DCM, their diffusion is currently still very limited.
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For this reason, this review aims to offer a brief overview of some new developments
in echocardiography and their promising applications in DCM. The manuscript is struc-
tured in mini-sections that delve into each specific area of a comprehensive transthoracic
echocardiographic examination.

2. Left Ventricular Dimensions, Geometry and Systolic Function

Echocardiographic DCM diagnostic criteria traditionally consisted of the presence
of LV ejection fraction (EF) <45% and/or fractional shortening <25% and left ventricular
end diastolic dimension (LVEDD) >112% of predicted value corrected for age and body
surface area (BSA) [13]. Actually, the 2016 European Society of Cardiology (ESC) position
paper revised the definition of DCM and established that detecting a non-ischemic Left
ventricular ejection fraction (LVEF) <50% is sufficient to diagnose DCM [14], a clinical
entity that could include also non-dilated and arrhythmogenic forms.

The EF and fractional shortening are part of the standard echocardiographic param-
eters used to assess LV dimensions, geometry and systolic function, among which there
are also: dP/dT and cardiac output (all load dependent), tissue doppler mitral annulus
velocity and speckle tracking strain (less load dependent). EF is defined as stroke volume
(SV) indexed to EDV and is a pillar of clinical practice, even if is deeply influenced by
preload, afterload, heart rate and ventricular geometry. The biplane Simpson’s rule is gen-
erally recommended to calculate EF, although there are significant limitations: suboptimal
endocardial definition in up to 15% of patients, poor reproducibility of measurements and
inability to reflect regional LV function. A better description of LV mechanics derives from
a non-invasive evaluation of myocardial deformation, namely myocardial strain [15].

Global longitudinal strain (GLS) is a dimensionless variable and represents the percent
change in myocardial length between two points over the cardiac cycle. The measurements
of myocardial segments’ length change are performed by tracking the shift of myocardial
speckles via an algorithm [16]. Since the measures are done directly, the strain is less
dependent on ventricular loading conditions, compliance of myocardium and geometrical
components [17]. LV deformation through quantification of strain could be made by cardiac
magnetic resonance (CMR) tissue tagging or feature tracking approaches or more frequent
by tissue Doppler or speckle tracking echocardiography (STE). Tissue displacement is used
to calculate myocardial deformation, a parameter shown to provide unique information
on regional and global ventricular function, highly reducing inter and intra-observer vari-
ability [18]. Additionally, GLS is a more powerful predictor of prognosis and outcomes in
patients with heart failure (HF) with reduced ejection fraction (HFrEF) and DCM [19,20]
(both ischemic and non-ischemic) and represents a novel parameter for a better selection
of patients for implantable cardiac defibrillator (ICD) implantation as a more accurate
predictor of ventricular arrhythmias [21]. LV GLS correlates well with invasive hemody-
namic parameters [22,23] and independently predict LV reversed remodeling (discussed
further below) in patients with DCM: patients with higher baseline GLS presented better
LV functional recovery leading to less adverse clinical events [24].

The great improvement in DCM prognosis in the last decades [25] seems to be related
to the left ventricular reverse remodeling (LVRR): the decrease in dimensions and the
normalization of LV shape associated with a significant improvement of pump function.
The importance of an accurate initial diagnosis goes hand in hand with continuous, in-
dividualized follow-up with quantitative echocardiographic assessment. Since patients
affected by non-ischemic DCM who demonstrate left ventricular contractile reserve have
lower mortality, cardiac events/hospitalizations [26] and more frequent LVRR [27], the
individualized-evaluation of contractile reserve with stress-echocardiography offers an
important prognostic indicator in the management of these patients.

More recent refinements in LV echocardiographic characterization could be found in
the following echo parameters and techniques:

• Three-dimensional (3D) echocardiography. This technique improves reproducibility
of LV volumes with an accuracy similar to CMR [28]. It is an ideal tool for measur-
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ing LV volumes because no geometric assumptions about shape are needed and is
unaffected by foreshortening of the apex. Conversely, it is characterized by lower
temporal resolution, high dependance on image quality and there are only a few data
available on reference values. Real-time 3D echocardiographic systems have been
developed [29–31]; these systems utilize fully samples matrix array transducers capa-
ble of acquiring volumetric data. 3D echocardiography (Figure 1) is more reproducible
and superior to 2D in the accuracy of LV volumes and EF measurements [32], however,
despite clear recommendations in the guidelines, its use is still limited probably due
to the long learning curve [33]. Moreover, 3D-STE has been proven a reliable tool for
the evaluation of LV systolic function in patients with non-ischemic DCM with a good
interobserver, intraobserver and test-retest reliability [34] and a good correlation with
data obtained from CMR [35].

• Non-invasive left ventricular pressure-strain loop (PSL) and global work index (GWI).
Myocardial work (MW) is a new parameter that considers both myocardial deforma-
tion and after-load. It is calculated combining LV strain and non-invasively estimated
LV pressure curves. The area within the PSL represent an index of MW, and the
following parameters can be determined [36]: GWI, as the total work within the PSL
area from mitral closure to opening; constructive MW, as the work performed by LV
responsible for LV systolic ejection; wasted MW work, as work that does not contribute
to ejection; MW efficiency, as constructive MW/constructive MW plus wasted MW.
These equations permit to better understand the relationships between LV remodel-
ing and increased after-load under different loading conditions. Moreover GWI and
constructive work (GCW) are powerful and independent predictors of outcome in
patients with DCM and advanced HFrEF [37]. GCW better predicts LV fibrosis than
GLS, and could represent a surrogate marker for detection of fibrosis in addition to
CMR [38].

• Reverse remodeling index. Although DCM is classically defined as above, conven-
tional geometric parameters used have not been demonstrated to have a prognostic
value [39–42]. Remodeling index is a novel geometric criterion calculated as the cubic
root of LVEDV divided by mean LV wall thickness. It was shown to be an equivalent in
evaluating ventricular maladaptive remodeling [43] in hypertensive patients. Xu et al.
recently investigated the value of this new marker in DCM cohorts as an independent
predictor of all-cause mortality, heart transplantation and HFrEF readmissions [44].

• Post-systolic shortening (PSS) and early systolic lengthening (ESL). Objective measures
of cardiac function are supplied by PSS and ESL [45], both parameters reflecting the
paradoxical deformation of the myocardium. During systolic ejection approximately
one third of segments display physiologic PSS and the same applies to ESL [46,47].
These indices are quantified by invasive and non-invasive methods, like strain-rate,
tissue Doppler imaging, speckle tracking. Pathological deformation typically occurs
during acute ischemia, and it is a predictor of recovery and ischemic memory, and,
recently, the ability of PSS and ESL to predict adverse cardiac outcomes has been
demonstrated in a wide range of special population [48–52].

• Mitral valve complex (MVC) tissue longitudinal elongation. It is clear that LV spheric-
ity is associated with impaired LVEF, functional mitral regurgitation (MR) and poor
prognosis [53,54] in DCM. LV shape becomes spherical and myocardial tissue elon-
gates transversally [55]. The dynamic nature of MVC is quite different from my-
ocardium [56] and so it may not be affected while myocardium spherically remodels.
Hence, MVC may potentially deforms regionally and not uniformly leading to limited
elongation of LV base and asymmetrically less elongation of the MVC. LV sphericity
can be calculated via 2D echocardiography by the ratio of transverse cavity dimension
to the longitudinal diameter at end diastole, so a higher sphericity index represents
greater LV sphericity: therefore, remodeling is predominant at bases and not as clear
at the apex leading to new promising diagnostic tools and interventions [57].
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• Artificial intelligence and machine learning (ML). AI is historically defined as the abil-
ity of computer systems to perform tasks that would usually require human levels of
intelligence [58]. AI has recently become a research hotspot in echocardiography [59],
although this is yet not so advanced and in 1978 was already used to estimate the
waveform of anterior mitral leaflet via M-mode. The progress of new technologies,
such as deep learning and neural networks, has dramatically boosted the strength
of echocardiography. Advantages of using ML models includes automated analysis,
reducing observer variability, providing more consistent and reproducible data, allow-
ing big data analysis, predicting future data, helping in therapeutic decision making,
and nevertheless it is time and cost saving, reducing unnecessary further investiga-
tions [60]. Specifically, LV evaluation can be derived from algorithms built mimicking
what a trained sonographer can do [61,62]. The same applies to GLS analysis: AI
technique can help recognize standard views, perform timing of cardiac events, trace
the myocardium, achieve motion estimation and measure GLS in <15 s [63]. In the
context of DCM, a vector machine classifier was addressed to study the ventricular
wall changes to discriminate between normal and dilated pattern [64]. The inclu-
sion of ML models in echocardiography appears very promising, as they are able to
precisely identify various echocardiographic features and predict outcomes, without
the limitations related to human interpretation: a novel multicenter research shown
that AI-based LV analysis were predictor of mortality [65]. There are still doubts
about insufficient standardization of echocardiography, poor robustness and scant
generalization of the models in clinical application. The continue advancement of
AI technology will gradually remodel the forthcoming of echocardiography to grant
practical auxiliary assistance for cardiologists [66].
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Figure 1. LVEF obtained with 3D echocardiography and GLS measurements in a patient with DCM.
In the 3D reconstruction different colors indicates different LV segment. In the Bull’s eye display of
GLS intense shades of red indicate optimal GLS values (−20%), while less intense shades, white color
and different intensities of blue indicate sub-optimal and pathological GLS values (+20%). EDV =
end-diastolic volume; ESV = end-systolic volume; EF = ejection fraction; SV = stroke volume, HR =
heart rate, GLS = global longitudinal strain; DCM = dilated cardiomyopathies.

Table 1 shows a comparison between Standard and Emerging echocardiographic
techniques to assess left ventricular dimensions, geometry and systolic function in di-
lated cardiomyopathy.
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Table 1. Comparison between Standard and Emerging echocardiographic techniques to assess left ventricular dimensions, geometry and systolic function in dilated cardiomyopathy.

Assessing Left Ventricular Dimensions, Geometry and Systolic Function
Standard Echocardiographic Techniques Emerging Echocardiographic Techniques

Technique Name and
Related Parameters Limitations New Recent Findings Technique Name and

Related Parameters Potential Benefits Current Key Studies
in DCM

2D Transthoracic
Echocardiography

Conditioned by
foreshortening of apex
Based on geometrical
assumptions;
Risk of endocardial dropout;
Conditioned by
shape distortions.

Corrects for shape distortions;
Less geometrical assumptions
compared with linear
dimensions [8].

Non-invasive LV
pressure-strain loop

and GWI

Powerful and independent
predictor of outcome;
Deepens the relationships
between LV remodeling
and increased after-load;
Better predicts LV fibrosis;
Useful to assess
therapeutic response.

Prospective Study [36]

3D Transthoracic
Echocardiography

Lower temporal resolution;
Lacking data on
normal values;
Image-quality dependent.

No geometrical assumption
Unaffected by foreshortening
More accurate and reproducible
compared to other
imaging modalities
Predictive of CRT response [32].

Reverse
remodeling index

It is an independent
predictor of all-cause
mortality and heart
transplantation

Prospective Study [44]

Post-systolic
shortening and Early
systolic lengthening

It can predict adverse
cardiac outcomes. Retrospective Study [48]

GLS
Lacking set of normal values;
High endor-dependent.

Angle independent
High prognostic value
Predict major arrhythmic events
independently from EF [22].

MVC tissue
longitudinal
elongation

It can predict LV
remodeling sphericity
leading to new diagnostic
tools.

Retrospective Study [57]

Artificial intelligence

Reduce observer
variability, providing more
consistent and
reproducible data;
Allow big data analysis,
predicting future data;
Time and cost saving.

Retrospective Study [63]

DCM = dilated cardiomyopathy; PW = Pulsed wave; LV = left ventricle; 2D = Two dimensions; 3D = three dimensions; CRT = cardiac resynchronization therapy; EF = ejection fraction; GWI = global work index;
MVC = mitral valve complex.
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3. Left Ventricular Diastolic Function

LV diastolic function plays an important role in determining LV filling and stroke
volume in DCM. Diastolic dysfunction is associated with worse outcomes, including total
mortality and hospitalizations due to HF [67,68]. The gold standard for the evaluation of
diastolic dysfunction, broadly defined as impaired LV relaxation and increased myocardial
stiffness, is invasive left heart catheterization [69]. However, echocardiography, due to
the versatility and the noninvasive nature, is today the preferred method to assess LV
diastolic function. The echocardiographic assessment of diastolic function, together with
left/right ventricular involvement, left atrial (LA) enlargement and mitral regurgitation,
improves the prognostic stratification in DCM and helps predict LVRR [2]. The current
American Society of Echocardiography/European Association of Cardiovascular Imaging
2016 guidelines are based on two assumptions: (1) none of the indices should be used in
isolation; (2) the diastolic function evaluation of patients with reduced LVEF follows a
different approach [70]. The guidelines suggest the application of two algorithms, one to
screen for the presence of diastolic dysfunction and the other to grade diastolic dysfunction
if it is found to exist. The first algorithm relies on four parameters: annular e’ velocity
(septal e’ < 7cm/s, lateral e’ < 10 cm/s), average E/e’ ratio > 14, LA maximum volume index
> 34 mL/m2, and peak tricuspid regurgitation (TR) velocity > 2.8 m/s. However, diastolic
function can be determined only when more than half of these parameters are concordant.
Between 11% and 22% of scans are labeled indeterminate according to real-world clinical
data [68,71,72].

The application of bidimensional STE, mainly used for the objective quantification
of systolic myocardial deformation, has been recently studied also for the evaluation of
diastolic function. New echo-parameters have been found to correlate well with LV filling
pressure; this could help in the “grey-zone” when diastolic function is indeterminate. LV
global longitudinal diastolic strain (Ds) rate (DSr) measurements during the isovolumic
relaxation period and during early diastole by STE are the two variables that best correlate
with the time constant of LV relaxation (t) [73]. Dokainish [74] showed that 2D–derived
global Ds and DSr (during peak trans-mitral filling) correlated well with invasively mea-
sured LV diastolic function. Moreover, E/Ds was a better predictor of LV filling pressure
than E/E’: global Ds may provide a more complete reflection of overall LV diastolic func-
tion than E’ velocity at the mitral annuli due to its angle-independency. These novel
parameters have been found to predict outcomes in several conditions [75,76], but technical
challenges and the variability in strain rate measurements due to the available software
used for analysis have limited their ordinary application. The STE has been implemented
also for the LA evaluation. Studies have shown that LA myocardial strain and strain
rate play important role in estimating cavity pressure, showing an inverse correlation
with pulmonary capillary wedge pressure (PCWP) [77,78], even in DCM [79]. A recently
meta-analysis showed that a peak atrial longitudinal strain (PALS, measured at the end
of reservoir phase) <19% is a very accurate parameter for estimating raised PCWP (above
15 mmHg) [80]. Such measurement is easy to obtain except for patients with marked LA
enlargement and LA areas with echo dropout. PALS results to be particularly reduced in
patients with idiopathic compared to ischemic DCM and closely associated with functional
capacity during exercise [81].

More recently, assessment of LV torsion using 2D STE has been proposed as a novel
marker of LV relaxation. LV untwisting, the rapid reversal of rotation during early diastole,
represents the rapid release of LV restoring forces and should be delayed and reduced in
magnitude in patients with diastolic dysfunction. However, literature shows conflicting
results regarding its usefulness for detecting diastolic dysfunction [82–84]. These conflicting
results are probably related to the heterogeneity in populations and differences in cut-off
used, so more studies are required [85].

Finally, a novel technique to evaluate diastolic function comes from AI. ML is a
powerful tool able to process large datasets, like echocardiographic parameters of diastolic
function, combined with detailed clinical and demographic features [86]. While E/A ratio
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has the limitation of a well-known U-shaped relationship with LV filling pressure, ML
is particularly well-suited to detect and describe non-linear relationships [87], which is
pertinent to diastolic assessment. ML has a proven incremental diagnostic value when
compared to clinical diagnosis of HF with preserved EF [88,89]. This method was also
applied to overcome limitations of current grading of diastolic disfunction. Lancaster
et al. [90] found two clusters of grading, which proved this algorithm to be better in
predicting mortality but not rehospitalizations. Even if ML can increase the accuracy of
disease diagnosis and introduce a new classification of diastolic disfunction improving
its prognostic ability, many limitations are still present. First of all, a large number and
high-quality structured datasets are necessary to reflect real life practice [91]. Moreover,
validation with independent external datasets for the generalization of the findings are still
lacking [92].

Table 2 shows a comparison between Standard and Emerging echocardiographic
techniques to assess diastolic function in dilated cardiomyopathy.
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Table 2. Comparison between Standard and Emerging echocardiographic techniques to assess diastolic function in dilated cardiomyopathy.

Diastolic Function Assessment
Standard Echocardiographic Techniques Emerging Echocardiographic Techniques

Technique Name and
Related Parameters Limitations New Recent Findings Technique Name and

Related Parameters Potential Benefits Current Key Studies
in DCM

PW Doppler
(E/A ratio)

U-shaped relation with LV
diastolic function;
Preload dependent.

Easy to obtain and interpret
in most cases;
Strong predictor of mortality
in DCM, independently from
EF and age.

Ventricular 2D-Speckle
Tracking
(Ds, DSr)

Better predictor of LV
filling pressure;
SRe: predictor of response to
therapy in DCM.

Prospective Study [77]

Tissue Doppler Imaging
(E/E’)

Highly angle dependent;
Presence of a grey zone.

Preload independent;
Correlation with heart
catheterization Tau;
Applicable in several
diseases [70].

Atrial 2D- Speckle Tracking

Easy to perform; possibility
of off-line processing;
Practical for serial follow-up;
Angle independent;
PALS associated with
functional capacity during
exercise in DCM.

Prospective Study [88]

2D echocardiography
(LAVi)

Elevated volume index in
several other conditions: AF,
atrial flutter, mitral valve
diseases, high-output states
(e.g., anemia).

Efficiently reflects cumulative
effects of LV filling
pressure [68].

Artificial Intelligence and
Machine Learning

Improves diagnostic accuracy,
reducing indeterminate
classification Enhances
prognostication Opens to
novel parameters.

Retrospective Study [88]

DCM = dilated cardiomyopathy; PW = Pulsed wave; LV = left ventricle; EF = ejection fraction; 2D = Two dimensions; AF = atrial fibrillation; Ds = diastolic strain; DSr = diastolic strain rate.
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4. Right Ventricular Dilatation and Disfunction

Right ventricle (RV) has been considered for many years the “forgotten chamber”.
However, recent scientific literature highlighted the potential impact of right ventricular
function on outcome of patients with DCM [93,94]. Assessing the RV function is difficult
because of its complex anatomy and wall motion. Nowadays, CMR represents the gold
standard for the evaluation of RV function and dimensions. However, CMR has limited
availability and cannot be performed in specific patients (e.g., arrhythmic, claustrophobic
and unstable patients). Therefore, echocardiography still plays a pivotal role in daily
clinical-practice. The most used 2D echocardiographic parameters for the evaluation of RV
function are tricuspid annular place systolic excursion (TAPSE), S’, fractional area change
(FAC) and right ventricular index of myocardial performance (RIMP). TAPSE measured
using M-mode directly measures the displacement of the lateral annulus of the tricuspid
valve during the cardiac cycle. It is broadly used due to its facility, but it is influenced by the
translational motion of the heart and by regional wall-motion abnormalities. Nevertheless,
many authors have described its prognostic value in patients with DCM [95,96], even if
inferior compared to FAC. Indeed, RV-FAC obtained by echocardiography has been shown
to strongly correlate with CMR [97]. However, the evaluation of this latter parameter is
challenging in case of suboptimal image quality. Another easy-echo parameter is tissue
doppler imaging (TDI)-derived S’-wave velocity, which correlates well with other measures
of global RV systolic function, but it’s main limitation is to be highly angle-dependent [98].
RIMP (also known as Tei index) is an index of global RV performance with undoubted
prognostic value that can be calculated using either TDI velocity of the lateral tricuspid
annulus or pulsed wave spectral Doppler ensuring that nonconsecutive beats have similar
RR intervals [33,95].

A simple new parameter is the RV systolic to diastolic duration ratio (S/D ratio),
assessed by continuous Doppler imaging using the TR envelope to calculate the durations
of RV systole and diastole. Boqing Xu et al. [99] showed that an RV S/D ratio > 1.2 was
significantly associated with an increased one-year cardiac event rate in patients with
advanced HF and DCM. However, a possible incremental prognostic value over clinical
and routine echocardiographic parameters must be verified.

Strain imaging has been initially used to evaluate global LV function, but it is also
able to provide a non-geometric approach to RV assessment. Recently 2D strain imaging
using STE has been explored and RV global longitudinal strain (RVGLS) and global longi-
tudinal strain rate (RVGLSR) have been shown to correlate well with RVEF measured by
CMR [100]. RV strain derived from 2D STE detects subtle myocardial abnormalities and
is only relatively angle- and load-independent [101]. STE could allow the reclassification
from normal RV function (based on traditional parameters) to impaired RV function [102].
Moreover, RV strain has an important prognostic value in patients with HFrEF [103,104]
and a better mortality prediction in HFrEF than conventional echocardiographic param-
eters, CMR-derived RVEF and CMR-derived RV strain [105]. Ishiwata et al. [106] found
that FAC, TAPSE, RVLS (RV free-wall longitudinal strain) were independent predictors
for primary outcome (composite of LV assist device implantation and all-cause death) and
only the combined evaluation of FAC and RVGLS improved risk stratification in patients
with DCM [107]. However, the current echocardiographic guidelines don’t recommend
any definite reference range for either global or regional RV strain or strain rate due to the
lack of validated data from large studies involving multivendor equipment [33].

The 2D echo techniques are only surrogates for the true RV volume, due to its crescent
shaped. Instead, 3D echo evaluation is independent of the RV’s exact shape and does not
rely on assumptions about the total structure. Indeed, 3D echo RV volumetric measure-
ments correlate well with CMR measurements [108,109]. Vîjîiac et al. [110] showed that 3D
RVEF <43.4% was the only independent predictor of adverse events in patients with DCM,
compared with traditional 2D parameters.

Moreover, the recovery of RV function under therapy is frequent and can already be
observed at 6 months. It precedes LVRR and is emerging as an early therapeutic target and
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an independent prognostic predictor [111]. Echocardiography has significantly improved
in the last decade and, with the exponential technology advances, it may prove a primary
modality to evaluate the RV in DCM, especially during the follow-up.

Table 3 shows a comparison between Standard and Emerging echocardiographic
techniques to evaluate right ventricular disfunction in dilated cardiomyopathy.
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Table 3. Comparison between Standard and Emerging echocardiographic techniques to evaluate right ventricular disfunction in dilated cardiomyopathy.

Right Ventricular Disfunction Evaluation
Standard Echocardiographic Techniques Emerging Echocardiographic Techniques

Technique Name and
Related Parameters Limitations New Recent Findings Technique Name and

Related Parameters Potential Benefits Current Key Studies
in DCM

Fractional Area Change
(FAC)

Challenging in case of
suboptimal image quality of
RV free wall;
Only acceptable
inter-observer reproducibility;
Neglects the contribution of
RV outflow tract.

RV-FAC provide better
prognostic information than
TAPSE or S’ in DCM and has
been shown to strongly
correlate with CMR [97].

RV S/D ratio at CW Doppler
Easy to perform;
Prognostic value in advanced
HF with DCM.

Prospective Study [99]

TAPSE
Angle-dependent;
Influenced by regional
wall-motion abnormalities.

It is an accurate marker of RV
dysfunction in pediatric
patients with DCM [107].

2D RV Speckle tracking

Angle and load-independent;
Good correlation with RVEF
at CMR;
Better mortality predictor
than other echocardiographic
or CMR-parameters.

Prospective Study [105]
Retrospective Study [106]

Tissue Doppler Imaging
(S’)

Angle-dependent;
Not representative of RV
global function after
thoracotomy, pulmonary
thromboendarterectomy or
heart transplantation.

S’ combined with increased
plasma BNP additively
predict adverse cardiac
outcomes in DCM [98].

3D echocardiography

Includes RV outflow tract;
correlates well with EF
by CMR;
Independent prognostic
value in DCM;
Practical for serial follow-up.

Prospective Study [110]

DCM = dilated cardiomyopathy; TAPSE = tricuspid annular plane excursion; CW = Continuous wave; RV = right ventricle; 2D = Two dimensions; 3D = Three dimensions; EF = ejection; CMR = cardiac
magnetic resonance.



J. Clin. Med. 2021, 10, 5518 12 of 29

5. Left Ventricular Dyssynchrony (LVD) and Left Ventricular Mechanical Dispersion

LV contraction is the result of its coordinated mechanical activation following the
propagation of the electrical impulse through the specialized conducting system. LVD can
be defined as a significant delay of contraction between the different segments. It may or
may not be secondary to electrical conduction tissue disturbance [112].

Asynchronous LV contraction has been hypothesized to play a key role in the like-
lihood of response to cardiac resynchronization therapy (CRT), even more important
than QRS interval duration, especially in patients with DCM [113]. Comparison studies
between echocardiographic techniques for estimating LVD and response to CRT have,
however, returned conflicting results, to the point that the current guidelines still neglect
this parameter in the decision-making algorithm for applying this therapy [114,115]. It is
desirable that future studies address the identification of echocardiographic parameters
not only capable of adequately measuring LVD but also of properly predicting outcomes
after CRT. Many echocardiographic indices are used to evaluate LVD. The comparison of
two opposite segments (generally the inferior septum and the lateral wall or the anterior
septum and the posterior wall) and the evaluation of a single myocardial wall by M-mode
echocardiography are the simplest [116,117].

TDI is one of the most used technique. Limitations of TDI are its angle-dependence,
its being prone to noise and artifacts and the inability to distinguish between active and
passive movements. When compared with more recent and technically complex methods
such as STE longitudinal strain, TDI has showed better predictive value for chronic reverse
remodeling in patients with LVD undergoing CRT [118]. The application of CMR tagging
with longitudinal strain analysis of the LV myocardium showed how the correct evaluation
of dyssynchrony requires the integration of the motion of the non-longitudinal (circumfer-
ential) fibers, which happens indirectly with the TDI evaluation [119]. Besides, information
on LV dyssynchrony deriving from TDI proved to be comparable to that obtained with
velocity-encoded cardiac CMR [120].

Apical transverse motion (ATM), a TDI-derived parameter defined as the apex motion
perpendicular to the LV long-axis, quantifies the phenomenon of apical rocking as an
integrative surrogate of both temporal and functional inhomogeneities within the LV. ATM
has proven its superiority over conventional evaluation [121] and was closely associated
with radial dyssynchrony measured by STE in a study of 35 patients with DCM [122].

Three-dimensional (3D) echocardiography, evaluating data on all the three basic
components of LV function (longitudinal, radial and circumferential timing of all the
myocardial segments), could accurately assess LVD. Nevertheless, 3D echocardiography
suffers from the disadvantages associated with semi-automatic measurement and limited
spatial resolution. Many studies have shown that 3D echocardiography is superior to TDI
in assessing LV reverse remodeling and predicting response to CRT in DCM [123,124].
A combined approach of 2D and 3D techniques has shown incremental value for the
prediction of LV reverse remodeling over use of only one technique [125].

STE has shown, through a more accurate analysis of radial dyssynchrony, a high
sensitivity in identifying long-term responses to CRT [126]. It measures strain as active
wall thickening which reflects true regional mechanics, whereas M-mode, TDI and 3D
echocardiography volume displacement are affected by translation and tethering. STE,
however, is dependent on frame rate, as well as on image resolution and noise and may
oversimplify the complexity of LVD. A more advanced method, the 3D STE, merges the
advantages of STE and 3D echocardiography and allows the coupling of the 3D area strain
with both the 3D longitudinal and circumferential strain, which is more sensitive to changes
in myocardial function. The main limitation is the relatively slow volume rate which may
limit analysis of rapid events such as isovolumic contraction and relaxation phases [127].

A relatively recently analyzed echocardiographic parameter of mechanical dispersion
as a possible marker of response to CRT is the systolic aortic root motion (SARM). It is a
measure of the displacement of the aortic root during the cardiac cycle and is obtained
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through M-mode echocardiography. It has been shown to be able to predict non-response
to CRT also in DCM patients [128].

Several attempts have been made to overcome the limitations inherent the methods
previously described. One of them uses ML to combine different echocardiographic
data, LVD parameters (ATM and SPE indices) and the duration of the QRS interval to
try to predict the likelihood of LV reverse remodeling after CRT. It has been studied in
323 patients with heart failure (both ischemic and non-ischemic DCM) and it has been
shown to improve the predicting value of standard imaging in the response to CRT [129].
Furthermore, AI has been used to characterize CRT responder profiles through clustering
analysis, based on clinical and echocardiographic preimplantation data and quantitative
analysis of longitudinal strain curves [130].

Table 4 shows a comparison between Standard and Emerging echocardiographic
techniques to assess left ventricular dyssynchrony in dilated cardiomyopathy.
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Table 4. Comparison between Standard and Emerging echocardiographic techniques to assess left ventricular dyssynchrony in dilated cardiomyopathy.

Left Ventricular Dyssynchrony Assessment
Standard Echocardiographic Techniques Emerging Echocardiographic Techniques

Technique Name and
Related Parameters Limitations New Recent Findings Technique Name and

Related Parameters Potential Benefits Current Key Studies in DCM

Standard 2D and M-Mode
echocardiographic detection

of LVD

Lack of correlation with CMR;
Modest specificity and sensitivity;
Unable to analyse the various
components of the cardiac
contraction movement;
Conditioned by translation
and tethering effects.

Time differences between early
septal and delayed
displacement of posterolateral
wall on M-mode images
improve the predictive ability
for CRT responses [117].

Apical Trasverse Motion by
Tissue Doppler Imaging

Proved superior over
conventional techniques to
define LVD;
Precise assessment of
radial dyssynchrony.

Cross-Sectional Study [122]

3D Echocardiography

Good ability in identifying
mechanical delays in
myocardial walls;
Possibility of obtaining data on
longitudinal, radial and
circumferential timing of the
myocardial segments.

Prospective Study [123]

Tissue Doppler Imaging

Extensively angle-dependent;
Prone to noise and artifacts;
Inability to distinguish
between active and
passive movements.

Good correlation with
velocity-encoded cardiac CMR;
Good predictive value for
LVRR in patients undergoing
CRT [118].

3D GLS Speckle Tracking

Reflect true regional mechanics
Allows the coupling of 3D area
strain with both 3D
longitudinal and
circumferential strain;
More sensitive to changes in
myocardial function.

Prospective Study [127]

Systolic Aortic Root Motion

Easily obtained by M-Mode
echocardiography;
Good ability to predict
non-response to CRT.

Retrospective Study [128]

2D GLS Speckle Tracking

Angle-dependent;
Dependent on frame rate,
image resolution and noise;
Risk of oversimplifying the
complexity of LVD.

High sensitivity in identifying
long-term responses to CRT [126]. AI technology

Combines LVD
echocardiographic,
electrocardiographic and
clinical parameters to improve
the predicting value of
imaging approaches for the
response to CRT.

Retrospective Study [130]

DCM = dilated cardiomyopathy; LVD = left ventricular dyssynchrony; GLS = global longitudinal strain; CRT = cardiac resinchronization therapy; LVRR = left ventricle reverse remodeling; 2D = Two dimensions;
3D = Three dimensions; CMR = cardiac magnetic resonance.
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6. Secondary Mitral and Tricuspid Regurgitation

Secondary or functional MR develops in absence of structural anomalies (although
minor leaflet thickening and annular calcification can be present) of the mitral valve. It is a
disease of the atrium or the ventricle due to an imbalance between the tension acting on
the mitral leaflets and the closing forces generated by the LV. Adverse LV remodeling leads
to the apically displacement, tethering and restriction in mobility of the leaflets resulting
in incomplete mitral valve closure [131,132]. In patients with DCM both leaflets exhibit a
reduced systolic motion leading to incomplete coaptation.

Two-dimensional (2D) transthoracic echocardiography (TTE) and trans-esophageal
echocardiography (TOE) supported by color-flow Doppler are the core methods used to
analyze MR. The echocardiographic criteria to define the severity of MR only mildly differ
between primary and secondary MR. Qualitative parameters include the presence of severe
tenting and poor leaflet coaptation (these signs are specific, but their absence does not
exclude severe regurgitation [133]), a large central jet (>50% of LA dimension) or an eccen-
tric jet reaching the posterior wall [134] and a holosystolic dense or triangular continuous
wave Doppler jet [135]. The measurement of the vena contracta, the narrowest portion of
the regurgitant flow at or immediately below the regurgitant orifice, is a semiquantitative
index and in secondary MR appears to be rather elongated along the mitral coaptation
line and non-circular [136]. Other semiquantitative parameters are systolic flow reversal
in the pulmonary veins, an E-wave dominant at the pulse-wave Doppler of the mitral
inflow and the mitral to aortic time-velocity integral ratio >1.4 [137]. Effective regurgitant
orifice area and regurgitant volume give additional information, with lower thresholds in
secondary MR [138]. In the end, LV and/or LA dilatation argue in favor of the severity of
the valve defect.

Three dimensional (3D) TTE and TOE allow a more precise prediction of regurgitation
severity based on a comprehensive evaluation of valve morphology and leaflet coaptation,
an accurate quantification of LV dimensions, a detailed geometry of vena contracta area
and effective regurgitant orifice area and an automated quantitation of flow and regurgitant
volume by 3D color-flow Doppler [139,140]. Three dimensional (3D) echocardiography
has been recently applied to automatic quantify leaflet tethering by measuring the teth-
ering distance from papillary muscle tip to the mitral annulus and measuring the tenting
volume [141].

2D techniques were able to correctly quantified MR severity in less than two-thirds of
cases while 3D technique showed higher accuracy in identifying severe MR compared to
cardiac CMR [142]. Nevertheless, although the numerous improvements in recent years,
the lower spatial and temporal resolution of 3D TTE affects its evaluation of valvular
structures [133].

Secondary TR is the most common cause of tricuspid insufficiency caused by dilation
of the RV and/or of the tricuspid annulus due to left-sided heart valve diseases, pulmonary
hypertension, congenital heart defects, and cardiomyopathy [131]. Most Doppler methods
used to assess MR are directly applicable to the quantification of TR. The main difference
is that TR jet is usually a lower pressure and lower velocity than is typically found in
MR [143]. Despite the volumetric estimation of right heart constitutes the principal chal-
lenge of 3D echocardiography, several studies proved its usefulness to define the severity
of TR [144,145].

AI-based valve assessment software algorithms integrating 2D and 3D echocardio-
graphic parameters with automated quantification of disease severity have shown to reduce
time to analyze cardiac structures and provide good reproducibility with minimal user
intervention. Their implementation could improve diagnostic and prognostic stratification
for surgical and interventional procedures [146,147].

Table 5 shows a Comparison between Standard and Emerging echocardiographic
techniques to evaluate mitrale and tricuspid regurgitation in dilated cardiomyopathy.
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Table 5. Comparison between Standard and Emerging echocardiographic techniques to evaluate mitrale and tricuspid regurgitation in dilated cardiomyopathy.

Secondary Mitral and Tricuspid Regurgitation Evaluation
Standard Echocardiographic Techniques Emerging Echocardiographic Techniques

Technique Name and
Related Parameters Limitations New Recent Findings Technique Name and

Related Parameters Potential Benefits Current Key Studies
in DCM

Standard 2D Transthoracic
and Trans-oesophageal
Echocardiography with

Color Doppler

Highly influenced by settings,
hemodynamic conditions,
dynamic changes in the
orifice area and mechanism of
mitral and
tricuspid regurgitation;
Need for cumbersome
manual measurements in
which small errors result in
significant inaccuracies;
Risk of overestimation of
valvular defects;
Corrected quantification of
the severity in less than
two-thirds of cases.

For proximal
flow convergence:
Rapid qualitative assessment;
Absence of PISA is usually a
sign of mild regurgitation;
For VC;
Surrogate for regurgitant
orifice size;
Independent of flow rate;
Can be applied to
eccentric jets;
Less dependent on
technical factors;
>For jet area;
Easy to measure [132].

Real-Time 3D Transthoracic
and Trans-oesophageal
Echocardiography with
color Doppler

Faithful reconstruction of the
valve anatomy;
More accurate measurements
of quantitative and
semiquantitative parameters;
Good reproducibility with
CMR findings
Availability of automated
approaches more accurate
and reproducible than
spectral Doppler velocity
profiles and 2D areas;
Higher accuracy to identify
severe regurgitation
than CMR.

Metanalysis [142]

AI technology

Integration of 2D and 3D
echocardiographic
parameters with automated
quantification of disease
severity;
Reduced time to analyze
cardiac structures and good
reproducibility with minimal
user intervention.

Review [146]

DCM = dilated cardiomyopathy; 2D = Two dimensions; 3D = Three dimensions; PISA = Proximal Isovelocity Surface Area; VC = vena contracta; CMR = cardiac magnetic resonance; AI = artificial intelligence.
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7. Left Ventricular Thrombus

Autopsy [148] and echocardiographic studies [149] have revealed that the incidence
of left ventricular thrombus (LVT) in DCM is about 11–44% with a subsequent incidence of
embolism around 11–20% [150]. LVT can remain underdiagnosed since 2D TTE misses two-
thirds of thrombi, especially if these are small in size and located at the LV apex [151]. The
advent of ultrasound contrast agents [152], providing the opacification within the cardiac
chambers to demonstrate the avascular “filling defect” appearance of an intracardiac
LVT, has improved the diagnostic accuracy of TTE from 82 to 92% [153]. Real-time 3D
echo provides an unlimited number of cutting planes in all directions through a single
full volume dataset that can be cropped and rotated improving sensitivity and reducing
the risk of missing small apical thrombi [154]. However, this technique is not able to
distinguish between LVT and myocardium or to evaluate the changes in thrombi structure,
as the different shades of blue/brown color visualized by 3D echo reflect the depth of
different structures rather than their texture [155]. Conversely, the myocardial deformation
assessed by tissue Doppler imaging (TDI) using strain-rate (SR) techniques allows to
differentiate between fresh (range: 5–27 days) and old (4–26 months) LVT [156]. Besides, as
older thrombi are more collagen rich than fresh thrombi, they appear structurally better
organized and stiffer and exhibit lower deformation values (expressed as lower peak SR)
because of the changing intraventricular pressure during the isovolumetric contraction
and relaxation periods [156]. Finally, nowadays AI technology is applied to recognize
and classify intracardiac masses such as LA thrombosis, cardiac tumors and vegetation
so it is realistic to expect AI to be a near-future application for LVT diagnosis [66,157].
Most of the aforementioned new echocardiographic technologies have only been tested in
ischemic DCM, therefore it would seem appropriate that future studies will focus on their
application in non-ischemic DCM patients.

Table 6 shows a comparison between Standard and Emerging echocardiographic
techniques to identify left ventricular thrombus in dilated cardiomyopathy.
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Table 6. Comparison between Standard and Emerging echocardiographic techniques to identify left ventricular thrombus in dilated cardiomyopathy.

Identifying Left Ventricular Thrombus
Standard Echocardiographic Techniques Emerging Echocardiographic Techniques

Technique Name and
Related Parameters Limitations New Recent Findings Technique Name and

Related Parameters Potential Benefits Current Key Studies
in DCM

Standard 2D Transthoracic
Echocardiography

Misses up to two-thirds of
thrombi→ very low sensitivity.

The majority (56%) of LVT in
DCM are diagnosed by
Standard Transthoracic
Echocardiography [155].

Real-Time 3D
Echocardiography

Identification of the
attachment point of the
thrombus to the cardiac wall;
Delineation of the changes in
thrombi structure (e.g.,
calcification, degeneration);
More accurate assessment of
thrombus mobility;
Accurate calculation of
thrombus volume.

Cross-Sectional [154]

Contrast-Enhanced 2D
Echocardiography

Need for ultrasound
contrast agents;
Time consuming;
Not able to evaluate the
changes in thrombi structure.

Contrast-Enhanced
echocardiography o nearly
doubled sensitivity and
yielded improved accuracy
versus non-contrast echo [152]

Strain-Rate by Tissue
Doppler Imaging

Allows to differentiate
between fresh (range: 5–27
days) and old (4–26 months)
thrombi;
Allows to obtain an
approximate calculation of
the thrombus stiffness.

Missing specific data in
non-ischemic DCM →
studies are needed

AI technology

Already applied to recognize
intracardiac masses (e.g., left
atrium thrombosis, cardiac
tumors and vegetation)→ it
is realistic to expect AI to be a
near-future application for
detect LVT

Missing specific data in
non-ischemic DCM →
studies are needed

DCM = dilated cardiomyopathy; LVT = left ventricular thrombus; 2D = Two dimensions; 3D = Three dimensions; CMR = cardiac magnetic resonance; AI = artificial intelligence.



J. Clin. Med. 2021, 10, 5518 19 of 29

8. Myocardial Scars and Fibrosis

In DCM patients, myocardial fibrosis (MF) is commonly found and contributes to
the weakening and dilatation of the ventricular walls, affects the mechanical-electrical
activity of cardiomyocyte and it is associated with deteriorating cardiac function and high
long-term mortality [158,159]. The identification of scars and fibrosis burden is helpful for
risk stratification and for determining the timing of early intervention [160]. The idea of
using echocardiography to detect MF dates back to 1980s [161]. Since histopathologic and
histochemical studies suggested that the increase in echo amplitude was correlated with
myocardial scar formation an MF deposition, a landmark study proposed the calibrated my-
ocardial integrated backscatter (IB) analysis as an echo technique able to identify MF [162].
Subsequently, Mizuno et al. first succeeded in evaluate quantitatively the severity of MF in
DCM using combined tissue harmonic imaging (THI) and IB analysis [163]. Unfortunately
this approach failed though to demonstrate feasibility in the real-life clinical practice [164].

Four new echo techniques, mostly studied in ischemic patients, are now available to
identify and quantify MF and may be usefully applied in DCM:

1. Contrast-enhanced (CE) 3D Echo. Montant et al. tested CE-3D echo versus CMR-LGE
and found that second-harmonic imaging (with transmission/receive 1.6/3.2 Mhz)
at a mechanical index of 0.5 was the best combination to differentiate normal my-
ocardium from fibrotic scar [165].

2. Three dimensional (3D) speckle tracking echocardiography. A study conducted in
DCM patients prior to heart transplant comparing STE versus histological findings
found that 3D GLS may be an optimal surrogate marker for reflecting MF (Area Under
Curve, AUC 0.86) [166].

3. Pulse cancellation ultrasound technique (eSCAR). The echo machine built-in setting
for LV opacification used without CE, thanks to cancellation of “linear” signals back
from normal myocardium, is incidentally very efficient to enhance signals from
abnormal myocardial tissue, such as fibrotic [167] and calcific tissues [168], which on
the contrary show “nonlinear” response. This technique is able not only to provide
a semi-quantitative identification of MF (number of scarred segments), but also to
simply define a binary response “scar: yes/no” by the use of the software binary filter
(“default” thresholding method) [167]. Furthermore, eScar has been shown to be able
to identify scar burden as a prognostic marker for ICD appropriate discharge [169].

4. Radiomics-based texture analysis. Using a ML pipeline to integrate and process
ultrasound images texture features the presence of MF is predictable with an AUC of
0.84 (sensitivity 86.4% and specificity 83.3%) [170].

Table 7 shows a comparison between Standard and Emerging echocardiographic
techniques to assess myocardial scars and fibrosis in dilated cardiomyopathy.
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Table 7. Comparison between Standard and Emerging echocardiographic techniques to assess myocardial scars and fibrosis in dilated cardiomyopathy.

Assessing Myocardial Scars and Fibrosis
Standard Echocardiographic Techniques Emerging Echocardiographic Techniques

Technique Name and
Related Parameters Limitations New Recent Findings Technique Name and

Related Parameters Potential Benefits Current Key Studies
in DCM

THI-Calibrated Myocardial
Integrated Backscatter
2D Echocardiography

Lack of correlation with CMR;
Lack of correlation with
histopathology findings;
Failed though to demonstrate
feasibility in the real-life
clinical practice.

It is the only
echocardiography technique
proven to evaluate
quantitatively myocardial
fibrosis specifically in DCM
patients [163].

Contrast-Enhanced 3D
Echocardiography

Strong correlation with CMR;
Available and cheaper
than CMR;
Rapid learning curve.

Missing specific data in
non-ischemic DCM →
studies are needed

3D GLS Speckle Tracking

Strong correlation with
histopathology findings;
Good intra/inter-observer
reproducibility;
Practical for serial follow-up.

Cross-Sectional Study [166]

Pulse Cancellation
Ultrasound

[eSCAR]

Standard 2D phase array
probe with contrast
opacification preset
(power-modulation/pulse
inversion harmonic imaging;
transmit 1.6 MHz/receive 3.2
MHz) without the need for
contrast administration;
Strong correlation with CMR
Prognostic value for ICD
appropriate discharge;
Bedside, fast and easy, perfect
for screening.

Missing specific data in
non-ischemic DCM →
studies are needed

Radiomics-Based
Texture Analysis

Simple and cheap application
of AI to standard
echocardiography software;
Strong correlation with CMR
Vendor-independent;
Good interobserver agreement.

Cross-Sectional Study [170]

DCM = dilated cardiomyopathy; THI = tissue harmonic imaging; 2D = Two dimensions; 3D = Three dimensions; CMR = cardiac magnetic resonance; GLS = global longitudinal strain; AI = artificial intelligence.
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9. Conclusions

Exponential growth of echocardiography’s technology and performance in recent
years has not only resulted in improved diagnostic accuracy of DCM but highlighted the
complexities of DCM characterization that extend beyond simplistic volumetric, flow and
pressure determination. Although nowadays CMR remains the gold standard technique in
DCM, the echocardiographic advances and novelties summarized, if properly integrated
into clinical practice in the coming years, could bring echocardiography closer to CMR in
terms of accuracy. Furthermore, unlike CMR, the use of affordable, accessible echocardio-
graphic techniques applicable in unstable, arrhythmic and claustrophobic patients could
prove in the future to be the new gold standard to track the longitudinal follow-up of
patients affected by DCM. The application in DCM patients of the aforementioned echocar-
diographic advances must further be corroborated by large clinical studies, mapping out
an interesting emergent research area for scholars in the near future.
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