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Coronavirus disease 2019 (COVID-19) has swept the world, unlike any other
pandemic in the last 50 years. Our understanding of the disease has evolved
rapidly since the outbreak; disease prognosis is influenced mainly by multi-
organ involvement. Acute respiratory distress syndrome, heart failure, renal
failure, liver damage, shock and multi-organ failure are strongly associated
with morbidity and mortality. The COVID-19 disease pathology is plausibly
linked to the hyperinflammatory response of the body characterized by
pathological cytokine levels. The term ‘cytokine storm syndrome’ is perhaps
one of the critical hallmarks of COVID-19 disease severity. In this review, we
highlight prominent cytokine families and their potential role in COVID-19,
the type I and II interferons, tumour necrosis factor and members of the
Interleukin family. We address various changes in cellular components of
the immune response corroborating with changes in cytokine levels while
discussing cytokine sources and biological functions. Finally, we discuss in
brief potential therapies attempting to modulate the cytokine storm.
1. Introduction
In December 2019, several cases of pneumonia of unknown aetiology were
observed in Wuhan, Hubei province, China. Soon after, the pneumonia was
linked to the wet animal market in Wuhan, as the majority of patients that
required medical attention had visited this market in the month previous to
diagnosis. Reminiscent of the previous outbreaks, severe acute respiratory syn-
drome (SARS) in 2002 and Middle Eastern respiratory syndrome (MERS) in
2012, scientists immediately started isolating and identifying the pathogenic
agent, a new member of the Coronaviridae family, later termed SARS-Cov-2.
As of 12 March 2020, coronavirus disease 2019 (COVID-19) worldwide mortality
was estimated at 3.7% [1]. This remains mostly unchanged. Moreover, it is esti-
mated that 5% of the infected population will develop advanced diseases
requiring intensive care, often necessitating extracorporeal organ support
therapies. Of this critically ill subgroup, the mortality rate is high, at 40–50% [2].

In the majority of cases, individuals who test positive for SARS-Cov-2 by
molecular diagnostics, typically reverse-transcriptase polymerase chain reaction
(RT-PCR), may have no symptoms (termed asymptomatic or presymptomatic
infection). On the other hand, COVID-19 symptomatology is typically associated
with fever (98%), cough (76%), dyspnoea (55%) and myalgia or fatigue (44%).
Other signs, such as sputum production (28%), headache (8%), haemoptysis
(5%) and diarrhoea (3%), may also be present [3].

In a clinical setting, severe disease is characterized by (infectious) pneumo-
nia; complications typically include acute respiratory distress syndrome (ARDS)
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Figure 1. CS symptoms in COVID-19 and disease progression. Clinical symptoms of COVID-19 can be related to those associated with cytokine storm. Delayed
detection of symptoms may lead to disease progression, with multi-organ involvement. It is difficult to manage and requires the admission of patients to
ICU; intensive care is observed in about 5% of the infected population. Of the critically ill COVID-19 patients, the mortality rate is high, 40–50% [2,7].
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[4], acute cardiac injury [5] and secondary infections [6]
(figure 1). ARDS is a significant complication in severe
cases of COVID-19, affecting 20–41% of hospitalized patients
[4,8], but heart failure, renal failure, liver damage, shock and
multi-organ failure have also been observed in COVID-19.

Disease severity stratification depends on symptomatology
[9]. Adult COVID-19 cases may be grouped as [10–13]:

1. Mild illness: individuals with any of the various signs and
symptoms of COVID-19 (e.g. fever, cough, sore throat,
malaise, headache, muscle pain) in the absence of shortness
of breath, dyspnoea or abnormal chest imaging.

2. Moderate illness: individuals with signs of lower respiratory
disease by clinical assessment or imaging and peripheral
oxygen saturation (SpO2)≥ 94% (room air at sea level).

3. Severe illness: characterized by breathing rates≥ 30 breaths
per minute, SpO2 < 94% (room air at sea level); a ratio of
arterial partial pressure of oxygen to fraction of inspired
oxygen (PaO2/FiO2) less than 300 mmHg, or lung infil-
trates greater than 50%.

4. Critical illness: individuals presenting with respiratory
failure (requiring mechanical ventilation), septic shock
and/or multiple organ dysfunctions [9].

The multi-organ pathology is probably linked to the
expression pattern of Angiotensin-converting enzyme 2 gene
(ACE2). RNA expression is detectable across a wide range of
human tissues [14]. The cells, tissues and organs most affected
are those with high ACE2 expression, the entry receptor for
SARS-Cov-2.

The extent of ACE2 protein expression detectable on the
cell surface is still open to debate; previous work has
shown that ACE2 is abundantly present in epithelia of the
lung and small intestine in humans, opening the door for
possible routes of entry for the SARS-Cov-2 [15]. However,
more recent data suggest that cell-surface expression on the
lungs is below the detection limit [16].

Considering the public data on the Human Protein Atlas,
COVID-19 disease pathology does not correlate directly with
ACE2 cell-surface protein expression (figure 2) [16]. However,
the disparity may be associated with selective, transient
expression of ACE2, as has been reported for the heart and
kidneys [17,18].
2. Cytokine storm
Although the concept of an uncontrolled, cytokine-mediated
response was already viable in the 1980s, first described in
relation to malaria and sepsis [19,20], and subsequently in
2000s in the context of pancreatitis [21], variola virus [22] and
influenza virus H5N1 [23], the first occurrence of the term
‘cytokine storm’ (CS) dates back to 1993 when it was reported
in the context of graft-versus-host disease (GVHD) [24,25]. CS
can be directly induced by a broad range of infections and by
certain drugs. In the latter scenario, it is described as ‘infusion
reaction’ or ‘cytokine release syndrome’.

CS is also a side effect of well-establishedmedical practices
like adoptive T-cell therapies (including CAR-T-cell therapy)
[26] and the use of monoclonal antibody drug regimens
[27,28] and immune checkpoint blockade inhibitors [29–31].

Mechanistically, a stressed or infected cell, through
receptor−ligand interactions, activates large numbers of
white blood cells, including B cells, T cells, natural killer
cells, macrophages, dendritic cells andmonocytes. This results
in a release of inflammatory cytokines, which activate more
white blood cells in a positive feedback loop. CS starts locally
post-primary infection and spreads throughout the body via
systemic circulation. The classical signs of inflammation—
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Figure 2. ACE2 expression in human tissues. SARS-Cov-2 uses the angiotensin-converting enzyme 2 (ACE2) as a cell receptor to invade human cells. ACE2 RNA and
protein expression were observed in the endocrine tissues, gastrointestinal tract, the kidney and urinary bladder, the liver and gallbladder in men and women [7].
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calour (heat), dolour (pain), rubor (redness), tumour (swelling
or oedema) and loss of function—are observed. Initially, the
localized response is meant to eliminate the trigger and
involves protective mechanisms, i.e. increase in blood flow,
facilitation of leucocyte extravasation and delivery of plasma
proteins to the site of injury, increase in body temperature
(advantageous in case of bacterial infections) and pain trigger-
ing (warns the host of the occurring challenge).

Nonetheless, repair processes are initiated soon after a
pathogenic trigger. These processes can have two possible
outcomes (1) organ function is gradually restored (2) healing
occurs with fibrosis, which can result in persistent organ mal-
function. Of note, the reported CS symptoms are not unique
to SARS-Cov-2; similar observations were also made in
SARS-Cov-1 and MERS-Cov cohorts [32,33].

Emerging data points to CS as a distinct immunological
character of COVID-19; namely disrupted immune activation
manifesting as hyperinflammation. Work by Ruan et al. [6]
shows that the critically ill admitted to the ICU had higher
systemic levels of IL-2, IL-7, IL-10, granulocyte-colony-stimu-
lating factor, IP-10, monocyte chemoattractant protein-1
(MCP-1), macrophage inflammatory protein-1A (MIP-1A)
and tumour necrosis factor-α (TNF-α) [6].

Importantly, data from recovered versus seriously ill
patients, suggests that there is a significant association between
severe uncontrolled inflammation and mortality. The main
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Figure 3. Prominent cytokine sources and their effect in COVID-19 pathogenesis. Immune cell sources of cytokines associated with cytokine storms; IFN-γ, TNF-α,
IL-1 and IL-6 are depicted with their effects in the context of COVID-19 [7].
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components of the CS are the critical immune elements of the
pro-inflammatory milieu (figure 3).

In this review, we will be focusing on cytokines associated
with ICU admission. These include the anti-viral cytokines of
the interferon family, tumour necrosis factor and members of
the interleukin family. Finally, we will elaborate on IL-6 and
the current understanding of its involvement in light of the
current COVID-19 pandemic.
3. Interferons (IFN)
IFN (type I, II, III) are central cytokines involved in innate
immunity to bacteria and viruses. Type I and III interferons
are produced, broadly, by all nucleated cells post-viral
infection; interferon-α is predominantly produced by virus-
infected leucocytes, and interferon-β by fibroblasts. Type II
interferon (IFN-γ) is produced by macrophages, in response
to viral and/or intracellular bacterial infections, and by natural
killer (NK) cells. Additionally, IFN-γ is produced by T helper
(TH) CD4 [34] and CD8 cytotoxic T lymphocyte (CTL) effector
T cells during antigen-specific immunity [35]. Upon cognate
receptor binding (IFNAR1/IFNAR2 for Type I interferons,
IFN-γR1/IFN-γR2 for Type II interferons, receptor complex
IL-28R/IL-10Rβ for type III—also known as lambda interfer-
ons), interferons activate a complex network of downstream
signalling, which results in activation of transcription factors
and induction of a multitude of IFN-stimulated genes that
exert anti-viral, anti-proliferative or immunomodulatory
properties.

Interestingly, lambda interferons (type III) have been
reported to confer protection in a mouse model of influenza
Avirus [36]. In COVID-19, IFN-γ levels increased in corrobora-
tion with the viral load [3]. The delayed peak, paralleled with a
drop in lymphocyte counts, increased neutrophil infiltration of
the alveoli in the lungs, along with the deterioration of the
patient’s condition [3,37,38]. IFN-γ has been previously associ-
ated with disease severity. In SARS-Cov-1 and MERS-Cov,
increased levels of IFN-γ was associated with pulmonary
inflammation and extensive lung damage [39,40] both
hallmarks of deterioration.

Along with IL-6, IFN-γ has been a reliable indicator of
COVID-19 patient deterioration and ICU admission [37,38,41].
The source of IFN-γ has been up for debate, and it is widely
accepted that CD4 TH cells are the direct source of IFN-γ,
which promotes the differentiation of CD8 T cells and activates
their cytotoxic abilities. CD4 TH cells produce granulocyte and
monocyte colony-stimulating factor which promote monocyte
differentiation (CD16+ CD14+ CD45+), which also sources
IFN-γ in the blood.
4. Tumour necrosis factor-α
The tumour necrosis factor (TNF) superfamily consists of 19
members of type II transmembrane proteins that can be
released from the cell membrane through extracellular
proteolytic cleavage and function as cytokines. TNF-ɑ is
produced by macrophages, monocytes, endothelial cells,
neutrophils, smooth muscle cells, activated lymphocytes,
astrocytes and adipocytes.

TNFR1 (primary receptor for TNF-α) is expressed by all
cell types and thus responsible for the pleiotropic effects of
this cytokine; TNF-α has a variety of functions, such as med-
iating the expression of genes for growth factors, cytokines,
transcription factors and receptors. TNF-α plays a central
role in CS. In COVID-19, TNF-α has been a prominent feature
of patient deterioration, increasing in ICU patients in
comparison to non-ICU [38,42].

Along with IL-6 and the soluble IL-2 receptor, TNF-α levels
increase early in the infection and remain elevated throughout
the infection [3,38]. Importantly, TNF-α in the lungs of COVID-
19 patients induces HA-synthase-2 (HAS2) in EpCAM+ lung
alveolar epithelium and CD31+ lung alveolar endothelium
and fibroblasts [43]. HA (hyaluronan) is a key culprit for the
fluid influx in the lung alveoli, a leading cause of deoxygena-
tion and ventilator admission. Interestingly, lung epithelial
cells do not secrete TNF-α in a model of highly pathogenic
H5N1 influenza infection [44]; however, TNF-α expression by
the lung epithelium is observed later as ARDS develops.
TNF-α increase in expression is a result of macrophage-derived
soluble factors interacting with lung epithelial cells [45]. In the
circumstances of CS, this can be seen as a secondary effect to
the ongoing pro-inflammatory cascade and highlights CS’s
ability to establish cross-talk with the affected mucosal tissue,
to auto-sustain its amplification, resulting in the escalation of
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CS at a systemic level. It would be interesting to investigate
whether SARS-Cov-2 infection is also able to drive TNF-α
secretion by the lung epithelium as a result of CS.
 lsocietypublishing.org/journal/rsob
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5. Interleukins
Interleukins (ILs) regulate pro- and anti-inflammatory,
immune cell differentiation and activation. Although initially
thought to be exclusively involved in leucocyte-to-leucocyte
communication (from which the term interleukin derived),
they are now known to be produced by a wide variety of
cell types.

IL-1 plays an essential role in T-cell-derived immunity, pro-
moting IL-2 secretion, a key player in T-cell homeostasis [46], as
well as IL-2 receptor expression [47,48]. IL-1α and IL-1β
increase acute-phase signalling, trafficking of immune cells to
the site of primary infection, epithelial cell activation, and sec-
ondary cytokine production. The acute-phase response to
infection is evidenced in a wide range of local and systemic
effects that are generally pro-inflammatory, such as the increase
in specific cytokine production, which can be linked to viral
clearance. IL-1α expresses costimulatory function strictly on
TH2 cells, with little to no effect on TH1 cells [48]. The IL-1
high-affinity receptor, IL-1RI, is highly expressed on TH2
cells [49]. In models of hypersensitivity, IL-1α/β−/− mice
had lower IL-4 and IL-5 levels compared to controls, reducing
symptoms of allergy [50].

By contrast, IL-1α/β proved critical in sustaining a TH2
immune milieu in a murine trichuris muris infection, necessary
to overcome the parasitic infection [51]. Additionally, IL-1
plays important roles in TH17 induction and functionality.
IL-1RI−/− mice mounted less TH17 cells compared to wild-
type controls [52]. Interestingly, IL1RI−/− mice were resistant
to experimental autoimmune encephalomyelitis [52]. Of note,
the induction of TH17 in autoimmune experimental
models requires IL-1β (induced artificially by killed inactive
Mycobacterium tuberculosis) [53]. In the respiratory tract, IL-1
receptor signalling is responsible for acute lung immunopathol-
ogy and enhancing the survival of mice infected with influenza
virus by inducing IgM antibody responses and recruiting CD4 T
cells to the site of infection [54].

In COVID-19, patient CT lung scan with multiple bilateral
lobular pneumonia is associated with IL-1β, IL-7, IL-8, IL-9
level increase in initial plasma concentration [3]. These
cytokines are released from damaged tissue and are early
immune drivers of the immune response in COVID-19. Strik-
ingly, this increase was similar in both ICU and non-ICU
patients, suggesting their profound involvement in the immu-
nopathology of COVID-19 [3]. Moreover, it was observed that
IL-2 and IL-7 increased in ICU and non-ICU patients [3,55].
Similarly, IL-10 increases to a similar pattern to IL-2 and IL-7
[3]. IL-10 is understood to be released form antigen-presenting
cells responsible for the differentiation and activation of CD8 T
cells and TH cells as a feedback response to the increased levels
of IFN-γ and IL-6. It appears that IL-10, a potent immune
modulator, in the case of COVID-19, is considered a vital
sign of immune delinquency. IL-10 levels are increased in the
second week following symptom-onset, while not associated
with the immune drawback, it is an indication of latent
immune efforts to control the CS [38], which are unfortunately
too late. IL-4, a TH2 cytokine and suppressor of inflammation,
also, increases in ICU patients in a late regulatory attempt
by the immune system [3]. Collectively, ILs, while not archety-
pical anti-viral cytokines like IFNs, however, no doubt shape
CS morbidity.
6. IL6: in the eye of the storm
Human IL-6 is made up of 212 amino acids, including a 28-
amino acid signal peptide, and its gene has been mapped to
chromosome 7p21. Although the core protein is 20 kDa, glyco-
sylation accounts for the size of 21–26 kDa of natural IL-6. In
the immune system, IL-6 plays many essential roles that help
shape anti-viral immunity. IL-6 is a prominent pro-inflamma-
tory cytokine with a range of inflammatory roles. Interleukin
6 (IL-6) is an interleukin that affects the activity of a variety
of cell types. Hence it is described as a pleiotropic cytokine
and acts both as a pro-inflammatory cytokine and an anti-
inflammatory myokine (a specific type of cytokine expressed
by muscle cells in response to muscular contraction).

Upon its production, IL-6 binds to its soluble receptor and
forming the IL6/IL6R complex. IL-6 binds to its receptor,
which is expressed on a broad range of immune cells and
tissues. The IL-6 receptor-signalling complex comprises of
two transmembrane-IL-6 binding chains, two soluble IL6
receptors, and two cytoplasmic signalling molecules (gp130).
The IL-6R cytoplasmic signalling molecule is shared by other
members of the IL-6 family, i.e. leukaemia inhibitory factor,
IL-22, IL-27 and IL-25.

Consequently, the receptor co-sharing possibly forms the
basis for the collective redundancies and pleiotropic effects
shared between IL-22, IL-27 and IL-25 and functions attribu-
ted to IL-6. The binding of soluble IL-6 to its ligand
upregulates the gp130. The binding allows for the formation
of the IL-6/IL-6R complex, which in turn triggers the down-
stream signalling of the IL-6-related intracellular cascade. The
intracellular cascade following complex formation involves
the downstream activation of the Janus kinase (JAK)-STAT3
pathway and the JAK-SHP-2-MAP kinase pathway. STAT3
regulates IL-6 responses by inducing suppressor cytokine sig-
nalling-1 (SOCS1) and SOSC3, which negatively oppress IL-6
signalling inhibiting intracellular feedback loops.

Awide range of immune cells secrete IL-6, i.e.macrophages,
neutrophils, dendritic cells and lymphocytes. Importantly, the
release of IL-6 within an inflammatory milieu is due to the
vast number of cells that secrete it that are structural com-
ponents of the infected tissue and not necessarily part of the
immune system per se, i.e. mesenchymal cells, endothelial
cells, fibroblasts and others are involved in the production of
IL-6. These findings highlight the abundance and profound
potential IL-6 carries in an inflammatory condition. Function-
ally IL-6 arrives, through the bloodstream, at the liver and
rapidly activates hepatocytes to produce C-reactive proteins,
serum amyloid A and promotes the release of fibrinogen.

Moreover, hyperinflammation may be accompanied by a
drop in albumin, which is an indication of liver damage and,
more importantly, systemic disease. Centrally, IL-6 promotes
the differentiation of naïve CD4 T cells into effector and
helper cells [56]. As it bridges natural immunity into adaptive
immune responses, IL-6 promotes TH7 differentiation [57]
along with cytotoxic CD8 T lymphocytes activation and
differentiation [58].

Additionally, IL-6 inhibits the production of T regulatory
T CD4+CD25+ FOXP3 cells [59], therefore attributing to the
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development of a long list of autoimmune diseases. Immuno-
globulin production is regulated indirectly by IL-6 through
promoting T-follicular helper cell, B cell and plasma cell
differentiation as well as IL-21. On a side note, some viruses
can manipulate the intracellular cascade of events attributing
to the inflammatory status and the release of IL-6. An
example of this is HIV-1, which enhances the DNA binding
activity of NFkB and NF-IL-6, increasing IL-6 RNA transcrip-
tion and as a subsequent effect excessive IL-6 secretion.
A similar mechanism has been shown for SARS-Cov-1:
specifically, the SARS-Cov-1 structural protein N (nucleocap-
sid), but not protein S (spike), protein E (envelop) and protein
M (membrane) significantly induced the activation of IL-6
promoter in human airway epithelial cell cultures, via direct
binding of NFkB regulatory element on IL-6 promoter [60]
This could, in theory, counteract IL-6 regulatory mechanisms
that lead naturally to the cessation of IL-6 mediated activation
once the threat is resolved. The mechanisms would need
further investigation to assess potential long-term effects of
COVID-19, especially considering the environmental factors
and the development of autoimmune disorders, i.e. transient
autoimmune disorders that follow viral infections.

IL-6 has been in the centre of this COVID-19 pandemic [61].
Early in the outbreak, IL-6 levels were a reliable indicator of
disease severity and predictive in terms of ventilation support
[6,62,63]. Pedersen and colleagues discuss that increased levels
of IL-6 (along with TNF-α and IL10) is significantly associated
with reduced levels of recovery chances and requiring ICU
admission [38]. Additionally, in their quantitative study,
mild to moderate levels of IL-6 and others corroborated with
moderate cases. Prompetchara and colleagues identified a
52% increase in the level of IL-6 in ICU patients compared to
non-ICU [41]. This was associated with neutrophilia and
lymphocytopenia and an increase in CRP levels. Zhao and col-
leagues showed that both IL-6 and IFN-γ are indirectly
promoted by CD4 TH lymphocytes through the secretion of
GM-CSF [64]. GM-CS, in turn, induces the production and
recruitment of CD14+CD16+ monocytes that release IL-6 into
the pulmonary environment.

As observed in SARS-Cov-1 and MERS, IL-6 is generated
early in the infection as a result of innate, MyD88-dependent
pathway, immune receptor activation following the detection
of viral proteins inside the infected cell. Notably, evidence
for IL-6 production enhancement in SARS-Cov-1 pathogen-
esis [60] builds the ground for the hypothesis that the two
members of the Coronaviridae family might indeed share
common physiopathological mechanisms and points out to
new possible strategies for therapeutic interventions [65].
7. Antigen-independent, cytokine-
dependent amplification of the
inflammatory loop

Viral antigens are typically the initial trigger of innate and
adaptive immune activation [66]. Screening of circulating T
cells using HLA class I and II predicted peptide ‘mega
pools’ identified SARS-Cov-2-specific CD4 and CD8 and T
cells in approximately 100% and 70% of COVID-19 convales-
cent patients. The most robust CD4 T-cell responses targeted
the viral Spike protein, and these responses correlated with
anti-SARS-Cov-2 IgG and IgA levels across the cohort.
CD8 T-cell responses were also predominantly directed to
the spike protein. The second most dominant antigen ident-
ified was the M (membrane) protein [66]. This data justifies
the ongoing vaccine efforts directed at the SARS-CoV-2
Spike protein [67].

T-cell receptor (TCR) recognition of HLA/peptide–epitope
complexes triggers activation and differentiation of naive T
cells; as a result,Tcells acquiredistinctphenotypicandfunctional
properties aswell as effector functions [68–70]. Amodel of T-cell
responses in COVID-19 suggests that disease severity may be
associated with early cytokine programming of naive T cells
[71].Milddisease is associatedwith IL-2, type I and type III inter-
feron. Conversely, severe disease is linked to IL-6, IL-10, IL-1,
TNF and CXCL8 and other CXCLs during T-cell priming.

Undoubtedly, viral persistence and continuous antigen
exposure determine clinical course [72]. Viral load also
correlates with pro-inflammatory cytokine levels [73,74].

However, there are also reports pointing to a plausible anti-
gen-independent, cytokine-dependent immune amplification
sustaining hyperinflammation in COVID-19. For instance, the
early case series by Lescure et al. reporting late respiratory
deterioration despite the disappearance of nasopharyngeal
viral RNA suggests that late, severe manifestations may be
(mainly) immunologically mediated [75].

With the discovery of cross-reactive Cov memory T cells
in healthy donors [66], one should consider that memory T
cells might be involved in the COVID-19 pathogenesis.
The common-γ-chain cytokines play a major role in health
and disease [76]; IL-7, IL-15 are known drivers of antigen-
independent, homeostatic, memory T-cell proliferation and
bystander T-cell proliferation [77–80]. Moreover, IL-2 secreted
by activated T cells may also promote bystander activation
[79–81]. Lucas et al. showed that IL-7, IL-15 and IL-2
were increased in COVID-19 and correlate with disease
severity [73] and may promote IFN-γ production in an
antigen-independent manner [82].

Other cytokines may also be involved in potentiating
the inflammatory loop; naive and memory virus-specific
CD8 T-cell activation can be achieved in an antigen-indepen-
dent manner with cytokine cocktails, e.g. IL-12 + IL-18 [83].
These cytokines may trigger rapid antigen non-specific IFN-γ
secretion during infections with intracellular pathogens [84].

Provided that several cytokines are increased during
COVID-19, it is important to underline the synergistic potential
of cytokine ‘cocktails’. For example, subthreshold amounts of
TNF-α with IL-12 leads to greater than 20-fold increase in
IFN-γ producing CD8 T cells in comparison to IL-12 mono-
stimulation [83]. In a dengue virus model, IFN-γ production
from CD4 and CD8 T cells in a TCR-independent manner
involving IL-12 was reported [85]. During chronic viral infec-
tions, prolonged Antigen exposure has been shown to
generate innate-like CD8 T cells that respond to cytokines in
the absence of TCR-stimulation [83].

Increased levels of IL-1β in COVID-19 may point to inflam-
masome activation [86,87]. However, it has also been shown
that cognate interactions between effector CD4 T cells and
myeloid cells via the TNF/TNFr axis can trigger IL-1β pro-
duction [88]. IL-1β selectively expands and sustains IL-22
producing immature natural killer cells, and IL-22 is linked to
Type 3 immune responses during infections of extracellular
bacteria and fungi. Interestingly, severe COVID-19 patients
show hallmarks of heightened type 3 responses, including
increased levels of IL-17 and IL-22 [73].
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In summary, cytokines may support antigen-specific
and antigen-independent immune activation. In the absence
of regulatory mechanisms, cytokine amplification may
convert to cytokine storm.
8. Discussion
COVID-19 disease presentation resembles clinical observations
reported for the hyperinflammatory syndrome ‘secondary
haemophagocytic lymphohistiocytosis’ (HLH) [89].

Some have postulated that COVID-19 should be included
within the broader spectrumof hyperinflammatory syndromes
[90]. Clinically, HLH is associated with hepatomegaly and
splenomegaly. Probability for HLH in COVID-19 may be
estimated using a risk algorithm in line with established
diagnostic criteria [91–93]. Assessing COVID-19 from the
biochemical perspective the disease has also been linked to
hypertriglyceridaemia [94], another overlapping parameter
with hyperinflammatory syndromes such as HLH.

One more similarity with HLH is hyperferritinemia;
severe COVID-19 cases are characterized by significantly
higher ferritin levels [6]. Ferritin biology during infection is
beyond the scope of this review, but for an in-depth review
we kindly refer the readers to the article by Kernan et al. [95].

The aforementioned clinical manifestations are strongly
linked to the uncontrolled immune response observed in
COVID-19.

COVID-19 has been shown to elicit a two-phase immune
response; in the initial (asymptomatic, pre-incubation) phase
the adaptive immune response plays a critical role in its
attempt to kill infected epithelial cells and thereby by
preventing viral replication [43]. The second phase points
to a failure of the adaptive immunity to clear the virus;
consequently, SARS-Cov-2 propagates.

Subsequent viral budding is associated with NACHT,
LRR and PYD domains-containing protein 3 (NLRP3)
inflammasome activation [86] and immunogenic cell death [87].

Recently,Zhou et al. [96] andHoffmann et al. [97] collectively
elucidated the mechanisms of cell entry employed by SARS-
Cov-2. Both reports showed that SARS-Cov-2 engages ACE2
as the entry receptor and, importantly, requires the binding of
the viral spike (S) proteins to cellular receptors in conjunction
with S protein priming by the serine protease TMPRSS2 [97].

The importance of TMPRSS2 is highlighted as the authors
showed that a clinically approved TMPRSS2 inhibitor could
effectively inhibit viral entry, opening the door for expedited
clinical testing in COVID-19 patients [98].

Viral entry and replication may trigger distinct Toll-
like receptors (TLR) and downstream signalling pathways
(figure 4). The importance of TLR-sensing to elicit a robust
anti-viral immunity has been thoroughly studied [99–101]. In
particular, TLR7 was shown to be imperative to control
COVID-19 disease severity; Van der Made et al. showed that
loss-of-function variants of the X-chromosomal TLR7 result
in diminished type I and II IFN responses linked to among
others to decreased mRNA expression of IRF7 (figure 4).

Given the prominent role of TLR7, Imiquimod, a TLR7
agonist has been proposed as an option to boost anti-viral
immunity [102]. Targeted-nanoparticle vaccines [103] may
be explored for effective in vivo delivery to dendritic cells
and to elicit a robust adaptive immune response [104].

The apoptotic cascade and massive destruction of infected
tissues trigger an innate-like inflammation [100,105,106].
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IL-6 is generated early in the infection as a result of innate,
MyD88-dependent pathway, immune receptor activation by
endogenous viral proteins [107]. SARS-Cov-2 infection in
the respiratory system was also shown to activate the IL-6
amplifier (IL-6 Amp) in an NFκB and STAT3-dependent
manner. IL-6 amplification may contribute to the hype-
rinflammation observed in COVID-19 similar as seen in
multiple inflammatory and autoimmune diseases [61,108].

The local inflammatory milieu attracts a diversity of
immune cells [109], activated CD4 T cells [66], monocytes
and macrophages [110] may further stimulate IL-6 Amp lead-
ing to a pathological positive feedback loop. Thus, initial
secretion of IL-6 by infected epithelial cells sets the stage for
massive infiltration by activated pro-inflammatory immune
cells which further increase the local cytokine levels and
catalyse the adverse inflammatory milieu; particularly in the
lungs, the ensuing lung inflammation is the leading cause of
life-threatening ARDS (figure 5) at the severe stage.

The association between lung pathology and COVID-19 is
well established; however, recent reports are pointing to the
involvement of other organ dysfunction, among others,
acute kidney injury (AKI) [111,112]. Nevertheless, our under-
standing of the mechanisms and the distinct pathophysiology
of COVID-19 induced AKI is still in its infancy [113,114].

Numerous studies have implicated a role for IL-6/IL-6r
in the pathophysiology of AKI [115–117]. Furthermore,
levels of IL-6 in kidney injury patients strongly correlate
with mortality in a concentration-dependent manner [118].

Several mechanisms have been proposed to clarify the role
of IL-6 in renal impairment; for instance, IL-6 can promote renal
disease by increasing sensitivity of tubular epithelial cells to
pro-fibrotic cytokines such as TGF-β. Also, it has been shown
that IL-6 worsens mesangial proliferative glomerulonephritis
by inducing mesangial cell proliferation [117,119].

Furthermore, hyperinflammation has been associated
with COVID-19 induced coagulopathy [120,121], a result of
increased production of clotting factors by the liver under
continuous cytokine stimulation [122]. Indeed, post-mortem
reports describe signs of thromboembolism [123].

We [124] and others [125] have observed that hospitali-
zed COVID-19 patients show extremely elevated D-dimers
(greater than 500 ng ml−1) and Fibrinogen (greater than
5.5 g l−1) levels; some severely ill patients are admitted with
D-dimers of greater than 20 000 ng ml−1 evidencing a severe
hypercoagulable state.
9. COVID-19 for avenues therapeutic
Currently, there are no FDA-approved therapies for the
treatment of COVID-19 [126]. Nonetheless, numerous studies
and observations have pointed to a potential clinical benefit
of controlling hyperinflammation triggered by SARS-Cov-2
as seen frequently in COVID-19 cases [6] as a means to halt
disease progression.

Still, the current management of COVID-19 is mostly
supportive and based primarily on continuous respiratory
support. Considering the cytokine data and clinical obser-
vations pointing to an underlying immunological character
of COVID-19, we suggest further studies in the area of
immune modifying therapeutics. Indeed, immunomodulators
are the biggest group of therapeutics undergoing accelerated
testing [126].

Given the convincing role of IL-6 in COVID-19 pathology,
neutralization of the IL-6/IL-6r via Tocilizumab (a recombi-
nant humanized anti-IL-6 receptor (IL-6r) monoclonal
antibody (mAb), Sarilumab (a recombinant humanized anti-
IL6r) and Siltuximab (a recombinant human-mouse chimeric
monoclonal antibody that binds IL-6) may attenuate CS
[127,128] and also prevent renal function impairment [129].

Another therapeutic intervention pertains to IL-1 block-
ade with Anakinra. The IL-1r antagonist is a cornerstone
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treatment for hyperinflammatory conditions—its use has a
favourable safety profile event at high dosages and hence
suggested a therapeutic approach in COVID-19 [130].

Anakinra is administered to inhibit the pathological
effects of IL-1α and IL-1β. Two cohort studies have evaluated
the clinical effectiveness with promising results [131–133]. In
the absence of randomized trials, FDA recommends that
clinicians consider their use with caution [134].

Blocking systemic inflammation by targeting specific
cytokines through antibody-mediated neutralization have so
far yielded mixed results in clinical settings [135–138] or
effectiveness in selected subgroups.

Consequently, considerable research efforts have focused on
alternative strategies aimed at non-specific sequestration of
inflammatory mediators; for example, blood purification
through filtration, dialysis (diffusion) and adsorption [139–142].

The overall concept of blood purification is to attenuate the
pathogenic systemic levels of pro-inflammatory mediators.
Restoration of immune homeostasis, namely decreased IL-6
levels [116], is thought to be able to decrease the incidence
of COVID-19 induced AKI and thus improves outcomes
and survival.

Several recent reports provide promising observations in
regards to the control of hyperinflammation; cytokine adsorp-
tion, blood purification, effectively decreased levels of IL-6 in
advanced COVID-19 disease [124,130,143]. Nevertheless,
randomized controlled trials are warranted to determine the
calibre of blood purification regimens to promote clinical
recovery of COVID-19 patients.
10. Summary
In this review, we highlight the most identifiable targets
within the fatal cytokine response in severe COVID-19
patients that have been identified via rigorous studying of
the current, and vastly expanding, research on the topic. In
the time of writing this review, many therapeutic drugs are
undergoing clinical testing; Unsurprisingly, IL-6 blockade
is currently the main target [144–146]. However, TNF-α
blockade should also be explored [147,148].

Clinical trials, while in their infancy, carry enormous hope
for ending the suffering of COVID-19 patients.
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